
On the Scalable Multi-Objective Multi-Agent
Pathfinding Problem

Jens Weise
Computational Intelligence Group

Otto von Guericke University
Magdeburg, Germany
0000-0002-8828-8752

Heiner Zille
Computational Intelligence Group

Otto von Guericke University
Magdeburg, Germany
0000-0002-7262-9487

Sebastian Mai
Computational Intelligence Group

Otto von Guericke University
Magdeburg, Germany
0000-0002-2255-3277

Sanaz Mostaghim
Computational Intelligence Group

Otto von Guericke University
Magdeburg, Germany
0000-0002-9917-5227

Abstract—The Multi-Agent Pathfinding problem (MAPF) has
several applications in industry and robotics. The aim of a
MAPF-solver is to find a set of optimal and non-overlapping
paths for a number of agents in a navigation scenario. Existing
approaches are shown to successfully deal with MAPF, where
either the makespan or flow-time is used as a single objective. In
this article, we treat the MAPF as a multi-objective optimisation
problem (MOMAPF). In this paper, we consider three different
objective functions, called makespan, flow-time and path-overlaps
which are to be optimised at the same time. The MOMAPF
problem in this paper is designed to be a scalable test problem
for multi-objective optimisation algorithms, where we can scale
up the variable space to reflect different real-world scenarios. We
propose a new problem formulation for MOMAPF optimisation
algorithms and implement it into the NSGA-II and NSGA-III and
provide an experimental evaluation of the optimisation results.

Index Terms—MAPF, Multi-Objective, Meta-Heuristics, Op-
timisation, Evolutionary Algorithms, MOMAPF, Multi-Agent,
Pathfinding

I. INTRODUCTION

Finding an optimal path for a mobile agent (robot) to move
from a starting point to a specific position in a given search
space is a well-researched problem. However, it is still a
challenge to find multiple non-conflicting paths (trajectories)
for multiple agents. Potential applications for this type of
pathfinding problem currently are in automated warehouses
and factories, where an increasing number of robots are
deployed. A generalised version of this problem from real
multi-robot systems is the Multi-Agent Path Finding problem
(MAPF), a known optimisation problem with a very large
solution space. The size of the search space can exponentially
increase with the number of agents. In addition, an optimal
path for an agent in such multi-agent scenarios can differ
from the single-agent case, for instance, the optimal path can
contain cycles. Typically, the quality of the solutions in MAPF

This work was partially funded by the German Federal Ministry of Educa-
tion and Research through the MOSAIK project (grant no. 01IS18070B).

is measured using two objectives: flow-time (sum of cost)
and makespan (maximum cost) [1]. These two objectives are
conflicting [2], and the existing literature usually deals with
one of them as a single-objective problem.

In this article, we aim to study MAPF as a multi-
objective problem and introduce a new scalable benchmark for
multi-objective optimisation algorithms called Multi-Objective
MAPF (MOMAPF). In addition to the above two objectives,
we introduce the number of collisions as the third objective. So
far, this objective has usually been studied as a constraint in
the literature of pathfinding in robotics. It has been shown,
however, that even solutions without conflicts often fail in
robotic applications due the inaccuracies in the plan-execution
and end up with numerous collisions [3].

In order to deal with a MOMAPF problem, we propose a
new solution representation and the corresponding operators
into the well known NSGA-II [4] and NSGA-III [5]. These
algorithms are tested on variants of the MOMAPF problem
with scalable number of agents and waypoints on three dif-
ferent environments. The environment influences the fitness
landscape for the three objectives.

Our experiments show that MOMAPF can be taken as a
scalable test problem for algorithms with integer encoding.
This three-objective problem contains a scalable decision vari-
able space varying between one decision variable for one agent
and one waypoint to K agents and W waypoints resulting in
K ×W as the size of the decision space.

The remainder of this paper is structured as follows:
Section II informs about existing approaches to the MAPF
and multi-objective pathfinding. In Section III the MOMAPF
problem and objectives are defined whereas in Section IV we
show how multi-objective optimisation methods can be applied
to the problem. This section also covers the solution encoding
and the operators used by the algorithm to solve it. Section V
shows the performed experimental evaluation and Section VI
concludes this article.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

II. STATE OF THE ART

This section elucidates existing approaches related to the
proposed MOMAPF problem. As the MOMAPF is a com-
bination of the MAPF as well as multi-objective problem
formulations, we first go into detail on related works on multi-
agent pathfinding, and afterwards take a look at existing multi-
objective pathfinding problems.

