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Abstract—Many real-world problems can be formulated as
the optimization of a continuous function. Furthermore, these
problems are becoming increasingly more complex every year,
reaching, or even exceeding, the thousand of variables. Evolution-
ary Algorithms have been traditionally successful at solving this
kind of problems, due to their good balance in terms of solution
quality and computation time. However, the aforementioned
growth in the size of the problems requires of novel approaches to
deal with the increased complexity of larger solutions spaces. Hy-
brid evolutionary algorithms are a powerful alternative in these
scenarios as they are able to combine the strengths of multiple
search methods to solve more complex problems. These hybrid
approaches normally do not pay attention to the execution order
of their components, being the most frequent strategy to always
run them in a predefined sequence. In this contribution we study
the role of execution order in hybrid evolutionary algorithms
within the context of the multiple offspring sampling framework,
one of the best algorithms in large-scale global optimization. As
shown in the experimentation, a proper execution order policy
can boost the performance of MOS to improve the results of
other state-of-the-art algorithms.

Index Terms—Large-scale global optimization, LSGO, Hybrid
evolutionary algorithms, Memetic algorithm, Execution order.

I. INTRODUCTION

The field of continuous optimization is a very active re-
search area as many real-world problems of different domains
can be formulated as the optimization of a continuous function.
Among the different approaches that can be used to deal with
this kind of problems, Evolutionary Algorithms (EAs) [1] are
among the most successful ones, because they are able to
reach accurate solutions in complex scenarios without any
knowledge of the problem that is being solved, apart from
the fitness function. This is a very important characteristic in
real-world scenarios, as shown in [2]. The list of EAs that are
currently applied to these problems is extensive, and includes
Genetic Algorithms [3] or Differential Evolution [4], to name
a few.

However, the performance of EAs depends, to a large
extent, on the size (number of variables) of the problem under
consideration, as the domain search increases exponentially
with the number of dimensions. In this context, there has
been an increased interest in Large-Scale Global Optimization
(LSGO) during the recent years, which is focused on problem

sizes that reach, or even exceed, the thousand of variables,
both in academic [5] and engineering problems [6].

The multiple offspring sampling (MOS) framework has
shown to be an excellent tool to create hybrid EAs combining
multiple individual algorithms to solve LSGO problems [7]–
[9], becoming the state-of-the-art method in LSGO for several
years. In MOS, the multiple individual algorithms are used in
sequence, taking the population created by one algorithm as
the initial population for the following one. Previous work [7],
[9] evaluate several of the controlling parameters of MOS in
different experimental scenarios. However, the execution order
of the algorithms remained an open issue and was always
manually fixed. As far as the authors are concerned, this is
the common approach followed in other hybrid EAs, which
makes it a good research subject as shown later in this paper.
In particular, several ordering strategies are proposed. Some of
them are general and could be used by any other hybrid EA,
whereas others are dependent on the dynamic nature of MOS,
as it adjusts the participation of each algorithm according
to the quality of the solutions that they produce. It seemed
thus interesting to consider these two measures (quality and
participation ratio) as other criteria to determine the execution
order of the composing algorithms. The experimentation car-
ried out confirms the hypothesis that execution order plays an
important role on the performance of the hybrid EA, especially
as the complexity of the problems increases. With the correct
execution order policy, MOS is able to improve the results of
the winner of the 2019 IEEE CEC LSGO competition.

Finally, the remainder of this paper is organized as follows.
Section II quickly reviews the MOS framework. In Section III,
we discuss on several alternatives to determine the execution
order of the methods participating in a hybrid algorithm,
whereas the experimental details are presented in Section
IV. Section V provides the results obtained and a thorough
discussion on the results and their consequences, whereas
Section VI concludes this study with the main conclusions
of the work.

