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Abstract—Comparative radiography is the forensic anthropol-
ogy technique in which ante-mortem (AM) and post-mortem
(PM) radiographic materials (e.g., X-ray images or CTs) are
compared in order to determine the identity of a deceased
human being. One of the most commonly used anatomical
structures in comparative radiography are the frontal sinuses.
The frontal sinuses are osseous cavities located in the skull,
which are used in forensic identification tasks due to their
singularity and high identification power. In order to automate
the comparison of frontal sinuses in AM and PM materials, it
is necessary to perform the registration of these materials (i.e.,
it is necessary to carry out the alignment of these anatomical
regions). However, the manual alignment of these structures is
a time-consuming and subjective process. In order to tackle
this problem, this paper presents an automatic frontal sinuses
registration method in comparative radiography using real-coded
evolutionary algorithms (RCEAs). The task is formulated as a
2D-3D image registration problem using a 9 Degrees of Freedom
perspective transformation model; two RCEAs (DE and MVMO-
SH) are compared in the minimization of the registration cost
function, and the best of them (MVMO-SH) is applied to an
identification scenario including 50 X-ray images and 50 CTs. The
results obtained show that the proposed automatic identification
system is able to filter more than 80% of the sample.

Index Terms—Biomedical Image Registration, Forensic Identi-
fication, Comparative Radiography, Frontal Sinuses, Real-Coded
Evolutionary Algorithms, Mean Variance Mapping Optimization,
Differential Evolution

I. INTRODUCTION

Comparative radiography (CR) [1] is a forensic identifica-
tion technique based on the comparison of skeletal structures
in ante-mortem (AM) and post-mortem (PM) radiographs.
Since the discovery of X-rays by Roentgen in 1895 [2],
forensic experts have made use of radiographic images as
evidence in their endeavour (e.g. bullet analysis [3], age
estimation [4], and forensic identification [5]). During the first
decades of the twentieth century, the use of X-rays as a method
of positive identification gradually consolidated in scientific
literature. In fact, in 1949, CR techniques played a crucial
role in the identification of people involved in the Noronic
ship’s disaster, proving their importance for identification and
being included in many mass disaster identification protocols

[6]. Nowadays, CR is still employed in many forensic identi-
fication scenarios. For instance, the Michigan State University
Forensic Anthropology Laboratory (MSUFAL) performed 193
identifications using this approach between 2002 and 2015 [7].

Several bones and cavities have been reported as useful for
candidate short-listing or positive identification based on their
individuality and uniqueness [8]. In particular, frontal sinuses
(see Fig. 1) are widely recognized as a useful and reliable
method of identification [9], fulfilling the Daubert criteria
[10]1. Frontal sinuses are only absent in 4% of the population
and are maintained unchanged during the rest of the life [12].
Although, rarely, some external factors such as traumatisms
can change slightly their morphology, frontal sinuses are con-
sidered as a skeleton fingerprint. Their utilization for CR-based
identification was first reported in 1926 by comparing their
morphology in AM and PM radiographs [13]. Nowadays, CR
identification based on frontal sinuses is widely accepted by
the forensic community, and many works have reported their
utility via image comparison to establish positive identification
[14]–[16].

CR techniques have lower cost and time requirements in
comparison to DNA analysis, which are crucial factors in mass
disaster victim identification scenarios. However, the applica-
tion of CR requires the superimposition of the AM and PM
data for their visual comparison by producing PM radiographs
simulating the AM ones in scope and projection. This is a
time-consuming trial-and-error process, that relies completely
on the skills and experience of the analyst. Furthermore, the
utility of the method is reduced because of the errors related
to analysts’ fatigue and subjectivity. There is thus a need to
automate CR-based identification methods.