A. Multi-Agent Pathfinding Problem

In recent years several applications emerged that call for
solving different versions of the MAPF. One of the most
prominent applications is in pathfinding for mobile robotic
systems in automated warehouses [6]. A general description
of the MAPF problem and several benchmarks have been
published by Stern et al. [6]. Fellner et al. [7] summarised
existing approaches on optimal solvers for the MAPF1. In
addition to search-based solvers, the MAPF problem can be
converted to a satisfiability (SAT) problem and be solved by a
SAT-solver [1]. Most search-based solvers optimise the flow-
time metric, while the solvers based on problem transformation
optimise the makespan metric [1]. Some approaches assumed
that selfish agents can cooperate to solve the MAPF problem,
henceforth cooperative coevolution may be an interesting
technique for other metaheuristic implementations [8].

There are many different variants of the MAPF with vari-
ous environments, agent-actions, types of collisions, and the
evaluation criteria [6], [7]. Oliveira et al. [9] have shown
that the execution of a valid plan often fails due to inexact
timing. This motivates our approach to include the number
of collisions as an objective function measuring robustness,
rather then treating collisions as a constraint to the problem.

B. Multi-Objective Pathfinding

The research area of multi-objective optimisation deals with
the simultaneous optimisation of several conflicting objective
functions. Multi-objective optimisation have been studied in
the context of multi-agent systems in the past. For instance,
the movements of multi-objective particle swarm optimisation
have been adjusted to physical limitations and properties of
robotic agents [10], [11]. Other work has considered the paths
of multiple agents in warehousing or street environments as
multiple objective functions of an optimisation problem in
static or dynamic scenarios [12], [13]. However, there is not
much work about the actual pathfinding as the goal of the
optimisation, nor have they considered conflicts in the agents’
paths.

In the related approaches on single-agent multi-objective
pathfinding, usually a single path is evaluated by several
different objective functions and multi-objective optimisation
techniques are used to find an optimal path. In contrast to
that, in our approach each path is only evaluated by its
length and two additional objectives are represented through
the interaction of multiple paths for multiple agents. The

1The website http://mapf.info provides an overview about the current state
of research on the MAPF problems and solutions.

following related works describe approaches to multi-objective
pathfinding with only a single-agent.

As Ahmed et al. stated, pathfinding for autonomous agents
involves not only finding collision free paths (with respect
to fixed obstacles) but also optimising several objectives [14].
They investigate pathfinding on a grid by using the well-known
NSGA-II [4]. Castillo et al. compared different genetic algo-
rithms to solve the multi-objective pathfinding problem [15].
The article in [16] also investigates on a genetic algorithm
on the multi-objective pathfinding problem with large-scale
grids by using a variable length chromosome approach. They
compared their results with a standard A*-algorithm. Another
example for multi-objective pathfinding is presented by Tozer
et al. [17]. A method to find wire routes in a vehicle geometry
is presented in [18], where the goal was to connect two
electrical objects to each other. A well-known multi-objective
genetic algorithm was used to find a path through a discretised
3-D space in a vehicle geometry to examine possible ways for
wire connection. This problem also highly relates to the pipe
routing problem [19].

When designing the algorithm it is of great value to find
a suitable decision space representation. The authors in [20]
proposed a graph-based representation of free space in an ob-
ject. Yu et al. also used a graph-based approach when solving
a pathfinding problem in 3-D space with fixed obstacles with
an ACO algorithm [21].

III. MOMAPF PROBLEM FORMULATION

This section describes the proposed Multi-Objective Multi-
Agent Pathfinding (MOMAPF) problem. As described in the
previous section, pathfinding has been treated with single
agents with multiple objectives, and has been also treated
as a multi-agent single-objective problem (see Section II).
This paper presents a novel approach of combining these two
concepts. This in inspired by several real-world problems,
e.g. autonomous vehicle routing is one of the applications
where every vehicle is an agent and a route can be evaluated
by several objectives [6]. In this paper, we consider three
objectives which are described in the following.

The MOMAPF problem is defined as follows: A given
scenario is represented by a grid-map containing free space
(where an agent can move) and obstacles (that can not be
passed). In such a 2-dimensional map, a set of K agents is
placed in different starting locations ni0, each with its own
goal nig for agent i. All agents start at time-step 0 and move
on the map between grid-cells. Conflicts occur in case two
agents travel through the same grid-cell simultaneously. The
goal of the MOMAPF problem is to find an optimal set of
paths P ∗ = {p1, · · · pK} for all agents with respect to multiple
objectives. Each path pi = (ni0, ni1, · · · , nig) is the sequence
of nodes n with an unknown length that the agent i visits until
it reaches its goal. ni0 and nig indicate the starting and goal
locations for agent i. Each node n refers to a grid cell of the
environment.

The problem is formulated in a time-discrete fashion. All
agents move in the same speed, so that every agent can

perform one step of movement per time-step, i.e. they can
move from one grid-cell of the map to another one in the
8-neighbourhood (i.e. the eight surrounding grid-cells). The
map is represented as an undirected graph with nodes cor-
responding to each grid-coordinate and edges that connect
adjacent cells in the map. We assume the distances between
all neighbouring nodes is 1.

