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Abstract—Differential Evolution (DE) algorithm has been
shown notable performance in solving complex optimization
problems. In recent years, some variants of the DE algo-
rithm have been proposed based on the concept of center-
based sampling strategy. To the best of our knowledge, the
related papers employed center-based sampling for population
initialization or as the base vector in mutation operator. In
fact, they were operation-level approaches applied during the
optimization process, and none of them was about proposing
a population-level approach to utilize center-based sampling to
accelerate convergence rate of algorithms. This paper proposes
a novel center-based sampling scheme for the DE algorithm that
utilizes center-based sampling as a member of the population.
In our scheme, one candidate solution is the center of the best
candidate solutions, while other individuals in the population
behave similarly to the standard DE algorithm. The center-
based candidate solution is not updated using standard operators
and is set to the center in each iteration. To validate our
scheme, we benchmark our algorithm on CEC-2017 benchmark
functions with three dimensions of 30, 50, and 100. Also, we
design some experiments to analyze the behavior of the proposed
center-based scheme. Our experiments demonstrate a significant
improvement of the proposed algorithm on the majority of
benchmark functions.

Index Terms—Differential algorithm, center-based sampling,
optimization, population, CEC-2017

I. INTRODUCTION

In recent years, many real-world problems have been re-
formulated as an optimization problem. In an optimization
problem, an objective function should be maximized or mini-
mized regarding x as a decision variable vector.

Conventional optimization algorithms such as gradient-
based approaches suffer from some drawbacks such as getting
trapped in a local optimum and being sensitive to initial con-
ditions [1]. In order to cope with these problems, population-
based metaheuristic algorithms such as genetic algorithm
(GA) [2], particle swarm optimization (PSO) [3], artificial
bee colony (ABC) [4], and human mental search (HMS) [5]
can be employed. Population-based algorithms are problem-
independent algorithms with some stochastic operators which
have been extensively used to solve real-world optimization
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problems due to their global search capability, robustness, and
potential capability of parallelism [6]-[10].

Differential Evolution (DE) algorithm [11] is a robust
population-based metaheuristic algorithm introduced by Storn
and Price in 1995. The DE algorithm has three leading
operators, namely, mutation, crossover, and selection. The
aim of mutation is the creation of new candidate solutions
(mutant vectors) based on scaled differences among candidate
solutions. Crossover operator integrates the mutant vector with
a target vector, while the selection operator selects better
candidate solution between the target candidate solution and
its offspring based on their objective function values and a
greedy selection scheme.

Numerous studies have been conducted on DE algorithm
for improving it using hybridization of DE with other algo-
rithms [12], presenting new mutation and/or crossover op-
erators [13], [14], and ensemble of different schemes [15].
Furthermore, DE algorithm is employed in different domains
of optimization such as multi-objective optimization [16],
many-objective optimization [17], and multi-modal optimiza-
tion [18]. Additionally, DE is employed to solve various real-
world optimization problems in different scientific fields such
as image processing [19] and scheduling [20].

Center-based sampling strategy has been introduced by Rah-
namayan and Wang in 2009 [21]. They investigated the like-
lihood of closeness to an unknown solution for a center point
is more than a uniformly generated random point. Center-
based sampling can be seen in several improved DE algorithms
to enhance its performance. Hanan et al. [22] proposed a
center-based mutation scheme for DE algorithm. In their work,
the center of three randomly selected candidate solutions is
computed as the mean value of a normal distribution. Then,
a new candidate solution is generated based on the normal
distribution and set as the base vector in the mutation operator.
In another work [23], SHADE algorithm (Success-History
Based Parameter Adaptation for Differential Evolution) is
improved by replacing the base vector by a normal distribution
which its mean is the center of three randomly selected
candidate solutions. [24] proposed a multiple center-based DE
algorithm, which in each generation, the current population is



divided into two distinct groups. In the first group, standard DE
mutation is applied, while in the second group, a center-based
mutation is employed. Liu et al. [25] computed the center
of subpopulation and the center of population simultaneously.
Then, they proposed two mutation schemes, and finally, the
better-generated candidate solution is selected to replace the
target vector.