The automation of the CR’s superimposition process is
complex and computationally expensive (see Section II for
further details). This is due to several reasons, such as the
unknown set-up of the AM radiograph, the fact that image

1The Daubert criteria [11] determine whether evidence is admissible in a
court of law. An identification method fulfills the Daubert criteria when: (1)
it is testable and peer reviewed; (2) it possesses known potential error rates;
and (3) it is accepted by the forensic community.
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Fig. 1. Frontal sinuses (in light blue): one of the most relevant skeletal structures for CR-based identification. Images extracted from [17].

intensities are not reliable or even not captured, and the
high multimodality of the search space configured by the
registration framework, among others. These reasons make
classic 3D-2D image registration (IR) techniques [18] not
suitable for CR, and more sophisticated techniques should
be considered in order to solve it, as real-coded evolution-
ary algorithms (RCEAs). In particular, the current state-of-
the-art approach for CR follows an evolutionary 3D-2D IR
methodology based on Differential Evolution (DE) [19]. In
[19], several numerical optimization methods based on both
linear search (Nelder-Mead, BFGS, LBFGS) and trust-region
(Levenberg-Marquardt, BOBYQA) were tested to solve our IR
problem, but their performance was insufficient. DE is taken
as comparative reference in the experimentation of this paper,
but we also introduce a competitor approach termed Mean-
variance mapping optimization (MVMO) [20]. The reason to
include this RCEA can be found on its excellent performance
and robustness when tackling computationally expensive real-
coded optimization problems as 3D-2D IR for CR is an
instance of these kinds of problems. MVMO is in top positions
in expensive optimization competitions, such as IEEE CEC
2013 [21], 2014 [22], 2015 [23], 2016 [24], and 2018 [25].

This paper presents an automatic frontal sinuses registration
method in CR using RCEAs. The contribution of this research
work is twofold. First, this is the first time that the problem is
posed as a 3D-2D IR problem using a 9 Degrees of Freedom
(9-DoF) perspective transformation model (a more complete
model than the one previously employed [19]). Second, we
employ a novel RCEA (MVMO-SH) that allows us to achieve
state-of-the-art results in the IR-based CR problem and, there-
fore, up to our knowledge, it represents the most accurate
automatic CR identification system available nowadays.

The rest of the paper is structured as follows. Section II
briefly reviews the current state of the art in IR for CR.
Section III describes our proposal to tackle the 3D bone scan-
2D radiograph superimposition problem (9-DoF registration
model and MVMO-SH). Section IV presents experiments and
results obtained. The main conclusions are in Section V.

II. BACKGROUND AND RELATED WORKS

IR [18] is the process of aligning two or more images
of the same or different dimensionalities into one coordinate
system. 3D-2D IR approaches (e.g., Computed Tomographies
(CTs)-radiograph or 3D surface mode-radiograph in CR) are
classified into intensity-based and feature-based. Intensity-
based methods compare intensities [18] of a 2D projection
of the volumetric image with a fixed 2D image. However,
one crucial consideration in any automatic method for CR is
that the intensity level could have changed between the AM
and the PM images as the bone density changes within the
individual through time (due to factors as aging, osteoporosis,
and the PM interval). Additionally, the intensity information
varies depending on the X-ray acquisition protocols, devices
employed, and cannot be acquired by 3D surface scans, which
are being increasingly used by forensic labs [26] to scan PM
“clean” bones due to their great availability and low cost, while
just a few of them can afford a CT scan.

The former limitations lead to feature-based approaches.
Feature-based IR methods minimize the distance between
geometrical features to be segmented in both images. Foren-
sic anthropologists consider bone morphology (silhouette) a
reliable marker for performing the CR-based identification to
compare radiographs of frontal sinuses [27], clavicles [28],
and patellae [29]. However, these works cannot be considered
as automatic IR methods since they only compare silhouettes
using elliptical Fourier analysis [30]. The former one is based
on the comparison of AM radiograph with a PM radiograph.
The latter two, in contrast, are based on the comparison of
the AM radiograph with a set of a predefined 2D projected
images obtained through the rotation of 3D surface models
acquired with a 3D laser range scanner. However, none of
these completely automate the search for the best possible 2D
projection of the PM 3D surface model of the bone.

Another important consideration about 3D-2D IR methods
for medical domains [31] is that most of them are designed for
a controllable set-up. Therefore, they can assume a calibrated
case where the parameters related to the perspective distortions



are known, and only considering the parameters related to
translations and rotations (6 DoF), and with a initialization
pose close to the ground truth (GT) pose (i.e. a maximum tar-
get registration error [] of 16 mm in [31], etc). However, these
assumptions are not suitable for CR since the AM radiograph
was taken in an unknown pose with an unknown radiograph
device. Therefore, the search for the optimal solution in the CR
scenario is more complex. There are a few exceptions such as
Feldman et al. [32], that proposed a 3D-2D IR method based
on the silhouette that does not rely on assumptions about the
initial pose by using free-form curves and surfaces, but it is
only applicable in the calibrated case (6-DoF).