To solve this problem we propose three different objective
functions: (a) Flow-time, (b) Makespan and (c) Overlaps.

a) Objective 1 - Flow-time: The flow-time is the average
length of the agents’ paths. It can be computed by summing
up all the path lengths of all agents divided by the number of
agents:

f1(P) =

∑K
i=1 |pi|
K

(1)

When optimising for flow-time, it is important to minimise
detours and waiting time for all agents.

b) Objective 2 - Makespan: For every solution of the
MOMAPF problem, the makespan is the time needed until
the last task is finished.

f2(P) =
K

max
i=1
|pi| (2)

Hence, when minimising the makespan objective it is im-
portant to give priority to the agent with the longest path.
As a result, it is likely that the path-length for other agents
increases and therefore flow-time increases while makespan is
optimised [2].

c) Objective 3 - Overlaps: Our third objective measures
the number of overlaps between the paths of agents, indicating
the number of collisions. We take edge-conflicts as well as
node-conflicts into account. An edge-conflict occurs when
more than one agent is using an edge from one cell to another
in the same time-step. Node-conflicts occur when more than
one agent uses the same cell during the same time-step, i.e.
occupies the same node of the graph.

f3(P) =
∑
t

|
K⋂
i

{nit}|+
∑
t

|
K⋂
i

{{nit, nit+1}}| (3)

In classical MAPF, node- and edge-conflicts in a solution
are considered to be infeasible. However, as mentioned above,
research has shown that even conflict-free paths may fail
in real-world applications in case the timing during plan
execution is inexact [9]. Allowing the optimisation algorithms
to consider solutions which contain collisions can be beneficial
to the overall search process and exploration of the search
space.

IV. MULTI-OBJECTIVE OPTIMISATION FOR THE
MOMAPF PROBLEM

In this section, we propose a new problem formulation for
MOMAPF that can be used with exisiting multi-objective opti-
misation algorithms. We introduce a waypoint-based, integer-
valued encoding of solution candidates and define correspond-
ing genetic operators. These are implemented into the well-
known NSGA-II [4] and NSGA-III [5] algorithms.

A. Decision Space and Encoding of the Solution Candidates

The MOMAPF problem is encoded using a graph structure.
All grid cells (see Fig. 1) are represented by a node in an
undirected graph. Edges connect neighbouring cells, where in
this encoding movement is possible to all eight neighbouring
nodes. Cells that are occupied by obstacles in the map are not
part of the graph, i.e. the nodes next to obstacles have less
neighbouring nodes. For simplicity we assume that all agents
need to move at each time step, i.e. waiting on a node is not
a possible action.

In order to encode one single path pi for agent i through the
graph, we use a sequence of a fixed number of W waypoints
{wi1, · · ·wiW }. From these waypoints the path is generated
as already defined pi = (ni0, · · · , nig). That means, the path
of a single agent is encoded by a list of nodes, the first and
the last entries in that list being the starting point and the
goal of that agent. All waypoints in between these two are
subject to change by the evolutionary process. During the
evaluation, a path through the graph is built from the waypoints
by connecting them with a simple pathfinding algorithm. More
precisely, Dijkstra’s algorithm [22] is used to connect the
starting point to the first waypoint, the first waypoint to the
second, and so forth until the last part of the path is computed
as the shortest path from the last waypoint to the goal node.
Note that in this implementation, each agent is not aware of
the other agents paths or positions, i.e. the shortest paths is
computed while disregarding any possible conflicts with other
agents.

As one whole solution to the MOMAPF problem contains
the paths of all existing agents, one individual in the evolu-
tionary algorithm is a collection of the K lists of waypoints,
one for each agent in the problem. As mentioned, the first
and the last waypoints are always fixed for each agent, hence
we allow the genetic operators which are described below to
perform only on the inner waypoints.

The number of inner waypoints in each agent’s path list is
fixed, but it can be seen that the more waypoints are used,
the finer the adjustments are possible in order to navigate
around obstacles and avoid conflicts. On the other hand, more
waypoints also increase the size of the search space, and
finding an optimal (short) path might be more difficult since
all waypoints may initially be far away from each other.

B. Crossover

The crossover operator is designed to exchange two way-
points of two randomly selected agents with each other. Within
the paths of those agents, a random inner waypoint is chosen
respectively and these waypoints are exchanged between the
solutions.

C. Mutation

Our implemented mutation operator chooses randomly one
agent from a solution and one random inner waypoint from
its path. This waypoint is then shifted in one of the eight
possible neighbourhood directions. Due to our graph-based
encoding of the decision space we ensure that this shift will

not move the waypoint into or through a wall / an obstacle.
Fig. 1 illustrates an example. The second waypoint (blue), can
be shifted according to the shown eight directions in blue.