Center-based sampling is also used for population ini-
tialization. Mahdavi et al. [26] proposed three center-based
schemes, including center-based normal distribution sampling
(CNS), central golden region (CGR), and hybrid random-
center normal distribution sampling (HRCN) for population
initialization. CGR outperformed other schemes. Khanum et
al. [27] proposed a centroid population initialization for JADE
algorithm. First, 3 x NP candidate solutions are randomly
created (P). Then, a new population as the initial population
is generated based on the mean of three candidate solutions
selected from P. In another work, Mousavirad et al. [28]
proposed a center-based Latin Hypercube Initialization along
with opposition-based DE to tackle deceptive optimization. In
their algorithm, the search space is divided into cells and the
center of each cell is selected as one of the initial members
of population.

To the best of our knowledge, the center-based sampling
strategy has been used for mutation and population initial-
ization in DE algorithm so far. Our scheme benefits from a
different mechanism to employ center-based sampling in DE
algorithm, but in the population level, which makes it usable
in other population-based algorithms. In our proposed scheme,
the center point is a member of population. In other words,
center point is injected into the current population as a new
candidate solution. The experimental results show that it has
a significant ability to direct the whole population towards the
global optimum.

The remainder of this paper is organized as follows. Sec-
tion II introduces DE algorithm briefly, while Section III
demonstrates the concept of center-based sampling. The pro-
posed center-based DE algorithm is explained in Section IV.
To verify the performance of our proposed algorithm, Sec-
tion V provides a discussion on the experimental results.
Finally, the paper is concluded.

II. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) [11] is a simple yet powerful
population-based metaheuristic algorithm for solving non-
linear, non-convex, multi-modal, and non-differentiable opti-
mization problems which has shown a substantial performance
on various complex problems. After population initialization,
DE updates the current population based on three main oper-
ators, namely, crossover, mutation, and selection.

Mutation ~ generates a mutant  vector, U, =
(vi,1,i2,...,vi,p), for each candidate solution as

U =Tt + Fx (T — T,3) (1)

where Z,; is a randomly selected candidate solution (T #+
37} for each ¢ and j) and F' is scaling factor.

Crossover operator integrates the mutant vector with the
target (parent) vector. To this end, binomial crossover, as a
well-known strategy, is used which is defined as

Ui j = {vm,

Ti,j,
where UZ is called trial vector, C'R is a constant called
crossover rate, and j,.qnq 1S a random integer number between
1 and the number of dimensions.

Eventually, the aim of selection operator is to select a can-
didate solution between the trial vector, u;, target vector, x;,
based on their objective function values, and the corresponding
minimum one (for a minimization problem) should be selected
for the next generation.

rand(0,1) < CR or j == jrand
otherwise.
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III. CENTER-BASED SAMPLING STRATEGY

Rahnamayan and Wang [21] introduced the concept of
center-based sampling. They investigated the likelihood of
closeness to an unknown solution for a center point and
random point and indicated that the likelihood of points
being closer to an unknown solution is much more signif-
icant towards the center of the search space compared to
randomly generated points. The Monte-Carlo simulations in-
dicated that as the candidate solution gets closer to the center,
the likelihood of closeness to the unknown solution has risen
sharply. In addition to Monte-Carlo simulation, Rahnamayan
and Wang [29] presented mathematical proof for center-based
sampling to support their numerical results.

For a search space in the interval of [a,b], the center is
defined for dimensions 1 and n as follows:

For 1-dimension:

a+b
= 3
=5, 3)
For n-dimensions:
a; + b;
T = ) 4
c 5 4

where ¢ = 1,..., D and D is the search space dimensions.

From the literature, center-based sampling has been used
to improve the performance of DE algorithm in two ways
during population initialization [26]-[28] and as the base
vector for mutation equation [21]-[23], while it seems to has
the potential to use in various strategies.