II. A BRIEF DESCRIPTION OF THE MOS FRAMEWORK

Multiple Offspring Sampling (MOS) is a framework for
developing hybrid evolutionary algorithms with dynamic ad-
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justment of the contribution of each of its components. In
MOS, the overall search process is divided into a number of
phases (called steps) in which the hybridized methods run in
sequence until the maximum number of fitness evaluations
(FEs) allocated to that step is exhausted. At this level, the
framework considers each algorithm to be combined as a
black box to which it assigns a budget of FEs (a percentage
of the budget assigned to the whole step) and an initial
set of candidate solutions. Then, each algorithm evolves this
population independently and, once the budget of FEs has been
consumed, it returns the final population to the framework that,
subsequently, passes it to the next algorithm.

At the end of each step, i.e., when all the algorithms have
run to their maximum number of FEs, the framework evaluates
the contribution of each method according to the quality of
the solutions created by each of them. This measure is used
by a participation function to redistribute the overall budget
according to this quality. This way, the hybrid algorithm is
able to adapt to different stages in the search process and
use more efficiently the resources, allowing better performing
algorithms to increase their participation and vice versa.

The MOS framework has been successfully used in the past
to create hybrid algorithms with an outstanding performance
on Large-scale Global Optimization (LSGO) problems. In
particular, it obtained the best results in the Soft Computing
Special Issue on scalability of LSGO algorithms [7] and the
Special Sessions and Competitions on LSGO of IEEE CEC
2012 [8] and 2013 [9].

For a detailed explanation of MOS and its governing ele-
ments, please refer to [7].

III. DECIDING THE EXECUTION ORDER OF THE
ALGORITHMS

As described in Section II, MOS is an adaptive framework
for the combination of different algorithms that are applied
in sequence with a participation criterion for each of them
based on the contribution of each method to the overall search
process during their last activation.

As the participation criterion is evaluated after all the
algorithms have been run, it could seem that all of them have
the same opportunities and that the order in which they are run
is not important. However, as the initial population used by
one algorithm is the final population created by the previous
one, the execution order could have a strong influence on the
performance of the algorithm.

MOS has, traditionally, run the algorithms in the same order
they were specified in the corresponding configuration file.
While this gives the researcher the possibility of manually
fixing the desired execution order, it is also true that, in
most of the cases, there is no clear sequencing that could be
identified as optimal beforehand. It is for this reason that, in
this study, we have decided to analyze the role of execution
order, proposing different criteria to decide the execution order
of the algorithms that are going to be compared:

• Manual order: This is the criterion currently used by
MOS. The execution order of algorithms is the one in

which algorithms are provided in the configuration file.
We named it “manual order” because the user can change
it manually for each problem. Unfortunately, This is an
a-priori decision made without any information of the
behavior of each algorithm, and it could introduce an
unnoticed bias.

• Random order: This option randomly selects the ex-
ecution order for each algorithm at the beginning of
each step. This is a simple criterion that tries to run
each algorithm in a different order at different steps. The
idea is to avoid any bias that could be introduced by a
deterministic order as the previous one.

• Quality order: In this criterion the algorithms are run
according to the value reported by the quality function at
each step. This is an order that allows MOS to sort them
based on how promising is each algorithm.
A “descending order” implies that the most promising
algorithms are run in the first place. The expected conse-
quence of this approach could be a faster improvement of
the results. However, it could be quite conservative (since,
presumably, the algorithms executed later will receive
better solutions and, therefore, more difficult to improve)
and thus the expected gain could be drastically reduced
by producing a less flexible order than expected.
An “ascending order” means that the least performing
algorithms are run first. The expected consequence would
be, according to the aforementioned influence of execu-
tion order on the quality of the population received, that
the chances of improving such population increase. On
the opposite hand, the execution of the most promising
algorithms is postponed and thus convergence could be
slower.

• Participation order: The last option is to run the al-
gorithms according to their participation ratio (budget
of FEs assigned by the framework). In this case, the
execution order indirectly depends on the quality measure
used by MOS to assign the FEs to each method. This
can be seen as a longer term function compared with the
quality function, as participation is progressively adjusted
according to the quality of the algorithms, which means
that, depending on the magnitude of the differences in
quality of several methods, the rankings obtained from
quality and participation could not be necessarily the
same. For example, it could happen that one algorithm is
far superior to the others at the beginning of the search,
and thus will have a higher quality and participation ratio.
As the search advances, it could be surpassed by other
algorithms in terms of quality but, if differences are not
very large, it could take some time for them to surpass the
initially dominating algorithm in terms of participation.
This is also influenced by the minimum participation ratio
enforced by the framework, that prevents any algorithm
from getting a budget smaller than the predefined value.

