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Abstract—The Traveling-Salesperson-Problem (TSP) is ar-
guably one of the best-known NP-hard combinatorial optimiza-
tion problems. The two sophisticated heuristic solvers LKH and
EAX and respective (restart) variants manage to calculate close-
to optimal or even optimal solutions, also for large instances
with several thousand nodes in reasonable time. In this work
we extend existing benchmarking studies by addressing anytime
behaviour of inexact TSP solvers based on empirical runtime
distributions leading to an increased understanding of solver
behaviour and the respective relation to problem hardness.
It turns out that performance ranking of solvers is highly
dependent on the focused approximation quality. Insights on
intersection points of performances offer huge potential for the
construction of hybridized solvers depending on instance features.
Moreover, instance features tailored to anytime performance and
corresponding performance indicators will highly improve auto-
mated algorithm selection models by including comprehensive
information on solver quality.

Index Terms—anytime behavior, traveling salesperson prob-
lem, automated algorithm selection, performance assessment,
hybridization

I. INTRODUCTION

The Traveling-Salesperson-Problem (TSP) is an intriguing

fundamental and well-studied NP-hard optimization problem.

Given a complete graph the TSP asks for a Hamiltonian cycle

of minimum length, i.e., a round-trip salesperson tour that

visits each node exactly once before ending at the start node.

In the Euclidean TSP (E-TSP) nodes are associated with point

coordinates in the Euclidean space and pairwise (symmetric)

inter-node distances are given by the Euclidean distance; the

E-TSP remains NP-hard.

Since its introduction in 1930 a body of knowledge has

been built around the TSP. As a consequence, a plethora

of methods has been developed ranging from sophisticated

exact solvers (guarantee to find an optimum) to fast heuristic

algorithmic approaches with no performance guarantees at all.

In the domain of exact TSP solving, the branch-and-cut based

Concorde solver by [1] is the state of the art. However, even

though instances with hundreds of nodes can be solved within

seconds [2], no guarantees for reasonable runtime can be given

for large instances.

For the E-TSP, distances adhere to the triangle inequal-

ity induced by the Euclidean metric. This property can be

leveraged to come up with approximation algorithms. For a

minimization problem, an (1+α)-approximation algorithm A
guarantees that the tour length of A on a problem instance

is at most (1 + α) · OPT , where OPT is the optimal tour

length. Christofides [3] introduced an algorithm that achieves

an approximation factor of 3/2, which is the best constant

approximation factor known for the E-TSP. Celebrated work

by Arora [4] and – independently – by Mitchell [5] introduced

a Polynomial Time Approximation Schema (PTAS) algorithm

for the metric TSP which guarantees to produce solutions of

quality at most (1 + 1/α) · OPT for each constant α > 0
in polynomial time. However, the algorithms are highly so-

phisticated and to the best of our knowledge no practical

implementation of this PTAS is available. Moreover, PTAS

naturally suffers from impractical runtimes if α is increased

– in other words: a reduction of α goes hand in hand with a

dramatic increase of the polynomial degree.

In recent years tremendous advances in heuristic TSP solv-

ing have been made where no formal performance guarantee

can be given. Nevertheless the two best performing heuristics,

LKH by [6] (based on sophisticated k-opt moves and the Lin-

Kernighan heuristic) and the genetic algorithm EAX by [7] (a

(µ+λ) genetic algorithm adopting the eponymous edge assem-

bly crossover operator and sophisticated diversity preservation)

solve instances with thousands of nodes to optimality within

reasonable time limits [8]. The respective restart versions

LKH+r and EAX+r, which trigger a restart once the internal

stopping conditions of the respective vanilla versions have

been satisfied, pose the state of the art in inexact TSP solving

[9], [10]. Recent endeavours by [11] extend both solvers by

a sophisticated crossover operator – the generalized partition

crossover (GPX2) – which has shown superior performance

over the vanilla version of EAX on large instances with node

numbers in the five-digit range.

In the field of per-instance algorithm selection (AS) – see,

e.g., the survey of [12] for further details – the goal is to

build a model which automatically selects the best-performing

algorithm from a portfolio of algorithms with complementary

performances. In case of the E-TSP, the complementary behav-

ior of EAX(+r) and LKH(+r) across a wide range of problem

instances has been leveraged in several studies in recent years

[9], [10]. Both of these works focused on optimality of the

found solutions, i.e., the runtime until a solver found a tour of
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optimal (i.e., minimal) length was measured, and runs which

did not succeed (within the given time of one hour) were

penalized.