Waypoint Start/End
Fig. 1: Path of one agent. The first and last waypoints
of the path are fixed, while the three inner waypoints are
subject to change. The waypoints are connected with Dijkstra’s
algorithm. Black tiles show obstacles in the map. Possible
mutations of the path are shown in blue arrows on the second
waypoint.

D. Implementation

For the implementation of the proposed algorithm we use
the JGraphT library for graph storage [23]. For optimisation,
we use the well-known jMetal multi-objective optimisation
framework, version 5.7, and the pre-implemented versions
of NSGA-II [4] and NSGA-III [5] in order to extend their
functionality to fit our encoding [24], [25].

To increase the algorithm’s performance we decided to store
calculated shortest paths in an efficient in-memory hash map,
i.e. Chronicle Map2. Thus we assured that each two waypoints
are always connected by the same shortest path, even in case
several shortest paths exist.

V. EXPERIMENTS

In this section we aim to evaluate our proposed approach
on the MOMAPF problem using the encoding presented in the
previous section.

A. Configuration and Parameter Settings

To show the performance of the optimisation algorithms
in different settings of the problem, we use scenarios and
maps from the Multi-Agent Pathfinding Benchmark 3 [6].
We limit the experiments to three different maps: An empty
32x32 map, the room map of size 64x64 and the maze map
of size 128x128. The two latter, non-empty maps are shown

2Chronicle-Map on GitHub https://github.com/OpenHFT/Chronicle-Map
3The benchmark maps can easily be obtained from www.mapf.info

in Fig. 2. The black areas are obstacles that can not be
passed, while the grey cells are free. The benchmarks obtained
from MAPF.info also provide several scenarios for each map,
classified as even and random scenarios. With the assumption
that randomly distributed agents are more likely to represent
real-world applications like warehouses or traffic navigation,
we select the scenarios from the random class for each map,
where the start and end positions are randomly distributed.
These random scenarios are used with 10 and 50 agents in
each map respectively.

In addition to different map sizes and different numbers of
agents, the size of a problem instance can further be adjusted
by the amount of waypoints for each agent. A smaller number
of inner waypoints reduces the size of the decision space for
the algorithm, but allows less detailed adjustments in terms
of navigating the agent around obstacles or to avoid conflicts
with other agents. To account for different problem sizes
and complexities, we use two different configurations with
4 and 10 waypoints, resulting in 2 and 8 inner waypoints
respectively.

In total, our experiments contain three maps, two agent
configurations (10 and 50) and two waypoint configurations
(4 and 10), which results in a set of 12 unique problem
instances. Two different algorithms are used to optimise the
3-objective problem, NSGA-II and NSGA-III. Each of those
algorithms is used to optimise the 12 problem instances for 31
independent runs. The population sizes are set to 92 (due to the
internal NSGA-III implementation of the jMetal framework).
The number of generations per algorithm is set to 100, which
results in a total of 9, 200 function evaluations. Due to the
novelty of this approach of solving the MAPF problem in
a multi-objective manner with a meta-heuristic algorithm,
the true Pareto-fronts and corresponding Pareto-sets of the
problem instances are unknown. To compare the performance
of the two algorithms with each other, we therefore apply the
normalised Hypervolume (HV) indicator [26], using the nadir
point of the union of all obtained runs per problem instance
as the reference point. The results of NSGA-II and NSGA-
III are compared and tested for statistical significance using
the two-sided pairwise Mann-Whitney-U Test, with the null
hypothesis that the distributions of the two samples have equal
medians. Statistical significance of the differences between the
performance is assumed for a p-value smaller than 0.01.

B. Results and Analysis

The median HV and interquartile range (IQR) values ob-
tained by NSGA-II and NSGA-III are shown in Table I. Both
NSGA-II and NSGA-III show similar performance with no
significant differences in the HV indicator. The difference
between both algorithms lies only in the concept for obtaining
and maintaining diversity in the objective space. The non-
significant differences in the results indicate that the com-
plexity of the trade-off between the three objectives functions
does not affect algorithm performance, i.e. diversity can be
achieved by traditional diversity-preserving methods and the
problem does not require special many-objective techniques.

TABLE I: Obtained median and IQR values of the Hypervolume indicator for the NSGA-II and NSGA-III algorithms. The
results of both algorithms show no statistically significant differences to each other (p < 0.01).