In Sections IV and V, the different ordering criteria are
experimentally compared, in both ascending and descending



order (except for “random order” for obvious reasons).

IV. EXPERIMENTAL FRAMEWORK

The different order criteria are evaluated using the bench-
mark proposed in the IEEE Congress on Evolutionary Compu-
tation, CEC’2013 [5], following its experimental conditions.
This benchmark consists of 15 optimization functions for
1000 dimensions, with several degrees of separability, from
completely separable functions to fully-non-separable ones:

• Fully separable functions: f1 − f3.
• Partially separable functions: with a separable subcom-

ponent (f4 − f7) and without separable subcomponents
(f8 − f11).

• Overlapping functions: f12 − f14.
• Non-separable functions: f15.
In MOS, each individual algorithms keeps its own parame-

ters, which must be tuned to obtain the best performance from
the hybrid method. As this is out of scope of this study, we
have kept the parameters of the composing algorithms fixed to
the recommended values presented in [9]. Additionally, MOS
introduces some extra elements:

• A quality measure to determine the quality of new
offspring created by each algorithm.

• A participation function to adjust the contribution of each
algorithm according to the quality values.

• A step size to determine the budget of FEs to be dis-
tributed among the participating algorithms.

• A minimum participation ratio to avoid one algorithm to
reach zero, which can be practical when the dominant
algorithm is clearly superior in the different stages of the
search process.

• The execution order for the algorithms composing the
hybrid method.

The first four elements have been thoroughly studied in the
past and, for the remainder of this experimentation, we will
follow the guidelines established in [9] and summarized in
Table I.

TABLE I
MOS PARAMETERS

Quality function Fitness increment average
Participation function Dynamic participation
Step size 36000 FEs
Minimum participation ratio 20%

The fourth element is studied in this section considering
the different criteria described in Section III. We are going
to compare different algorithms whose only difference is the
execution order criterion:

• RO: Random Order, randomly select the execution order
for each algorithm at the beginning of each step.

• AMO: Ascending Manual Order, run the algorithms in
the order specified in the configuration file. It is the
original criterion.

• DMO: Descending Manual Order, run the algorithms in
the opposite order specified in the configuration file.

• AQO: Ascending Quality Order, the algorithms are sorted
according to their computed quality order (from lower to
greater).

• DQO: Descending Quality Order, the algorithms are
sorted according to their computed quality order (from
greater to lower).

• APO: Ascending Participation Order, the algorithms are
sorted according to their computed participation order
(from lower to greater).

• DPO: Descending Participation Order, the algorithms are
sorted according to their computed participation order
(from greater to lower).

Each algorithm is run for each function 25 times, and each
run finishes when a maximum number of evaluations, fitness
evaluations, FEs, is reached (3 ·106 in this case). Additionally,
the best fitness is measured at different milestones (in terms of
FEs). To simplify the analysis, we are only going to consider
the milestones used in previous competitions (1.2·105, 6.0·105,
3.0 · 106). The best fitness for each milestone is automatically
recorded by the benchmark code.

All the experiments have been run in a computer with the
configuration depicted in Table II. Tables and figures have been
prepared by using the Tacolab framework1 [10].

TABLE II
COMPUTER CONFIGURATION

PC Intel Xeon 8 cores 1.86Ghz CPU 22GB RAM
Operating System Ubuntu Linux 11.10
Prog. Language C++ & Matlab
C/C++ Compiler Clang 2.9
Matlab Version Matlab R2011B

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we analyze the influence of the execution
order in hybrid evolutionary algorithmds by comparing the
performance of the alternative criteria proposed in Section III
and following the experimental framework defined in Section
IV.