Despite their success in solving E-TSP instances up to

optimality, little is known about the empirical approximation

qualities, i.e., the anytime behaviour, of LKH+r and EAX+r

building on the concept of empirical runtime distributions [13].

Our work will thus shed light on the relationship between

runtimes and respective approximation qualities. This is con-

ceptually similar to the commonly accepted benchmarking

practice in single-objective continuous optimization on the

Black-Box Optimization Benchmark (BBOB, [14]). It should

be noted, however, that despite simultaneous consideration of

runtime and solution quality, the herein considered analysis

of the anytime behavior of a solver (w.r.t. its solution quality)

differs substantially from the multi-objective approach that was

taken in [15]. Our analysis is supported by an extensive study

on a wide range of TSP instances from the literature with 500,

1 000 and 2 000 nodes, respectively. More precisely, we pursue

three research questions in this work:

R1 Given different α-values and time limits T , what is the

probability to calculate an (1 + α)-approximate solution

for different variants of LKH+r and EAX+r on a large

and diverse set of E-TSP instances in time T ?

R2 Which approximation quality (1+α) can we expect given

a time limit T ?

R3 How can automated algorithm selection approaches make

use of information on anytime behaviour of TSP solvers?

These questions are addressed in the remainder of the

paper which is organized as follows. Section II introduces

the methodology underlying the experimental study, including

problem instances and algorithms. Results are presented and

analyzed in Section III, and the paper concludes with a dis-

cussion of promising future research directions in Section IV.

II. METHODOLOGY

In this section we detail the setup of our experimental study.

A. Problem instances

Several AS-studies revealed – which is in line with intuition

– that characteristics of TSP problems, such as clustering

properties or the depth of a minimum spanning tree, may have

a strong impact on the running time until an optimal solution

is found [10]. It is legitimate to assume that this will also

be true for the (1 + α)-approximation case. However, feature

impacts and relations may change. Thus, to investigate – and

ideally support – our assumptions empirically, we conducted

an experimental study across a wide range of different E-TSP

instances. For better comparability of our results, our setup is

aligned with previous studies [9], [10], [16] and hence covers

the following TSP sets:

rue Classical Random Uniform Euclidean instances where

point coordinates are spread uniformly at random in the

bounded Euclidean space [0, 106]× [0, 106].
netgen In [17] this type of strongly clustered instances of size

n was proposed. For a given number of clusters nc ∈

{2, 3, 4, 5, 10}, respective cluster centers are placed well-

spread in the Euclidean plane (in [0, 106] × [0, 106]) by

Latin-Hypercube-Sampling (LHS). Subsequently, n/nc

cities are sampled around each cluster center assuring

cluster segregation.

morphed A morphed instance originates from combining a

rue with a netgen instance of equal size. First, an optimal

weighted point matching is calculated between the point

coordinates of both instances. Next, the matched points

are used to calculate new points by convex combination

of the coordinates of the matched points. This approach

was introduced in [18] and later improved in [17].

tspgen Instances were generated by sequential application

of mutation to an initial rue instance as proposed by

[19]. For each mutation, a random subset of points is

selected and rearranged by means of “creative” mutation

operators, e.g., a grid-mutation, which aligns a random

subset of points in a grid structure. These operators are

inspired by observations on real-world instances (e.g.,

from Very Large Scale Integration, VLSI) and meant to

produce instances that are structurally heterogeneous.

evolved TSP instances evolved by means of an evolution-

ary algorithm which minimizes the ratio of Penalized-

Average-Runtime (PAR, [20]) scores1 of solvers EAX+r

and LKH+r producing instances that are easy for one and

hard(er) for the competitor. The set of evolved instances

considered within this work is taken from [19].

For instance sets rue, netgen, morphed and tspgen we each

consider 150 instances of size n ∈ {500, 1 500, 2000}. Subsets

of 30 instances thus contain nc ∈ {2, 3, 4, 5, 10} clusters for

instances of type netgen. The evolved instances – taken from

[19] – are restricted to n = 500 nodes2. There are each 100

instances which are easy for EAX+r and LKH+r respectively.

Summing up, in total, our benchmark set constitutes 2 000
E-TSP instances. Note that we intentionally do not include

instances from the well-known TSPLIB [21] benchmark set.