IV. PROPOSED CENTER-BASED SCHEME

In the current paper, a center-based candidate solution is
created to explicitly as the center of the /N best candidate
solutions. In our proposed scheme (DE_Center_P), popu-
lation is divided into two parts: Np — 1 candidate solutions
update their position as the standard mutation and crossover,
while one candidate solution is responsible for maintaining the
center of the IV best candidate solutions. Algorithm 1 presents
the proposed algorithm in the form of pseudo-code.

The algorithm commences with an initial population with
Np candidate solutions. The first Np — 1 candidate solutions
generate randomly with a uniform distribution. After calcu-
lating the objective functions for Np — 1 candidate solutions,



TABLE I: Results of the algorithms on CEC-2017 benchmark

functions for D=30.
Input : D: Dimension of problem, Max Ny rc: Maximum

number of function evaluations, Np: Population Functions DE DE_Center_P TIAR
size, F: Scaling factor, Cr: Crossover probability, F1 Mean  8.68E+03  4.82E+03~ 1.82
N The number of best candidate solutions - Ni‘:‘:n é ggg:% 2419275:10231 L8IES07
Output: z™: the best solution Std | 935420 5 2612
Generate the initial population Pop uniform randomly for F3 Mean  9.43E+03 1.68E+031 6.62
the first Np — 1 candidate solutions; Std 8.94E+03 9.45E+02
Evaluate the fitness for each candidate solution; F4 Mean  4.35E+02  4.83E+02f 0.42

Std 2.08E+01 2.67E+01
F5 Mean  6.85E+02 S.42E+02% 4.40
Std 9.19E+00 1.96E+01

Select three parents, 171> s :r_i%, and Eg, randomly from the
current population, with Z;1 # Z:5 # Zi4

Select N best candidate solutions as Ti{, Zb3.....75N: F6 Mean  6.00E+02  6.00E+02~ 1.00
Pop(Np) = ZpiteeddtoN Std  1.60E-04  441E-02
NFE = Np : F7 Mean 9.12E+02  7.82E+02} 2.59
while NFE < MAXnrp do Std  1.71E+01 1.79E+01
foricltoNp—ldo " S 12101 SOMEAD 55
. + B +
Select three parents, x;1, T:2, and 774 @; randomly o Mean  9.00E402 9.00E+02~ 1.00
from the current population, with Z;] # T3 # Zi4 ; Sud 4.94E.01 1 50E+01
— e : -
U =Tt + Fx (233 — Ti3) F10 Mean 8.76E+03  4.63E+03} 2.14
for j <~ 0to D do Std  3.83E+02  7.70E+02
if rand;[0,1] < Cg or j == jrana then F11 Mean LI3E+03  L.14E+03~ 0.75
| Ui = Vi Std  2.07E+01 3.07E+01
else F12 Mean  2.55E+05  3.86E+04% 6.79
I Ui = Tiyj Std  3.62E+05 2.58E+04
end F13 Mean 1.82E+04  7.55E+03~ 270
end Std  2.15E+04 1.11E+04
Calculate objectlve function of ui ; Fl14 Mean  1.47E+03 1.45E+03% 1.40
if f(ul) < f(a:l) then Std  6.76E+00 1.91E+01
| Feu: F15 Mean 1.61E+03  1.56E+03} 1.83
else Std  8.88E+01 5.73E+01
- F16 Mean 3.09E+03  2.50E+03} 1.66
‘ T o=@ Std  2.67E+02 4.74E+02
end F17 Mean 2.17E+03  1.93E+03} 2.04
Pop(i) + T3 Std  201E+02  2.08E+02
end F18 Mean 1.09E+04  1.25E+04~ 0.85
. . M —— Std  8.97E+03  9.84E+03
Select ¥ bi“ﬁfilbfite solutions as Tt o3, ToN F19 Mean 192E+03  195E+03~ 0.40
Pop(Np) = “b172b2 i T2bN Std  5.71E+00  1.52E+02
NFE =NFE + N P F20 Mean  2.32E+03  2.32E+03~ 1.00
end Std  228E+02  2.42E+02
? < the best candidate solution in pop F21 Mean  2.48E+03  2.34E+031 1.58
Algorithm 1: The proposed algorithm in the form of Std 7.34E+00 1.53E+01
F22 Mean 9.99E+03  3.00E+03} 9.74
pseudo-code Std  3.09E+02  1.53E+03
F23 Mean 2.83E+03  2.69E+03i 1.36
Std  1.09E+01 1.10E+01
F24 Mean 3.01E+03  2.86E+03} 1.33
Std  9.53E+00 1.70E+01
F25 Mean 2.88E+03  2.88E+03~ 1.00
Std  1.16E+00 1.O6E+01
F26 Mean 5.26E+03  3.99E+03} 1.91
Std  2.03E+02 1.45E+02
% F27 Mean 3.20E+03  3.20E+03~ 1.00
5 Std  1.32E-04 7.77E+00
2 F28 Mean 3.30E+03  3.22E+03} 1.19
g Std  1.75E-04 2.22E+01
i F29 Mean 3.83E+03  3.46E+03} 1.66
g Std  248E+02  1.35E+02
2 \ F30 Mean 3.22E+03  6.83E+03f 0.06
S Std  8.07E+00 1.79E+03
Center-based candidate solution Candidate solution w/t/l 18/10/2 mean IAR=2.26
Global Opllmum
l 1 1 | 1 1