Map Type Map size # Agents # Waypoints NSGA-II NSGA-III
empty 32 x 32 10 4 0.59789 (1.26E-2) 0.59540 (9.29E-3)

empty 32 x 32 10 10 0.56771 (1.63E-2) 0.56609 (1.77E-2)

empty 32 x 32 50 4 0.51422 (1.63E-2) 0.51493 (1.37E-2)

empty 32 x 32 50 10 0.35800 (9.92E-3) 0.35790 (1.09E-2)

room 64 x 64 10 4 0.64414 (1.96E-2) 0.64108 (1.61E-2)

room 64 x 64 10 10 0.59322 (1.76E-2) 0.59381 (1.55E-2)

room 64 x 64 50 4 0.52532 (1.86E-2) 0.52233 (1.36E-2)

room 64 x 64 50 10 0.43734 (1.98E-2) 0.43752 (1.29E-2)

maze 128 x 128 10 4 0.67837 (2.02E-2) 0.67453 (1.83E-2)

maze 128 x 128 10 10 0.58794 (2.23E-2) 0.58468 (2.14E-2)

maze 128 x 128 50 4 0.47958 (1.04E-2) 0.47634 (2.05E-2)

maze 128 x 128 50 10 0.43796 (1.28E-2) 0.44031 (6.12E-3)

In the following, we perform a more in-depth analysis of the
final populations of the NSGA-III algorithm.

(a) Room Map 64x64 (b) Maze Map 128x128

Fig. 2: Maps with obstacles [6]

Figure 3 shows pairwise 2D-projections of the objective
values of the final populations. The figure shows all solutions
from 31 runs of the 10 agent problem instance on the empty
32x32 map with 4 and 10 waypoints per agent. The dominated
and non-dominated individuals of each problem instance are
highlighted in different colours respectively. The objective
values of the non-dominated individuals show that all three
objectives are conflicting, as multiple solutions exist that
represent different trade-offs between the objectives. In addi-
tion, the existence of solutions without any overlaps between
paths show the applicability of the algorithm to find feasible
solutions to the classical MAPF problem. We can further
observe a trade-off between overlaps and makespan as well
as overlaps and flow-time.

The projections also reveal that overall, using only four
waypoints results in a much better performance of the solu-
tions in all three objective functions. The authors presume that
the reduced search-space helps to achieve convergence. While
reducing the search-space might exclude optimal solutions,
a smaller search space can on the other hand be explored
and exploited further with the computational budget at hand.
This shows that with the relatively low number of function
evaluations, our approach is more suited to scenarios with
only few conflicts. Another possible reason for the better
performance in the 4-waypoint instances may be the proposed

crossover operator, as only switching two waypoints between
two solutions constitutes a larger amount of change (relative
to the size of the individual). This reveals potential to discover
better solutions in the future by designing more advanced
operators.

Fig. 6 depicts a projection in the map’s x-y-plane showing
the resulting paths of one specific non-dominated solution
on map room with the configuration of ten agents and four
waypoints. The agents often take huge detours through the
map, which is most likely not a satisfactory solution since
there is room for improvement, i.e. aligning the waypoints.

Similar conclusions can be drawn from analysing the non-
dominated solutions on the room map (Fig. 4). We used only
four waypoints and want to compare two experiments with
ten and 50 agents. With 50 agents the algorithm is not able
to find conflict-free solutions any more, while it is able to
find non-overlapping solution with ten agents. However, it is
an open question whether the algorithm was not able to find
conflict-free solutions with the given computational budget, or
whether it is not possible to represent conflict-free solutions
with only four waypoints when considering 50 agents.

In all three maps we can clearly observe a trade-off between
the three different objective functions. On the maze map,
which is the largest and most complex of the three, we now
take a closer look at the obtained non-dominated solutions
of the 4-waypoint instances. Fig. 5 shows the corresponding
2-D projections of the combined solutions found in our 31
independent runs. We can observe here that in the solution set
there are two non-dominated solutions which contain overlaps
that are in exchange superior in the other two objectives. This
indicates that in real applications it might be beneficial to
accept small amounts of conflicts to be resolved outside of
the MOMPAF algorithm (e.g. by local-planning during the
runtime of the system). In exchange, solutions with superior
flow-time and makespan can be found in our multi-objective
problem formulation, that may not be seen by the decision
maker if zero overlaps were used as a hard constraint. The
shape of the other non-dominated front in the solutions in
the makespan/flow-time-plot shows that our algorithm found
a Pareto-front with many different trade-offs between the
makespan and flow-time objectives.

0 50 100 150 200

MakeSpan

0

20

40

60

80

100

120

F
lo

w
T

im
e
P

e
rA

g
e
n
t

A: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:4

B: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:10

All A

All B

Non-dominated A

Non-dominated B

0 50 100 150 200

MakeSpan

0

5

10

15

20

25

30

O
v
e
rl
a
p
s

A: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:4

B: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:10

All A

All B

Non-dominated A

Non-dominated B

0 20 40 60 80 100

FlowTimePerAgent

0

5

10

15

20

25

30

O
v
e
rl
a
p
s

A: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:4

B: Algo:NSGAIII, Map:empty-32-32, #A:10, #W:10

All A

All B

Non-dominated A

Non-dominated B

Fig. 3: Matrix-Scatter-Plot of the NSGA-III Experiment on Map empty, 10 Agents, 4 vs 10 Waypoints