To make well-founded statements about the research questions

addressed in this work we require a large and systematic set

of instances from different classes of equal size. However,

TSPLIB instances are very heterogeneous in both size and

structure which does not allow for proper evaluation.

B. Considered Algorithms

In total our study considers six different solvers for the E-

TSP. The first four are restart variants of LKH [6] while the

latter two are restart variants of EAX [7]3. In particular these

variants incorporate generalized partition crossover (GPX2)

into the algorithms [11].

1The PAR score is the average running time of m independent solver runs
until an optimal solution was found. Runs which are not successful within
time T are penalized with f ·T where f is a penalty factor usually set to 10.

2Those instances were generated by an evolutionary algorithm where a
single fitness function evaluation requires (1) a call of the exact Concorde
solver and (2) multiple runs of LKH+r and EAX+r respectively. This becomes
computationally very expensive for n ∈ {1 000, 2 000}.

3Restart variants trigger a cold restart once the internal stopping conditions
are hit. This modification to LKH and EAX was introduced in [9].



LKH variants: The LKH algorithm is an iterated local search

algorithm that heuristically generates k-opt moves. A

powerful improvement of LKH was the introduction of

multi-trial LKH, where several solutions originating from

soft restarts of the Lin-Kernigham heuristic are recom-

bined by a partition crossover operator named Iterative

Partial Transcription (IPT). A recent proposal replaces

IPT by the alternative crossover operator GPX2. Addi-

tionally, LKH v2.0.9 allows to use both IPT and GPX2 in

sequence. Therefore, we consider the four restarts variants

LKH+r (IPT), i.e., the vanilla version of LKH+r, LKH+r

(GPX), LKH+r (IPT+GPX) and LKH+r (GPX+IPT).

EAX variants: EAX is a powerful genetic algorithm which

uses the Edge Assembly Crossover (EAX) operator to

combine two parents. The operator is designed to keep

as many edges from the parents as possible and introduces

only a few short edges to complete the tour. The EAX

algorithm is a (µ + λ)-strategy with a sophisticated

diversity preservation technique based on edge entropy

to prevent the algorithm from premature convergence. We

use the restart version EAX+r and additionally consider

a modified version where individuals created by EAX+r

are further recombined by applying GPX2. It should be

noted that our modification is more straight-forward than

the different variants introduced in [11].

C. Estimation of Probabilities

Next, we describe the process of probability estimation.

Given a value α ≥ 0, a time-limit T , a stochastic algorithm

A, and an instance I with optimal tour length OPT, we denote

the probability to reach a solution of desired quality within the

time-limit T as pAα,T (I) = P (A(I) ≤ (1 + α) · OPT). Given

A is stochastic and the trajectories of m independent runs

of that algorithm on instance I are available, the probability

pAα,T (I) can be estimated by the relative number of runs that

succeeded in finding an (1+α)-approximation within T , i.e.,

p̂Aα,T (I) =
1

m

m
∑

i=1

1

(

Ai
T (I) ≤ (1 + α) · OPT

)

.

Here, Ai
T (I) is the incumbent solution of A on I in the i-th

run after time T and 1 is the indicator function evaluating to 1
if its argument is true. Given a set I of instances, an estimator

for the success probability pAα,T (I) on the set I is the average

probability over all instances in I, i.e.,

p̂Aα,T (I) =
1

|I|

∑

I∈I

p̂Aα,T (I).

III. EXPERIMENTS

A. Experimental Setup

Each of the six algorithms was run on each instance m =
10 times with different random seeds in order to account for

stochasticity. Throughout those experiments, we used a cutoff

time of T = 3600 seconds (i.e., one hour). The algorithms

log the incumbent, i.e., best-so-far, solution in every run.

As all results for the TSP sets netgen, morphed and tspgen

were qualitatively similar, we combined the respective infor-

mation into a single set called “structured”.

B. Perspective 1: First hitting times

In practical applications, often an upper bound on solver

performance is desired in order to realistically assess the worst

case scenario. Therefore, it is of interest how long it will

take a solver at most to find a (1 + α)-approximation of

the true optimum. The chosen solvers were executed for a

variety of approximation gaps α and for each combination

with TSP set and instance sizes n ∈ {500, 1 000, 2 000}. Note

that in this part of our study, we analyze the algorithms’

performances across a wide range of approximation factors,

α ∈ {0.5, 0.1, 0.05, 0.01, . . . , 5 · 10−5, 10−5}. Thereby, we

get a comprehensive overview of the behavior of the different

algorithms, and later on can zoom in on more relevant areas.