IR methods based on RCEAs, a.k.a. evolutionary IR meth-
ods, have demonstrated to overcome some of these drawbacks
in others IR problems [33]. In particular, Gómez et al. [19]
proposed an evolutionary 3D-2D IR approach for CR based on
the bone or cavity silhouette. It automatizes the search of the
best possible 2D projection of the PM 3D surface model of
the bone (either obtained using a 3D scanner or segmented
from a PM CT), and it does not consider any assumption
on the initialization or the main parameter related to the
perspective distortions in radiographs (i.e. the source to image
distance, a.k.a. SID). This proposal is based on the use of DE
[34], a modification of the DICE metric [35] that considers
occlusion regions (which are regions hard to segment either
because of the fuzzy borders of the bone or occlusions caused
by other overlapped structures), and a simple perspective
transformation (with 7 parameters: 3 translations; 3 rotations;
and the SID). However, [19] does not model all sources
of perspective distortion in a radiograph. In particular, the
perspective transformation employed on that work does not
model angled radiographs. In angled radiographs (e.g., Waters’
view radiographs), the ray that joins the center of the image
receptor and the X-ray generator is not perpendicular, resulting
in a displacement of the principal point. This displacement
causes perspective distortions. The method presented in [19]
also showed the following drawbacks: (1) the robustness of
the DE algorithm, especially with clavicles and patellae, that
in some runs led to bad superimpositions due to the stochastic
nature of DE and the highly multimodal search space tackled
(see [19] for a study of the multimodal landscape of the
problem); and (2) the large amount of time required to obtain
a superimposition with DE (on average, 1800 seconds). This
long time is motivated by the high computational time required
by each evaluation (on average, it takes 0.250 seconds for
a projection of 1290 × 1050 pixels in a standard computer),
uncovering the computationally expensive optimization nature
of the CR problem, and the high number of evaluations
required by the optimizer to converge to a solution.

To overcome the aforementioned limitations, in this paper,
we first extend the registration model (from a 7-DoF to a
9-DoF model) by including two more parameters to correct
for perspective distortions (corresponding to the X and Y
axis). This will allow us to model posterior-anterior and
Waters’ views for frontal sinuses. Second, we substitute DE
by a RCEA specialized on expensive optimization real-coded

problems (MVMO-SH).

III. METHODOLOGY

The evolutionary IR method requires the five following
components (these are further detailed in [19] and depicted
in Fig. 2): (1) the model (PM 3D surface model of the sinus
cavity) and the scene image (AM radiograph, where the silhou-
ette of the bone/cavity is segmented as well as the occlusion
region, a.k.a. the region where the segmentation expert cannot
distinguish if there is bone/cavity or not); (2) the perspective
transformation responsible of generating a 2D image from
a 3D object; (3) the expert knowledge of the problem that
delimits the target transformation (i.e. radiographs acquisition
protocols [36]); (4) a similarity metric which measures the
resemblance of a 2D projection with the original 2D image
(overlapping); and (5) a RCEA, which looks for the best
parameters for the transformation to minimize the error of the
similarity metric.

The projective transformation [37] behind an X-ray image is
a perspective transformation with 9 parameters (6 extrinsic pa-
rameters: 3 translations; 3 rotations; and 3 intrinsic parameters:
1 SID and 2 movements of the principal point). Notice that in
a radiograph the perspective distortion is mainly related to the
source to SID [38] (see Figure 2) instead of the focal distance.
However, angled radiographs, which are radiographs acquired
with procedures where the ray that joins the X-ray generator
and the center of the image receptor is not perpendicular,
also have perspective distortions due to the movement of the
principal point (see Fig. 2 for a graphical example).

Most works consider a calibrated scenario (only 6 pa-
rameters) and the SID is assumed as known which is not
the case for the CR problem [31]. Although the perspective
distortion can be small in many radiographs because of the
large distance between the X-ray generator and receptor (as in
chest radiographs), its consideration has shown to be crucial in
the IR endeavour. This has been shown in [19], where better
results were obtained using the perspective transformation than
the orthographic transformation, despite the more challenging
optimization problem involved.