50 100 150 200 250 300

MakeSpan

40

60

80

100

120

F
lo

w
T

im
e
P

e
rA

g
e
n
t

A: Algo:NSGAIII, Map:room-64-64-8, #A:10, #W:4

B: Algo:NSGAIII, Map:room-64-64-8, #A:50, #W:4

All A

All B

Non-dominated A

Non-dominated B

50 100 150 200 250 300

MakeSpan

0

50

100

150

200

250

300

350

O
v
e
rl
a
p
s

A: Algo:NSGAIII, Map:room-64-64-8, #A:10, #W:4

B: Algo:NSGAIII, Map:room-64-64-8, #A:50, #W:4

All A

All B

Non-dominated A

Non-dominated B

40 60 80 100 120

FlowTimePerAgent

0

50

100

150

200

250

300

350

O
v
e
rl
a
p
s

A: Algo:NSGAIII, Map:room-64-64-8, #A:10, #W:4

B: Algo:NSGAIII, Map:room-64-64-8, #A:50, #W:4

All A

All B

Non-dominated A

Non-dominated B

Fig. 4: Matrix-Scatter-Plot of the NSGA-III Experiment on Map room, 10 vs 50 Agents, 10 Waypoints

VI. CONCLUSION AND OUTLOOK

In this paper we present the Multi-Objective Multi-Agent
Pathfinding problem (MOMAPF), as well as a simple al-
gorithm that is capable of solving the problem for certain
configurations, by using a list of agents and their waypoints
as solution representation. The novelty of our approach lies
in (1) solving the MAPF with a meta-heuristic algorithm
and (2) treating the MAPF as a multi-objective problem. In
our experiments the used algorithms perform with promising
results, however the representation of the solutions we have
chosen reduces the solution space to a fixed-size, integer-
valued problem and excludes a huge number of valid (and
possibly optimal) solutions. The reduction of the search space
is critical, as the algorithm ceases to converge in case we
change the number of waypoints from four to ten. The most
evident application of our approach is in Multi-Robot Systems,
however the (MO)MAPF is related to several other routing
problems like the pipe-routing problem or other routing prob-
lems involving multiple paths (like finding the path to build
multi-lane roads) [19].

This paper is only a first investigation on the topic of
MOMAPF and we used a very elementary meta-heuristic
approach to solve the problem. Based on the proposed bench-
mark in this article, multiple future research directions can be

identified.
First, we aim to investigate into the MOMAPF problem as

a more intrinsic problem, e.g. that every agent has a set of
objectives. Furthermore, we assumed that agents are not able
to wait but have to move to another position at every time
step. An area of future research is to extend our approach
and enable agents to wait at a node. One way to do so
is to expand the graph in time, i.e. have a layer for every
time step and edges going only forward in time. Using a
time-expanded graph would have exceeded our computational
budget, thus we did not implement it in the experiments in
this article. An approach to simplify a large time-expanded
graph is to insert loops on each node representing waiting
when traversing this edge. This, however, requires a different
mechanism to connecting the waypoints, than the simple path
finding algorithm in our implementation which is not capable
of appropriate loop handling. Furthermore, we believe that
other genetic operators could help the algorithm to converge
faster and discover more promising solution candidates.

We also plan to perform MOMAPF with real robots. In a
robotics application a feasible metric for robustness needs to
be chosen instead of our current conflict-based objective [3].
We believe that an improved robustness objective will also
lead to an improved fitness landscape, as perturbing a robust
solution is likely to lead to another feasible solution, while

200 400 600 800 1000 1200

MakeSpan

150

200

250

300

350

400
F

lo
w

T
im

e
P

e
rA

g
e
n
t

Algo:NSGAIII, Map:maze-128-128-10, #A:10, #W:4

All

Non-dominated

250 300 350 400 450

MakeSpan

0

2

4

6

8

10

O
v
e
rl
a
p
s

Algo:NSGAIII, Map:maze-128-128-10, #A:10, #W:4

All

Non-dominated

160 180 200 220

FlowTimePerAgent

0

2

4

6

8

10

O
v
e
rl
a
p
s

Algo:NSGAIII, Map:maze-128-128-10, #A:10, #W:4

All

Non-dominated

Fig. 5: Matrix-Scatter-Plot of the NSGA-III Experiment on Map maze, 10 Agents, 10 Waypoints

Fig. 6: Projected result paths of a non-dominated solution
using the NSGA-III algorithm on the room map, 10 Agents,
4 Waypoints

even a small perturbation may lead to a severe change in the
current metric. Such deviations are likely to occur frequently,
since robots can never perfectly execute the planned move-
ment. Furthermore, robot movement is always restricted by
kinematic constraints and robots move in continuous space and
need to deal with localisation errors [27]. Hence, the resulting
movement is much more complex than the simple grid based
movement model in our current article. An approach to make
solutions more feasible for the actual use with robots is
to implement a certain collision radius. If an agent enters
another agent’s radius it can be considered as a collision.
An algorithm’s solution can be perturbed up to a certain
extend while remaining feasible. We propose that a more
realistic benchmark could provide fitness values based on a
path using a vehicle model (like the Dubins model [28]) and
a robustness measure based on the timing of overlapping paths.
Finally, a decision making strategy that selects one of the non-
dominated solutions also needs to be developed. The concept

of multi-modal optimisation [29]–[31] might support here in
order to find several solutions with the same objective values
but different configurations, i.e. agent paths. Decision makers
might use this information to determine the best alternative.