We take a pessimistic perspective and estimate the first hitting

time as the maximum time needed by each algorithm to find

a solution of the corresponding quality (1 + α) for the first

time across all instances and runs of each instance set and size

respectively.

As depicted in Fig. 1, both EAX variants are extremely fast

for large values of α, i.e., their solutions at early stages of the

runs are already of very good quality. In fact, for α = 0.5,

EAX+r (GPX) had the lowest first hitting times across all

eight considered scenarios, which supports the effectiveness

of the sophisticated crossover operator GPX. More precisely,

for small (n = 500) and medium-sized (n = 1000) instances,

all runs of EAX+r (GPX) found a tour that is at most 50%
longer than the optimal tour within less than a second. On

larger instances (n = 2000), this optimizer needed just slightly

more than a second. Yet, it is also observable that the classical

EAX+r performs better than its GPX-counterpart for decreas-

ing α-values and even outperforms it for all approximation

gaps α ≤ 0.01.

Further noticeable findings can be derived for LKH and

its variants. First, the trajectories of all four LKH variants are

almost identical across all the investigated scenarios, implying

that no substantial differences among the considered versions

regarding latest first hitting times could be detected. Moreover,

with the exception of the medium-sized and large structured

TSP instances with n ∈ {1 000, 2 000} nodes, LKH performs

at least as well as EAX within the mid-range approximation

factors α ∈ [0.0005, 0.01]. However, for the small approxima-

tion factors, LKH is again inferior to EAX – except for the

problems that were specifically tailored in favor of LKH.

Thus, depending on the desired approximation quality, one

could provide a three-fold recommendation: if the acceptable

approximation-quality is rather large (α > 0.1) EAX+r (ide-

ally its GPX-enhanced version) is preferable, for mid-range

values of α one should rather use one of the LKH variants,

and for very small approximation factors (α ≤ 0.0001) one

should consider the classical EAX+r. However, it has to be

kept in mind that these findings solely focus the worst case

scenario.
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Fig. 1. Maximum first hitting times for different α-values. That is, we report for each approximation factor α (x-axis) the maximum time needed by EAX+r
and LKH+r to find a solution of the corresponding quality for the first time across all instances and runs. It is therefore a maximally pessimistic view on
approximation quality. Splits are done by instance class and size.

C. Perspective 2: Probability of Success

While the previous subsection focused on the latest first

hitting time, i.e., a worst case analysis, we are now interested

in the solvers’ average case performances. Of course, previ-

ous studies already addressed the average case as well, but

usually with a focus on (penalized) aggregations of runtimes.

Unfortunately, those runtimes only considered whether an

algorithm found a tour of optimal length – which corresponds

to α = 0. Further information on the solver’s performance,

such as whether it failed (to find an optimal tour) by orders of

magnitude or just by an infinitesimal deviation was neglected.

In the following, we will overcome this “knowledge gap”

by comparing the performances of a total of six versions of

EAX+r and LKH+r across different TSP sets and approxima-

tion factors. More precisely, within this subsection we investi-

gate the change of an algorithm’s average success probability

over time for different approximation gaps. For small instances

(n = 500) we used α ∈ [0, 10−4] and otherwise α ∈ [0, 10−3].
This choice of α-values was considered sufficiently large, as

for the largest values in those intervals the average success

probability of most algorithms already converged to 1.0 within

the investigated time.

The results for the TSP instances with n = 500 nodes are

depicted in Fig. 2 and also listed in Tab. I. As the performances

of all four LKH variants are very similar only the results for

LKH+r’s default version, i.e., LKH+r (IPT) are provided as

a representative. Interestingly, LKH+r outperforms both EAX

variants on the TSP set “easy for LKH+r” across all considered

combinations of time steps and approximation gaps, although

those instances have been generated for just one specific pair

of maximum runtime (T = 5 minutes) and approximation

quality (α = 0) as detailed in [19]. These findings are reflected

by the median probability curves depicted in Fig. 2. As shown

in the second row of this plot, the curve of LKH+r is located

in the very top-left corner, implying that it has achieved a high

success probability (w.r.t. the respective approximation qual-

ity) within seconds. In contrast, the “tubes” associated with the

EAX+r variants are rather broad and spread diagonally across

all four images. That is, their median success probabilities

show a high variance and both solvers require much more

time to achieve feasible success probabilities (closer to 1.00)

on those instances. The superiority of LKH+r over the two

EAX+r versions is also confirmed by pairwise Wilcoxon-tests

to a significance level of 5% (as indicated by the 1+ and 2+

in the last column of Tab. I).