The goodness of a projection of the PM 3D model with
respect to fixed 2D segmentation of the radiograph is measured
by a similarity metric, used as fitness function. This metric
measures the resemblance of a 2D projection with the original
2D image (overlapping). The most utilized metric to measure
the overlap of silhouettes is the DICE metric [35]. However,
this metric is not robust against occlusion and does not allow
partial matching. These drawbacks are overcome for the CR
problem using the Masked DICE metric [19] (see eq. 1),
designed ad-hoc for the CR problem. This metric incorporates
the information of an occlusion region segmented by the
expert into the DICE metric [35] increasing the robustness
to occlusions and partial matching.

Masked DICE =
2 · |(IA \M) ∩ (IB \M)|
|IA \M |+ |IB \M |

(1)



Fig. 2. Scheme of the proposal of 3D-2D IR for CR. Three main interconnected blocks are represented: (Right) the perspective transformation to obtain a
projection of the 3D model with 9 parameters: translation (tx, ty , and tz), rotation (rx, ry , and rz), and perspective distortions (SID, βx and βy). In this
figure, for the sake of clarity, we display distortions related to angled radiographs using the principal point. However, within the optimization process, instead
of the location of this principal point we employ the angles of incidence of the principal ray on the center of the image receptor (βx and βy). These angles
can be used to calculate the principal point displacement; (Top left) The similarity metrics that compares the PM projection (colored in blue) and the AM
segmentation (colored in red) considering an occlusion region (colored in gray); (Bottom left) the optimization process to estimate the 9 parameters of the
registration transformation that are only weakly limited by the context and expert knowledge from the X-ray acquisition protocol [36].

where IA is the set of pixels of object A (segmented bone)
silhouette, IB is the set of pixels of object B (PM project
bone) silhouette, and M is the occlusion region. Lastly, Gomez
et. al [19] studied the complexity of the search space of CR
showing the multi-modality of the CR problem even in its
simplest version (synthetic cases without occlusions).

A. MVMO-SH
The search space of the perspective transformation is com-

plex and highly multi-modal [19]. Therefore, classic numerical
optimization methods are not sufficient, and more sophisti-
cated techniques should be considered in order to solve it
satisfactorily as RCEAs [33], [39].

The best real-coded evolutionary algorithm (RCEA) for
solving computationally expensive real-coded optimization
problems according to the IEEE CEC competitions is the
mean-variance mapping optimization (MVMO) optimizer
[20]. MVMO has ranked in top positions in expensive op-
timization competitions, such as IEEE CEC 2013 [21], 2014
[22], 2015 [23], 2016 [24], and 2018 [25], showing an excel-
lent performance and robustness. MVMO is a novel single-
individual RCEA that considers a best solution archive, but
its novelty lies within a new mapping function employed for
mutating the offspring. This mapping function is based on
the mean and variance of the best solution archive. MVMO
has been numerically compared to other enhanced RCEAs
showing a better performance in many problems, especially
in terms of convergence speed. For instance, a powerful

memetic variant called MVMO-SH (the “S” refers to the
offspring approach based on single parent and multi-parent
crossover, and the “H” for the hybridization of MVMO with
the use of local search (LS) [40]) improves the global search
performance of the classical MVMO. MVMO-SH considers
a set of solutions (i.e. particles of a swarm) instead of just
one, each having its own best solution archive and mapping
function, and allows the exchange of information and dynamic
reduction of the swarm size.

MVMO-SH [21] begins with a initialization stage where
the p particles (candidate solutions) of the swarm are ran-
domly generated. The particles are normalized to the range
[0, 1], which is a necessary condition to the latter mutation
via mapping function (a key element in MVMO) and are
only de-normalized for their fitness evaluation. Afterward, the
following steps are performed for each generation (these are
detailed in depth in [21]): (1) LS optimization of the particles
with a probability pLS ; (2) If a particle founds a better solution
in terms of fitness than those in its solution archive, the new
solution is added to the particle’s solution archive (notice that
if the archive has reached its maximum size As the solution
archive’s worst solution is removed); (3) Particles are sorted
and divided into two groups according to their fitness value,
the GP best ones are classified as “good particles” and the
rest as “bad particles” (GP is adapted along the process
taking values between the 20% and 70% of p). The good
particles are modified via a custom single parent crossover



operation based on local best [22] and bad particles via a
custom multi-parent crossover operation based on a subset
of good particles [22]; (4) the particles are mutated using
a mapping function. This mapping function is based on the
mean and variance of each particle’s solution archive and a
scaling factor fs that modulates the function’s shape. The
scaling factor usually begins with a small value fstart and
progressively increases until reaching its maximum value fend
to progressively increase the algorithm’s accuracy.