Finally, we hope to see improved algorithms that can solve
the MOMAPF problem in a more advanced fashion and can
deal with a larger number of agents (for instance by applying
specific large-scale optimisation methods [32]–[36]) as well as
with a dynamic number of waypoints.

REFERENCES

[1] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “An empirical compar-
ison of the hardness of multi-agent path finding under the makespan and
the sum of costs objectives,” Proceedings of the 9th Annual Symposium
on Combinatorial Search, SoCS 2016, vol. 2016-Janua, no. SoCS, pp.
145–146, 2016.

[2] M. Bhuvaneswari, Ed., Application of Evolutionary Algorithms for
Multi-objective Optimization in VLSI and Embedded Systems. New
Delhi: Springer India, 2015. [Online]. Available: http://link.springer.
com/10.1007/978-81-322-1958-3

[3] R. Barták, J. Švancara, V. Škopková, D. Nohejl, and I. Krasičenko,
“Multi-agent path finding on real robots,” AI Communications, vol. 32,
no. 3, pp. 175–189, 2019.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[5] K. Deb and H. Jain, “An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated
Sorting Approach, Part I: Solving Problems With Box
Constraints,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 4, pp. 577–601, 8 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6600851/

[6] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker,
J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski,
and R. Bartak, “Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks,” ArXiv Preprint, 6 2019. [Online]. Available:
https://arxiv.org/abs/1906.08291http://arxiv.org/abs/1906.08291

[7] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-
Based Optimal Solvers for the Multi-Agent Pathfinding Problem:
Summary and Challenges,” Tenth Annual Symposium on Combinatorial
Search, no. SoCS, pp. 29–37, 2017. [Online]. Available: https:
//www.aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781

[8] Z. Bnaya, R. Stern, A. Felner, R. Zivan, and S. Okamoto, “Multi-agent
path finding for self interested agents,” Proceedings of the 6th Annual
Symposium on Combinatorial Search, SoCS 2013, pp. 38–46, 2013.

[9] G. M. B. Oliveira, R. G. O. Silva, G. B. S. Ferreira, M. S. Couceiro, L. R.
do Amaral, P. A. Vargas, and L. G. A. Martins, “A Cellular Automata-
Based Path-Planning for a Cooperative and Decentralized Team of

Robots,” in IEEE congress on Evolutionary Computation (CEC). IEEE,
2019, pp. 739–746.

[10] S. Mai, H. Zille, C. Steup, and S. Mostaghim, “Multi-objective
collective search and movement-based metrics in swarm robotics,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ser. GECCO ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 387–388. [Online]. Available:
https://doi.org/10.1145/3319619.3321967

[11] ——, “Online optimization of movement cost for robotic applications of
pso,” in Progress in Artificial Intelligence, P. Moura Oliveira, P. Novais,
and L. P. Reis, Eds. Cham: Springer International Publishing, 2019,
pp. 307–318.

[12] S. Mostaghim, C. Steup, and H. Zille, “Multi-objective distance
minimization problems – applications in technical systems,” at-
Automatisierungstechnik, vol. 66, no. 11, pp. 964–974, 2018.

[13] H. Zille, A. Kottenhahn, and S. Mostaghim, “Dynamic distance mini-
mization problems for dynamic multi-objective optimization,” in IEEE
Congress on Evolutionary Computation (CEC), June 2017, pp. 952–959.

[14] F. Ahmed and K. Deb, “Multi-objective optimal path planning
using elitist non-dominated sorting genetic algorithms,” Soft
Computing, vol. 17, no. 7, pp. 1283–1299, 7 2013.
[Online]. Available: http://dx.doi.org/10.1007/s00500-012-0964-8http:
//link.springer.com/10.1007/s00500-012-0964-8

[15] O. Castillo, L. Trujillo, and P. Melin, “Multiple objective genetic al-
gorithms for path-planning optimization in autonomous mobile robots,”
Soft Computing, vol. 11, no. 3, pp. 269–279, 2007.