T T T T T T t } t

1 2 3 4 s 6 1 8 o 10 Searchspace N best candidate solutions are selected to generate the last
. N . . candidate solution as
Fig. 1: Visualization of center-based candidate solution for a

N > N
one-dimensional problem. — _ Lol T+ TN )
Lcenter N

where x—bz is the i-th best candidate solution.



TABLE II: Results of the algorithms on CEC-2017 benchmark
functions for D=50.

TABLE III: Results of the algorithms on CEC-2017 bench-
mark functions for D=100.

Functions DE DE_Center_P IAR Functions DE DE_Center_P IAR

F1 Mean  5.07E+03 3.47E+03~ 1.47 F1 Mean  9.77E+03 4.63E+07~ 2.13
Std 4.66E+03 3.72E+03 Std 1.21E+04 2.31E+08

F2 Mean  1.02E+39 1.52E+397 0.67 F2 Mean  7.36E+92 7.21E+81% 1.02E+11
Std 4.84E+39 6.11E+39 Std 3.68E+93 3.60E+82

F3 Mean 2.41E+05 6.64E+041 3.64 F3 Mean 1.58E+06 3.53E+05% 4.48
Std 5.65E+04 1.50E+04 Std 3.59E+05 4 44E+04

F4 Mean  4.49E+02 5.26E+02t 0.39 F4 Mean 5.94E+02 6.86E+02t 0.68
Std 2.42E+01 5.16E+01 Std 5.55E+01 5.05E+01

F5 Mean  8.61E+02 5.79E+02} 4.57 F5 Mean 1.21E+03 7.78E+02} 2.55
Std 2.04E+01 2.00E+01 Std 3.11E+02 4.02E+01

F6 Mean  6.00E+02 6.00E+02~ 1.00 F6 Mean  6.01E+02 6.08E+02 0.13
Std 7.71E-02 5.00E-01 Std 4.44E-01 2.64E+00

F7 Mean 1.12E+03 8.75E+021 2.40 F7 Mean 1.74E+03 1.31E+03% 1.70
Std 1.63E+01 4.10E+01 Std 4.17E+01 9.72E+01

F8 Mean 1.15E+03 8.93E+02} 3.76 F8 Mean 1.51E+03 1.10E+03% 2.37
Std 6.57E+01 2.21E+01 Std 3.02E+02 5.95E+01

F9 Mean  9.09E+02 1.04E+037 0.06 F9 Mean  1.91E+03 4.15E+037 0.31
Std 1.04E+01 1.34E+02 Std 1.49E+03 1.69E+03

F10 Mean 1.54E+04 8.39E+031 1.95 F10 Mean  3.28E+04 2.06E+041 1.62
Std 3.99E+02 1.58E+03 Std 5.47E+02 2.42E+03