On the other hand, the two EAX versions are absolutely

superior to LKH+r on the “easy for EAX+r” problems. In

fact, the tube of LKH+r basically covers the majority of each

of the images in the first row of Fig. 2.

We further noticed that while EAX+r and its variant per-

forms well on all sets except for “easy for LKH”, LKH+r ex-

hibits clear preferences – ranging from very poor performances

on the EAX-tailored instances, via mediocre behavior on the

structured instances, up to good performances on rue, and (of

course) the LKH-tailored problems. This clearly indicates that

the structural properties of an instance, i.e., its node alignment,

strongly affect the optimization behavior of LKH.

In contrast to our a priori expectations, we could not detect

strong differences of a solver’s success probabilities across

the different approximation qualities for the small instances

(n = 500) at hand. However, for larger instances with

n ∈ {1 000, 2 000} nodes the picture slightly changes as

shown in Fig. 3 and Tab. II. First, with increasing instance

size n and decreasing α, the EAX-variant EAX+r (GPX) is
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Fig. 2. This plot shows the median success probabilities to locate a solution of quality (1 + α) · OPT (columns show different α values) for instances with
n = 500 nodes. The tubes are defined by the corresponding 0.25-quantile and 0.75-quantile, respectively.

more and more outperformed by its contenders. This effect is

reflected by the large number of 2+’s in Tab. II, which indicate

a significantly better performance of the respective solver

compared to EAX+r (GPX). Secondly, across all solvers one

can observe an increase in variation of the success probabilities

(i.e., wider tubes), as well as slightly increasing runtimes (i.e.,

shift to the right) for decreasing approximation factors α.

However, those findings are quite intuitive as diminishing gaps

correspond to more accurate results – which are harder to find.

Observing Tab. II another pattern becomes visible: EAX+r

performs significantly better than LKH+r on the structured in-

stances. An even more interesting pattern can be observed for

the (unstructured) rue instances. If the accepted approximation

factor is rather small (α ≤ 0.0001) and a sufficiently large time

(T ≥ 50s) is given, then EAX+r performs significantly better

than LKH+r. However, if the instance size is large (n = 2000)

and only a short amount of time is given (T = 10s), LKH+r

is superior to both (considered) versions of EAX.

As a result, the ideal choice of (inexact) TSP optimization

heuristic depends on a combination of (i) the magnitude of the

allowed approximation gap, (ii) the size of the TSP instance,

(iii) the given cutoff time for the solver, as well as (iv) the

structure (i.e., node placement) of the instance itself. With the

exception of (i), these findings are in line with the automated

algorithm selection studies by [9], [10], in which the authors

showed (for α = 0) that an instance’s structural information

can be efficiently exploited to select the best performing

optimization algorithm for the instance at hand.

IV. CONCLUSION AND FUTURE WORK

Taking an “anytime perspective” in TSP solver benchmark-

ing, i.e., addressing research questions R1 and R2 stated

in the introduction, results in detailed insights into solver

performances together with respective approximation speed

and indicates structural relationships with instance properties.

Specifically, our sophisticated evolutionary approach [19] for

generating instances which are very hard for EAX+r and easy

for LKH+r proves to perform extremely well reflecting the

huge impact of instance properties on problem hardness.

Next steps will incorporate the insights in anytime perfor-

mance of TSP solvers gained from our empirical study into

automated algorithm selection models (ref. to research ques-

tion R3). Building on existing high-performing approaches

conditioned on the necessity of solving the problem to op-

timality (e.g., [10]) an extension to the anytime scenario

would be highly desirable. For this purpose, several ingredients

need to be developed such as instance features characterizing

anytime performance. Here, initial work on so-called probing

features exists [9] and needs to be extended. Moreover, one

of course needs an anytime performance indicator which is

not straightforward to design as it has to incorporate different

aspects of quality and hence is multi-objective in nature.

Interesting concepts in the context of automated algorithm

configuration [22] will be tested and improved upon.