To sum up, the most relevant parameters are: number of
particles p (the recommended value is 15*number variables.
If the number of particles chosen is equal to 1, MVMO-
SH will perform as the standard MVMO), LS probability
pLS , archive size As, scaling factor start (fstart) and end
values (fend), initial value of the shape of all the variables
at the beginning of the optimization dr (values around 1-5 are
suitable to guarantee good initial performance. In practice, it
is usually set to 1), and parent selection method (random,
neighbor group selection in single step or block steps, or
sequential selection of the first variable and the rest randomly).

IV. EXPERIMENTS

The experimental study is divided into two parts. The
first experiment is devoted to the comparison of DE and
MVMO-SH with simulated CR problems of frontal sinuses.
Meanwhile, the second experiment is devoted to study the
identification capability of the proposed IR framework using
the best resulting RCEA in real images of frontal sinuses.

The same stopping criteria is established for the two RCEAs
to allow a fair comparison in terms of computational resources.
The optimization process ends when at least one of the
following three conditions hold: (1) the maximum number of
evaluations is reached. This value is set to 50,000 evaluations
(it includes the evaluations performed by the LS methods); (2)
the optimization process has got stuck. It is considered that
the optimization process has stagnated when it has performed
10,000 evaluations without improving the fitness of the best
solution; and (3) the optimization process has achieved a good
solution/superimposition. A solution is considered of good
quality when it shows an error lower than 0.001 in terms of
fitness (i.e. the 99.9% of the pixels are correctly overlapped).

All experiments have been performed on the high-
performance computing server Alhambra (Univ. of Granada),
composed of 1808 cores Fujitsu PRIMERGY CX250/
RX350/RX500 nodes, although on average only 50 cores were
available for this experimentation.

A. Performance metrics

Two ground truth (GT) metrics are employed to objectively
measure the quality of the superimpositions achieved by the
RCEAs: GT DICE [35] and the mean reprojection distance
error (mRPD) [41]. The GT DICE metric measures the
overlap between the GT projection’s silhouette (equal to the
simulated AM projection but without any occlusion) and the
2D projection’s silhouette achieved by the RCEA. However,
the GT DICE metric and the fitness function (i.e. Masked

DICE) are highly correlated (e.g. they are equal in cases
without occlusions) and thus, to avoid any possible bias, the
mRPD metric is also employed. mRPD is a standard metric
for the evaluation of 3D-2D IR methods by computing the
reprojection error between the transformation obtained by the
RCEA and the GT transformation (see [19] for further details
of the utilization of mRPD in the CR problem). Notice that
these metrics can be employed only in simulated CR problems
since in real CR problems the GT projection and the GT
transformation are unknown.

B. Experiment I: DE vs MVMO-SH on a simulated dataset

The dataset employed in Experiment I is formed by 150
simulated CR problems of frontal sinuses, each of them
composed of a 3D surface model and a simulated radiograph
of 480 × 600 pixels. All 3D surface models were manually
segmented from CTs (see [19] for further details about the
segmentation protocol). The simulated radiographs are ran-
domly generated using a 9-DoFs perspective transformation
within the ranges showed in Table I (these ranges have been
set based on international acquisition protocols [36]). Each
simulated radiograph has a different degree of occlusion in
the frontal sinus silhouette: 50 simulated radiographs have no
occlusion (0%); 50 simulated radiographs have an occlusion
of around 20% of pixels; and the last 50 simulated radiographs
have an occlusion of around 40% of pixels.

1) Experimental set-up: This experiment involves the appli-
cation of the two optimizers (DE and MVMO-SH) using the 9-
DoFs perspective distortions model. The parameters employed
by both RCEAs are the following:

• DE: p = 100, F = 0.5, and Pc = 0.5 (tuned in [19]).
• MVMO-SH: p = d, As = 4, and Fend = 2.5 ( [39]).
10 independent runs are performed to avoid any possible

bias caused by the stochastic component of the optimizer,
resulting in 3,000 runs/superimpositions and around 200 com-
putation hours using 50 cores of the said infrastructure.