[16] M. Alajlan, A. Koubaa, I. Chaari, H. Bennaceur, and A. Ammar, “Global
path planning for mobile robots in large-scale grid environments using
genetic algorithms,” in 2013 International Conference on Individual and
Collective Behaviors in Robotics (ICBR), no. 1. IEEE, 12 2013, pp.
1–8. [Online]. Available: http://ieeexplore.ieee.org/document/6729271/

[17] B. Tozer, T. Mazzuchi, and S. Sarkani, “Many-objective stochastic
path finding using reinforcement learning,” Expert Systems with
Applications, vol. 72, pp. 371–382, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2016.10.045

[18] J. Weise, S. Benkhardt, and S. Mostaghim, “Graph-based multi-
objective generation of customised wiring harnesses,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion
on - GECCO ’19. New York, New York, USA: ACM Press, 2019,
pp. 407–408. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3319619.3321908

[19] G. Belov, L. Cohen, M. G. de la Banda, D. Harabor, S. Koenig,
and X. Wei, “Position Paper: From Multi-Agent Pathfinding to Pipe
Routing,” no. May, 5 2019. [Online]. Available: http://arxiv.org/abs/
1905.08412

[20] J. Weise, S. Benkhardt, and S. Mostaghim, “A Survey on Graph-based
Systems in Manufacturing Processes,” in 2018 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, 11 2018, pp. 112–119.
[Online]. Available: https://ieeexplore.ieee.org/document/8628683/

[21] X. Yu, W.-N. Chen, T. Gu, H. Yuan, H. Zhang, and J. Zhang,
“ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling
in Environments With Dense Obstacles,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 4, pp. 617–631, 8 2019.
[Online]. Available: https://ieeexplore.ieee.org/document/8510897/

[22] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 12 1959. [Online].
Available: http://link.springer.com/10.1007/BF01386390

[23] D. Michail, J. Kinable, B. Naveh, and J. V. Sichi, “JGraphT – A Java
library for graph data structures and algorithms,” 4 2019. [Online].
Available: http://arxiv.org/abs/1904.08355

[24] J. J. Durillo and A. J. Nebro, “JMetal: A Java framework for
multi-objective optimization,” Advances in Engineering Software,
vol. 42, no. 10, pp. 760–771, 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.advengsoft.2011.05.014

[25] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jMetal multi-
objective optimization framework,” GECCO 2015 - Companion Publi-
cation of the 2015 Genetic and Evolutionary Computation Conference,
pp. 1093–1100, 2015.

[26] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE Transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[27] S. Mai, C. Steup, and S. Mostaghim, “Simultaneous Localisation
and Optimisation for Swarm Robotics,” in 2018 IEEE Symposium
Series on Computational Intelligence (SSCI), Bangalore, India, 2018,

pp. 1998–2004. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8628767

[28] L. E. Dubins, “On Curves of Minimal Length with a Constraint on
Average Curvature, and with Prescribed Initial and Terminal Positions
and Tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[29] M. Javadi, H. Zille, and S. Mostaghim, “Modified crowding
distance and mutation for multimodal multi-objective optimization,”
in Proceedings of the Genetic and Evolutionary Computation
Conference Companion on - GECCO ’19. New York, New
York, USA: ACM Press, 2019, pp. 211–212. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3319619.3321970

[30] ——, “The effects of crowding distance and mutation in multimodal and
multi-objective optimization problems,” in Springer ECCOMAS book
series on Computational Methods in Applied Sciences. Guimarães,
Portugal. In Press: ACM, 2020.

[31] M. Javadi, C. Ramirez-Atencia, and S. Mostaghim, “Combining man-
hattan and crowding distances in decision space for multimodal multi-
objective optimization problems,” in Springer ECCOMAS book series
on Computational Methods in Applied Sciences. Guimarães, Portugal.
In Press: ACM, 2020.

[32] H. Zille, “Large-scale multi-objective optimisation: new approaches and
a classification of the state-of-the-art,” Ph.D. dissertation, Otto-von-
Guericke-Universitaet Magdeburg, Fakultaet für Informatik, 2019.

[33] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework for
large-scale multi-objective optimization based on problem transforma-
tion,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 2,
pp. 260–275, April 2018.

[34] H. Zille and S. Mostaghim, “Comparison study of large-scale opti-
misation techniques on the LSMOP benchmark functions,” in IEEE
Symposium Series on Computational Intelligence (SSCI), November
2017, pp. 1–8.

[35] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “Mutation
operators based on variable grouping for multi-objective large-scale
optimization,” in IEEE Symposium Series on Computational Intelligence
(SSCI), Dec 2016, pp. 1–8.

[36] H. Zille and S. Mostaghim, “Linear search mechanism for multi-
and many-objective optimisation,” in Evolutionary Multi-Criterion Op-
timization, K. Deb, E. Goodman, C. A. Coello Coello, K. Klamroth,
K. Miettinen, S. Mostaghim, and P. Reed, Eds. Cham: Springer
International Publishing, 2019, pp. 399–410.