Secondly, the derived insights offer very promising po-

tential in terms of hybridization of inexact TSP solvers as

performance rankings differ along the optimization runs with

increasing approximation quality. Comparing, e.g., maximum

first hitting times, EAX+r generates substantial improvements



TABLE I
MAXIMUM GAP (MAX), MEAN SUCCESS PROBABILITY (MEAN), STANDARD DEVIATION (STD) AND RESULTS OF PAIRWISE WILCOXON-TESTS FOR

EAX+R, EAX+R (GPX) AND LKH+R (IPT). A VALUE X+ IN THE STAT COLUMN INDICATES THAT THE RESULTS OF THE ALGORITHM ARE

STATISTICALLY SIGNIFICANT IN COMPARISON TO ALGORITHM X . RESULTS ARE SPLIT BY INSTANCE GROUP, α AND TIME FOR INSTANCES OF SIZE

n = 500. BEST MEAN VALUES PER ROW ARE HIGHLIGHTED IN BOLD FACE .

EAX+r (1) EAX+r (GPX) (2) LKH+r (IPT) (3)

Group n α T max mean std stat max mean std stat max mean std stat

500 0.00010 10 0.00 1.00 0.00 2+, 3+ 0 0.99 0.04 3+ 0.00 0.55 0.46
500 0.00010 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.66 0.44
500 0.00010 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.69 0.42

500 0.00005 10 0.00 1.00 0.00 2+, 3+ 0 0.99 0.04 3+ 0.00 0.42 0.46
500 0.00005 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.54 0.45
500 0.00005 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.59 0.44

500 0.00001 10 0.00 1.00 0.00 2+, 3+ 0 0.99 0.06 3+ 0.00 0.27 0.40
500 0.00001 50 0.00 1.00 0.00 3+ 0 1.00 0.01 3+ 0.00 0.38 0.43
500 0.00001 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.43 0.43

500 0.00000 10 0.00 1.00 0.00 2+, 3+ 0 0.99 0.06 3+ 0.00 0.24 0.38
500 0.00000 50 0.00 1.00 0.00 3+ 0 1.00 0.01 3+ 0.00 0.35 0.41

easy for EAX+r

500 0.00000 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.40 0.41

500 0.00010 10 0.00 0.77 0.34 2+ 0 0.68 0.37 0.00 1.00 0.01 1+, 2+

500 0.00010 50 0.00 0.90 0.20 0 0.85 0.28 0.00 1.00 0.00 1+, 2+

500 0.00010 100 0.00 0.95 0.14 0 0.92 0.18 0.00 1.00 0.00 1+, 2+

500 0.00005 10 0.00 0.57 0.39 2+ 0 0.48 0.38 0.00 1.00 0.01 1+, 2+

500 0.00005 50 0.00 0.81 0.27 2+ 0 0.73 0.31 0.00 1.00 0.00 1+, 2+

500 0.00005 100 0.00 0.89 0.21 0 0.86 0.22 0.00 1.00 0.00 1+, 2+

500 0.00001 10 0.00 0.32 0.31 0 0.26 0.27 0.00 1.00 0.01 1+, 2+

500 0.00001 50 0.00 0.67 0.32 2+ 0 0.57 0.32 0.00 1.00 0.00 1+, 2+

500 0.00001 100 0.00 0.79 0.27 2+ 0 0.73 0.29 0.00 1.00 0.00 1+, 2+

500 0.00000 10 0.00 0.26 0.24 0 0.21 0.22 0.00 1.00 0.01 1+, 2+

500 0.00000 50 0.00 0.64 0.31 2+ 0 0.53 0.32 0.00 1.00 0.00 1+, 2+

easy for LKH+r

500 0.00000 100 0.00 0.78 0.27 2+ 0 0.69 0.31 0.00 1.00 0.00 1+, 2+

500 0.00010 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.04 0.00 0.99 0.07
500 0.00010 50 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.03
500 0.00010 100 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.00

500 0.00005 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.05 0.00 0.99 0.07
500 0.00005 50 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.03
500 0.00005 100 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.00

500 0.00001 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.05 0.00 0.98 0.09
500 0.00001 50 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.04
500 0.00001 100 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.01

500 0.00000 10 0.00 1.00 0.01 2+, 3+ 0 0.98 0.06 0.00 0.98 0.09
500 0.00000 50 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.04

rue

500 0.00000 100 0.00 1.00 0.00 0 1.00 0.00 0.00 1.00 0.01

500 0.00010 10 0.00 1.00 0.01 2+, 3+ 0 1.00 0.03 3+ 0.01 0.91 0.22
500 0.00010 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.97 0.13
500 0.00010 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.98 0.11