2) Results: As can be seen in Table II, the best results are
clearly obtained by MVMO-SH. In all metrics, this optimizer
yields better (or equally good) results than DE. Importantly,
statistical tests to compare the performance of DE vs MVMO-
SH were performed. The Wilcoxon rank sum test provided a p-
value of 2.546e-13 (GT DICE) and 2.411e-15 (mRPD), show-
ing the existence of statistically significant differences between
the performance of both optimizers, in favor of MVMO-SH.
Furthermore, MVMO-SH is more robust to occlusions in the
silhouette of the skeletal structure than DE, showing a superb
performance even with occlusions up to the 40% of silhouette
(the maximum degree of occlusion evaluated). Regarding exe-
cution time to reach one of the three convergence criteria, DE
presented an average, median and standard deviation execution
time of 1665.0, 1440.2 and 913.1843 seconds, respectively. In
turn, MVMO-SH took 1056.3, 1111.5 and 396.3469 seconds,
respectively. Therefore, MVMO-SH is a better and faster
optimizer for this particular problem.

DE converged 11,1% of executions, finished because it
had obtained a good superimposition 17,1% of times, and



TABLE I
PARAMETER RANGE OF EACH SKELETAL STRUCTURE ACCORDING TO INTERNATIONAL ACQUISITION PROTOCOLS [36] AND EXPERT KNOWLEDGE. EACH

MILLIMETER CORRESPONDS TO 2 PIXELS IN THE DIGITAL IMAGE DOMAIN.

Parameter Frontal Sinuses
Image receptor dimension (mm) 240 × 300

tx (mm) [-125, 125]
ty (mm) [-150, 150]
tz (mm) [900 - 200, 900 + 200]

rx, ry , and rz (degrees) [−40°, 40°]
SID (mm) [1000 - 100, 1000 + 100]
βx (degrees) [-10°, 10°]
βy (degrees) [-50°, 10°]

TABLE II
COMPARISON PERFORMANCE ACCORDING TO OPTIMIZER AND DEGREE OF OCCLUSION. THE LOWER THE VALUES THE BETTER.

Optimizer Occlusion Masked DICE GT DICE mRPD
mean median std mean median std mean median std

DE
0 0.004 0.001 0.026 0.004 0.001 0.026 0.137 0.031 1.122

20 0.008 0.001 0.036 0.013 0.002 0.041 0.307 0.051 1.405
40 0.012 0.001 0.038 0.029 0.004 0.065 0.476 0.079 1.601

MVMO-SH
0 0.002 0.001 0.016 0.002 0.001 0.016 0.056 0.021 0.640

20 0.001 0.001 0.001 0.002 0.002 0.001 0.039 0.035 0.023
40 0.001 0.001 0.001 0.003 0.002 0.002 0.046 0.041 0.026

achieved the maximum number of evaluations 71,8% of times.
MVMO-SH converged 21,4% of executions, obtained a good
superimposition 78,6% of times, and it never needed to achieve
the maximum number of evaluations.

C. Experiment II: Identification capability of our 3D-2D IR-
based CR framework with frontal sinuses on real data

The dataset employed was provided by the Hospital de
Castilla-La Mancha (Spain) and is composed of 50 CTs and 50
radiographs where the frontal sinuses are visible. All CTs and
radiographs were manually segmented by two MSc students
(José Manuel Pérez Jiménez and Andrea Cerezo Vallecillo),
both from the Physical Anthropology lab of Univ. of Granada.

1) Experimental set-up: This experiment studies the identi-
fication capability of the proposed 3D-2D IR-based CR frame-
work using frontal sinuses and the best RCEA (MVMO-SH).
We have performed a radiograph inter-expert study, where we
have compared the two segmentations performed by the two
aforementioned forensic experts on 50 radiographs against 50
CTs. In this experiment, we have only used the segmentation
of the CTs performed by one of the MSc students, since the
inter-expert segmentation error in CTs was practically non-
existent. A total of 2,500 cross comparisons per segmentation.

Since previous experiments have already shown the robust-
ness of MVMO-SH, and due to the large computational cost
of employing again 10 repetitions, only 2 independent runs
are performed. Each of the 5,000 runs takes on average 1,000
seconds, resulting in 2,777 hours of computation (or 166
computation days) that, performed on the 50 available cores
of computing server Alhambra, required “only” around 56
computation hours (3 computation days).