Fl11 Mean 1.20E+03 1.20E+03~ 1.00 F11 Mean 3.50E+03 1.71E+03% 3.93
Std 6.55E+01 4.37E+01 Std 1.22E+03 2.60E+02

Fi12 Mean 1.96E+06 9.84E+05% 1.99 FI12 Mean  6.72E+06 3.23E+06% 2.08
Std 1.47E+06 6.92E+05 Std 4.00E+06 1.59E+06

F13 Mean  1.13E+04 9.25E+03~ 1.26 F13 Mean  7.94E+03 6.54E+03~ 1.27
Std 1.39E+04 9.06E+03 Std 9.64E+03 4.76E+03

F14 Mean  7.39E+03 5.49E+03~ 1.46 F14 Mean  4.64E+05 5.78E+04} 8.20
Std 1.20E+04 4.09E+03 Std 3.51E+05 3.22E+04

F15 Mean  3.24E+04 6.93E+03} 5.69 F15 Mean  6.26E+03 3.63E+03% 2.23
Std 4.17E+04 4.53E+03 Std 6.46E+03 3.09E+03

F16 Mean  4.69E+03 3.25E+03% 1.87 Fl16 Mean 1.01E+04 4.46E+031 2.97
Std 5.37E+02 6.52E+02 Std 3.67E+02 1.03E+03

F17 Mean 3.34E+03 2.98E+03} 1.28 F17 Mean  7.00E+03 4.67E+03% 1.78
Std 3.78E+02 3.10E+02 Std 7.39E+02 6.09E+02

F18 Mean 1.09E+05 5.11E+04} 2.17 F18 Mean  9.74E+05 3.16E+05% 3.09
Std 6.76E+04 3.62E+04 Std 4.26E+05 1.62E+05

F19 Mean  1.00E+04 8.32E+03~ 1.26 F19 Mean  3.88E+03 6.07E+03~ 0.47
Std 1.39E+04 7.36E+03 Std 3.09E+03 5.24E+03

F20 Mean  3.47E+03 3.31E+03~ 1.12 F20 Mean  7.07E+03 5.33E+03} 1.52
Std 3.53E+02 2.25E+02 Std 7.01E+02 6.15E+02

F21 Mean  2.66E+03 2.38E+03% 2.00 F21 Mean  3.08E+03 2.59E+037 2.00
Std 1.70E+01 2.27E+01 Std 2.74E+02 3.74E+01

F22 Mean 1.67E+04 9.17E+03% 2.08 F22 Mean 3.46E+04 2.22E+04% 1.62
Std 3.92E+02 1.38E+03 Std 5.29E+02 2.50E+03

F23 Mean  3.07E+03 2.82E+03} 1.48 F23 Mean  3.05E+03 3.14E+03t 0.89
Std 3.71E+01 3.02E+01 Std 3.71E+01 4.96E+01

F24 Mean  3.28E+03 2.99E+03% 1.49 F24 Mean  4.07E+03 3.61E+03% 1.38
Std 1.60E+01 3.30E+01 Std 2.76E+02 6.61E+01

F25 Mean  2.94E+03 3.06E+03t 0.79 F25 Mean  3.26E+03 3.32E+03F 0.93
Std 2.32E+01 3.11E+01 Std 7.68E+01 5.41E+01

F26 Mean  7.35E+03 4.73E+03% 2.23 F26 Mean 1.13E+04 9.69E+03} 1.23
Std 4.57E+02 2.06E+02 Std 3.48E+03 5.70E+02

F27 Mean  3.20E+03 3.38E+03t 0.74 F27 Mean  3.20E+03 3.53E+03} 0.60
Std 1.30E-04 8.71E+01 Std 1.42E-04 5.57E+01

F28 Mean  3.30E+03 3.30E+03~ 1.00 F28 Mean  3.30E+03 3.43E+03f 0.79
Std 1.67E-04 1.46E+01 Std 7.72E-05 3.50E+01