500 0.00005 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.04 3+ 0.01 0.89 0.24
500 0.00005 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.96 0.15
500 0.00005 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.98 0.13

500 0.00001 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.04 3+ 0.01 0.87 0.26
500 0.00001 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.96 0.16
500 0.00001 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.97 0.13

500 0.00000 10 0.00 1.00 0.01 2+, 3+ 0 0.99 0.04 3+ 0.01 0.87 0.26
500 0.00000 50 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.96 0.16

structured

500 0.00000 100 0.00 1.00 0.00 3+ 0 1.00 0.00 3+ 0.00 0.97 0.13

very fast, is then overtaken by LKH+r (or respective LKH

variants) while it clearly is the single-best solver referring

to final approximation qualities. Of course, this behaviour is

dependent on the instances’ structural properties such that a

hybridized TSP solver variant that is capable of processing

instance features could vastly improve approximation speed

and final quality.
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TABLE II
MAXIMUM GAP (MAX), MEAN SUCCESS PROBABILITY (MEAN), STANDARD DEVIATION (STD) AND RESULTS OF PAIRWISE WILCOXON-TESTS FOR

EAX+R, EAX+R (GPX) AND LKH+R (IPT). A VALUE X+ IN THE STAT COLUMN INDICATES THAT THE RESULTS OF THE ALGORITHM ARE

STATISTICALLY SIGNIFICANT IN COMPARISON TO ALGORITHM X . RESULTS ARE SPLIT BY INSTANCE GROUP, α AND TIME FOR INSTANCES OF SIZE

n > 500. BEST MEAN VALUES PER ROW ARE HIGHLIGHTED IN BOLD FACE .

EAX+r (1) EAX+r (GPX) (2) LKH+r (IPT) (3)

Group n α T max mean std stat max mean std stat max mean std stat

1000 0.00100 10 0.00 1.00 0.00 2+ 0.00 0.92 0.13 0.00 1.00 0.00 2+

1000 0.00100 50 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
1000 0.00100 100 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