2) Results: Positive and negative cases have shown impor-
tant differences in terms of fitness according to the Masked
DICE Metric (see Fig. 3). However, this metric alone is not
sufficient to precisely distinguish between positive and nega-
tive cases. Therefore, the results are reported using Cumulative
Match Characteristic (CMC) curves (see Fig. 4) to study the
identification capabilities of the proposal as done in [42] and
in [19]. To focus on the identification reliability of the method
only the best run (out of two) of each experiment is considered.
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Fig. 3. Boxplots of the minimum error of positive and negative cases
according to the Masked DICE metric.

Regardless of the X-ray image segmentation employed (see
Fig. 4), the positive case ranks in the first position at least
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Fig. 4. CMC curves of the radiograph inter-expert study (2 segmentations
performed by 2 anthropologists; 50×50 comparisons per segmentation)

75% of the cross-comparisons (out of 50 candidates, 2% of
the total sample). Furthermore, it reaches a confidence level
of 100% of success when considering the first nine positions
(18% of the sample). One direct implication of this result is
that the current framework, based only on the value of the
Masked DICE metric, is able to filter out 82% of the possible
candidates with 0 error rate in a fully automatic manner.
Furthermore, the superimposition framework is robust to inter-
expert segmentation errors in radiographs, since results hardly
vary between segmentations.

V. CONCLUSIONS

This paper presents an automatic frontal sinuses IR method
in CR using RCEAs. The task is formulated as a 3D-2D
IR problem using a 9-DoF perspective transformation model.
Two RCEAs (DE and MVMO-SH) are compared in the
minimization of the registration cost function, and the best
of them (MVMO-SH) is applied to an identification scenario
including 50 X-ray images and 50 CTs. The results obtained
show that the proposed automatic identification system is
able to filter more than 80% of the sample, reducing time
and costs in the posterior application of other identification
techniques (e.g., DNA analysis) to a reduced candidates list.
This paper presents an automatic identification system with
regard to the calculation of the overlap of AM and PM
materials. But the previous segmentation of these materials
is given (i.e., it is manually obtained). As immediate future
work it is necessary to integrate an automatic segmentation
approach, for which there are already effective methods [43],
and to verify the identification power of the complete system.
We also plan to perform inter-expert and intra-expert studies
to investigate the robustness of our method to segmentation
errors, specially in the upper border. In the long term, we
propose to implement and validate a hierarchical forensic

identification decision support system that integrates different
criteria, superimpositions, and skeletal structures.
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[19] O. Gómez, O. Ibáñez, A. Valsecchi, O. Cordón, T. Kahana, 3D-2D
silhouette-based image registration for comparative radiography-based
forensic identification, Pattern Recognition 83 (2018) 469–480.

[20] I. Erlich, G. K. Venayagamoorthy, N. Worawat, A mean-variance opti-
mization algorithm, in: 2010 IEEE Congress on Evolutionary Compu-
tation (CEC), 2010, pp. 1–6.

[21] J. L. Rueda, I. Erlich, Hybrid mean-variance mapping optimization
for solving the IEEE-CEC 2013 competition problems, in: 2013 IEEE
Congress on Evolutionary Computation (CEC), 2013, pp. 1664–1671.

[22] I. Erlich, J. L. Rueda, S. Wildenhues, F. Shewarega, Solving the IEEE-
CEC 2014 expensive optimization test problems by using single-particle
MVMO, in: 2014 IEEE Congress on Evolutionary Computation (CEC),
IEEE, 2014, pp. 1084–1091.

[23] J. L. Rueda, I. Erlich, MVMO for bound constrained single-objective
computationally expensive numerical optimization, in: 2015 IEEE
Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 1011–
1017.

[24] J. L. Rueda Torres, I. Erlich, Solving the CEC2016 real-parameter single
objective optimization problems through MVMO-PHM, in: 2016 IEEE
World Congress on Computational Intelligence, 2016, pp. 1–10.

[25] J. L. Rueda, I. Erlich, Hybrid single parent-offspring MVMO for solving
CEC2018 computationally expensive problems, in: 2018 IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2018, pp. 1–8.
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