F29 Mean  5.04E+03 3.60E+03} 3.06 F29 Mean  8.30E+03 5.43E+03% 2.13
Std 3.66E+02 2.33E+02 Std 8.11E+02 5.41E+02

F30 Mean  7.09E+03 8.24E+05t 0.004 F30 Mean  1.02E+04 9.68E+03~ 1.08
Std 4.81E+03 1.40E+05 Std 9.45E+03 3.03E+03

wit/l 16/8/4 mean IAR=1.80 wit/l 19/4/7 mean IAR=1.94

In each iteration, all candidate solutions except the last one
are updated based on the standard crossover, mutation, and
selection operators, while the center-based candidate solution
does not employ these operators. In each iteration, the last
candidate solution is the average of the N best candidate

solutions (Eq. 5). One of the characteristics of the proposed
scheme is that it does not need any extra fitness evaluations.

Figure 1 using an example shows the concept of center in
a 1-D problem with Np = 6 where 5 candidate solutions
(circular points) are generated as usual DE algorithm. We



assume N=3. The set of three best candidate solutions is
B = {@),ﬁ,@)} which their corresponding positions are
P = {3,5,8} and center-based candidate solution (Z.enter)
is 5.33.

A. Analyzing behavior of center-based candidate solution

In this paper, we provide a center-based candidate solution
based on N best candidate solutions. We can say that center-
based candidate solution acts such as a multi-parent crossover,
which N best candidate solutions contribute together. As a
result, it can be said that the proposed algorithm benefits from
the advantages of multi-parent crossover.

Another valuable point is that the center-based candidate
solution most likely is better than population’s worst member;
intuitively, the center point of N best candidate solutions
has a higher chance to be better than the worst member
in the current population. Figure 3 shows intuitively this
concept. To this end, we put forward two scenarios: 1) the
global optimum is inside the population’s cloud and 2) the
global optimum is outside the population’s cloud. From the
figure, we can observe that in both scenarios, the center-
based candidate solution (shown by a yellow star) is closer
to global optimum (shown by a red square) than at least one
candidate solution (the worst candidate solution). In order to
verify it experimentally, we conducted an experiment on CEC-
2017 benchmark functions. Employed settings are mentioned
in Section V. The percent of center-based candidate solution
is better than or similar to the worst candidate solution was
100% in all benchmark functions which clearly demonstrated
that center-based candidate solution is similar to or better than
the worst candidate solution in the current population; see
Figure 3.

The center-based candidate solution is not only better than
the worst candidate solution, but also is better than the best
candidate solution with a high probability. Figure 4 shows the
percent of center-based candidate solution is better than the
best candidate solution compared to other candidate solutions.
On average, the center-based candidate solution was better in
45% of cases than the best candidate solution; it is indicating
the power of center-based scheme and demonstrating that
center-based candidate solution has a significant ability to be
the best candidate solution. Also, it shows that center-based
candidate solution was better than the best candidate solution
in at least 27% cases.

In the next experiment, we update center-based candidate
solution in two methods, including 1) standard crossover and
mutation operators and 2) based on the average of N best
candidate solutions. The result can be seen in Figure 2, which
clearly shows the effectiveness and more stability of the center-
based updating scheme for center-based candidate solution.

V. NUMERICAL RESULTS

To assess our proposed scheme, some experimental studies
are conducted on CEC-2017 benchmark functions [30] with di-
mensions 30, 50, and 100 and in comparison to DE algorithm.

CEC-2017 includes of unimodal functions (F'1 — F'3), multi-
modal functions (F'4 — F'10), hybrid multi-modal functions
(F11 — F'20), and composite functions (F'21 — F'30). As a
result, it is a suitable set of benchmark functions to evaluate
our scheme efficiently.