1000 0.00010 10 0.00 0.97 0.08 2+ 0.00 0.27 0.24 0.00 0.93 0.18 2+

1000 0.00010 50 0.00 1.00 0.00 2+, 3+ 0.00 0.82 0.24 0.00 0.98 0.09 2+

1000 0.00010 100 0.00 1.00 0.00 2+, 3+ 0.00 0.93 0.16 0.00 0.99 0.07 2+

1000 0.00001 10 0.00 0.89 0.18 2+ 0.00 0.16 0.20 0.00 0.84 0.27 2+

1000 0.00001 50 0.00 1.00 0.02 2+, 3+ 0.00 0.66 0.32 0.00 0.96 0.15 2+

1000 0.00001 100 0.00 1.00 0.00 2+, 3+ 0.00 0.81 0.26 0.00 0.97 0.11 2+

1000 0.00000 10 0.00 0.88 0.19 2+ 0.00 0.15 0.20 0.00 0.83 0.27 2+

1000 0.00000 50 0.00 1.00 0.03 2+, 3+ 0.00 0.64 0.32 0.00 0.96 0.15 2+

1000 0.00000 100 0.00 1.00 0.00 2+, 3+ 0.00 0.79 0.27 0.00 0.97 0.11 2+

2000 0.00100 10 0.03 0.43 0.17 2+ 0.04 0.00 0.00 0.00 1.00 0.00 1+, 2+

2000 0.00100 50 0.00 1.00 0.00 2+ 0.00 0.05 0.09 0.00 1.00 0.00 2+

2000 0.00100 100 0.00 1.00 0.00 2+ 0.00 0.49 0.21 0.00 1.00 0.00 2+

2000 0.00010 10 0.03 0.18 0.16 2+ 0.04 0.00 0.00 0.00 0.59 0.30 1+, 2+

2000 0.00010 50 0.00 0.99 0.05 2+, 3+ 0.00 0.00 0.00 0.00 0.89 0.18 2+

2000 0.00010 100 0.00 1.00 0.01 2+, 3+ 0.00 0.01 0.03 0.00 0.95 0.12 2+

2000 0.00001 10 0.03 0.06 0.10 2+ 0.04 0.00 0.00 0.00 0.34 0.28 1+, 2+

2000 0.00001 50 0.00 0.83 0.23 2+, 3+ 0.00 0.00 0.00 0.00 0.71 0.32 2+

2000 0.00001 100 0.00 0.94 0.13 2+, 3+ 0.00 0.00 0.01 0.00 0.83 0.28 2+

2000 0.00000 10 0.03 0.04 0.08 2+ 0.04 0.00 0.00 0.00 0.31 0.27 1+, 2+

2000 0.00000 50 0.00 0.78 0.25 2+, 3+ 0.00 0.00 0.00 0.00 0.67 0.32 2+

rue

2000 0.00000 100 0.00 0.91 0.17 2+, 3+ 0.00 0.00 0.01 0.00 0.80 0.29 2+

1000 0.00100 10 0.00 1.00 0.00 2+, 3+ 0.00 0.99 0.06 0.03 0.97 0.11

1000 0.00100 50 0.00 1.00 0.00 3+ 0.00 1.00 0.00 3+ 0.00 0.99 0.06

1000 0.00100 100 0.00 1.00 0.00 3+ 0.00 1.00 0.00 3+ 0.00 1.00 0.04

1000 0.00010 10 0.00 0.99 0.07 2+, 3+ 0.00 0.66 0.31 0.03 0.80 0.29 2+

1000 0.00010 50 0.00 1.00 0.01 2+, 3+ 0.00 0.96 0.13 0.00 0.94 0.17

1000 0.00010 100 0.00 1.00 0.01 2+, 3+ 0.00 0.98 0.09 3+ 0.00 0.97 0.13

1000 0.00001 10 0.00 0.95 0.14 2+, 3+ 0.00 0.48 0.34 0.03 0.68 0.35 2+

1000 0.00001 50 0.00 1.00 0.03 2+, 3+ 0.00 0.88 0.22 0.00 0.87 0.26

1000 0.00001 100 0.00 1.00 0.03 2+, 3+ 0.00 0.94 0.17 0.00 0.92 0.22

1000 0.00000 10 0.00 0.94 0.15 2+, 3+ 0.00 0.45 0.34 0.03 0.65 0.36 2+

1000 0.00000 50 0.00 1.00 0.04 2+, 3+ 0.00 0.87 0.24 0.00 0.86 0.27

1000 0.00000 100 0.00 1.00 0.03 2+, 3+ 0.00 0.93 0.18 0.00 0.91 0.23

2000 0.00100 10 0.02 0.78 0.26 2+ 0.06 0.00 0.00 0.09 0.89 0.21 1+, 2+

2000 0.00100 50 0.00 1.00 0.00 2+, 3+ 0.01 0.45 0.35 0.04 0.99 0.06 2+

2000 0.00100 100 0.00 1.00 0.00 2+, 3+ 0.01 0.87 0.19 0.04 1.00 0.03 2+

2000 0.00010 10 0.02 0.51 0.28 2+, 3+ 0.06 0.00 0.00 0.09 0.40 0.33 2+

2000 0.00010 50 0.00 0.99 0.06 2+, 3+ 0.01 0.03 0.10 0.04 0.80 0.29 2+

2000 0.00010 100 0.00 1.00 0.02 2+, 3+ 0.01 0.15 0.18 0.04 0.88 0.24 2+

2000 0.00001 10 0.02 0.32 0.26 2+, 3+ 0.06 0.00 0.00 0.09 0.19 0.25 2+

2000 0.00001 50 0.00 0.93 0.16 2+, 3+ 0.01 0.01 0.05 0.04 0.60 0.35 2+

2000 0.00001 100 0.00 0.98 0.09 2+, 3+ 0.01 0.04 0.10 0.04 0.72 0.34 2+

2000 0.00000 10 0.02 0.28 0.25 2+, 3+ 0.06 0.00 0.00 0.09 0.15 0.24 2+

2000 0.00000 50 0.00 0.90 0.18 2+, 3+ 0.01 0.01 0.05 0.04 0.55 0.36 2+

structured

2000 0.00000 100 0.00 0.97 0.11 2+, 3+ 0.01 0.03 0.09 0.04 0.68 0.35 2+
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Fig. 3. This plot shows the median success probabilities to locate a solution of quality (1 + α) · OPT (columns show different α values) for instances with
n = 1000 nodes (two top rows) and n = 2000 nodes (two bottom rows). The tubes are defined by the 0.25-quantile and 0.75-quantile, respectively.
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