In this study, the maximum number of function evaluations
is set to 3000 x D in all experiments where D is the problem’s
dimensions. Furthermore, ', CR, and N are selected 0.5,
0.9, and 3, respectively. Because of the random behavior of
the algorithms, each algorithm is run 25 times independently,
and statistical results, including mean and standard deviation,
are reported. In order to evaluate the results statistically, a
two-sided Wilcoxon statistical test with a confidence interval
of 95% 1is carried out between DE_Center_P and DE
algorithm. For each function, the best results based on two-
sided Wilcoxon statistical test is boldfaced. Also, we provided
the improved accuracy rate for each function which shows the
relative improvement that yielded by the proposed algorithm
and is defined as

Error of DE
IAR = 6
FError of DE_Center_P ©)

Error of DE_Center_P (or DE)
= f(z) — f(z")

Where f(x) is the obtained objective function value and
f(z*) is the optimal value. A value greater than 1 implies
that DE_Center_P outperforms DE. In the last column
of each table, we calculate the mean IAR. To avoid being
biased toward large IAR in the tables (for example 1.82E07
in Table I), large values have been omitted in calculating the
mean.

Table I summarizes the results of DE_Center_P against
DE algorithm. w/t/l in the last row indicates that
DE _Center_P wins in w functions, ties in ¢ functions,
and loses in [ functions. From the table, DE_Center_P
outperforms DE in 18 out of 30 functions, while it lost in
only 2 out of 30 functions, which indicates the effectiveness
of the proposed center-based scheme. DE_Center_P pro-
vided similar performance in 10 functions compared to DE.
DE_Center_P yielded better results than DE algorithm for
all unimodal functions, and also it performs better in this
type of function in range of 1.82 to 1.82E07 times, which
indicates the proposed algorithm has higher exploitation power
than DE. Also, DE_Center_P obtained better or similar
results in all multi-modal functions (F4-F20) except F4, which
shows the significant ability of the proposed algorithm in terms
of exploration. Also, the proposed algorithms obtained better
results in 7 out of 10 composite functions and 2 similar results.

The convergence curves of DE_Center_P compared to
DE algorithm in handling some selected functions are illus-
trated in Figure 5. From the figures, we can conclude that
convergence in DE_Center_P is better than DE algorithm.

For further confirmation of efficacy of DFE_Center_P,
we have fulfilled some experiments in higher dimensions.
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Fig. 2: Standard updating Vs. center-based updating for center-based candidate solution.

e sl

(a) The global optimum is
inside the population.

(b) The global optimum is
outside the population.

Fig. 3: Center-based candidate solution is most likely better
than population’s worst member; which is located in edge
of the population cloud (a), or back side of the cloud (b)
depending on the global solution is surrounded by population
or not.

Tables II and III indicate the results for D=50 and 100,
respectively. From Table I, DE_Center_P outperformed DE
in 18 out of 30 functions, and similar results in 8 functions.
Such results are also obtained for D=100 (i.e. better results in
19 functions and similar results in 4 functions).

In this paper, we introduced a parameter, N, which deter-
mines the number of candidate solutions to calculate T ey ier-
we conducted a sensitivity analysis on N with different values.
Table IV shows the numerical results. It can be seen that
different values for N has not a great impact on performance
of DE_Center_P. However, N=3, 7, and 25 were slightly
better than others.

All in all, the extensive set of experiments clearly verify that
center-based candidate solution effectively directs the entire
population towards the global optimum.

VI. CONCLUSION REMARKS

This paper proposes a novel center-based differential evo-
Iution algorithm named DE_Center_P. In DE_Center_P,
a candidate solution in the population is formed based on
center-based sampling. The position of center-based candidate
solution is updated based on the mean of N best candidate
solutions in each iteration. Center is closer to an unknown

solution compared to other points. As a result, although there
is only one center-based candidate solution in the population,
it as a leader directs more effectively the whole population
towards the global optimum. We investigated that center-based
candidate solution is not only better than the worst candidate
solution, but also is better than the best candidate solution with
a high probability. To verify the proposed algorithm, we con-
ducted some experiments on CEC-2017 benchmark functions
with D=30, 50, and 100. Experimental results clearly indicate
that proposed center-based DE outperformed the standard DE
algorithm. The concept of center-based population can be
extended in other versions of DE algorithm such as SHADE,
even in other population-based algorithms such as PSO. Also,
a center-based multi-objective variant is under investigation.
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