First, we compare all the different execution order alterna-
tives among them, to find the one that reports the best results,
which will be selected for further comparison. Then, we
compare this alternative against the original MOS algorithm
and the winner of the last LSGO competition, held at IEEE
CEC’2019, CC-RDG3 [11], using the experimental results
provided by their authors.

A. Comparison of the different execution order criteria

In this section, we are going to compare all the alternative
execution order criteria among them.

First, we report the number of functions for which each
algorithm obtains the best results and their average ranking

1https://tacolab.org/



TABLE III
NUMBER OF FUNCTIONS IN WHICH EACH ALGORITHM REPORTS THE BEST

RESULTS

Algorithm 1.2 · 105 6 · 105 3 · 106

AMO 0 0 0
APO 2 8 6
AQO 6 0 1
DMO 2 2 1
DPO 0 0 0
DQO 3 2 1
RO 2 3 4

TABLE IV
AVERAGE RANKING FOR EACH ALGORITHM AND MILESTONE

Algorithm 1.2 · 105 6 · 105 3 · 106

AMO 4.13 4.20 3.87
APO 3.33 2.13 2.83
AQO 3.07 3.67 3.47
DMO 5.67 5.54 5.13
DPO 3.87 3.94 5.30
DQO 3.47 3.94 3.53
RO 4.47 4.60 3.87

in Tables III and IV, respectively. From Table III, it can be
observed that, whereas for FEs=1.2 · 105 AQO obtains the
best results in more functions, from FEs=6 · 105, APO is
clearly the execution order that achieves the best results in
more functions. Additionally, Table IV shows that APO has
the best average ranking (for the same two last milestones),
followed by AQO (that obtains the best results with the lowest
FEs). These results seem to be coherent with the behavior
of both criteria: while AQO focuses on local performance
changes (as it depends on quality, which is an immediate
indicator), APO takes participation into consideration, which
can have an important inertia and it can take some steps to
revert the execution order of algorithms (being thus a bit more
conservative). This makes the first option better suited at the
beginning of the search process, whereas the second one works
better in the long-term.

Then, we have compared all the MOS versions using the
methodology proposed for the WCCI’2020 competition:

1) For each function, algorithms are sorted according to
their average mean error.

2) Each algorithm is given a certain number of points
according to its ranking, and following the F1 criterion:
25 points to the best algorithm, 18 points to the runner-
up, 15 to the third one, etc.

3) The results on each function are aggregated for all the
algorithms to obtain their overall score.

4) Algorithms are compared (for example, with bar plots,
or stacked bar plots) for each considered milestone.

The overall score of each algorithm at each milestone is
depicted in Table V. It can be seen that APO is clearly the
execution order that produces the best results (being AQO
better in the lowest FEs scenario), confirming the results
shown in Table IV.

TABLE V
SCORES OF ALL THE EXECUTION ORDER APPROACHES ACCORDING TO

THE F1 CRITERION

Algorithm 1.2 · 105 6 · 105 3 · 106

AMO 184 180 196
APO 223 298 263
AQO 255 205 223
DMO 146 149 156
DPO 195 192 143
DQO 224 199 208
RO 183 187 211

Figures 1, 2, and 3 graphically show the information gath-
ered in Table V. It can be observed that APO (using Ascending
Participation Order) not only is the criterion that is clearly
better than the other ones, but it also achieves good results in
all the groups of functions.

Fig. 1. Results comparison for FES=1.2 · 105

Fig. 2. Results comparison for FES=6 · 105

Paying more attention to the previous figures it can be seen
that the improvement obtained by APO is mainly due to a
much better behavior in two groups of functions: overlapping



Fig. 3. Results comparison for FES=3 · 106

and non-separable functions. This is especially interesting
because these functions are the most difficult to optimize.

B. Convergence of the different execution order criteria
In LSGO it is very important how quickly an algorithm

is able to obtain competitive results (because in real-world
problems, it is interesting to use as few as possible FEs with
the least possible loss of error). In this section we are going
to show and analyze the convergence plots comparing the
efficiency of each algorithm.

In order to analyze convergence speed of the
different methods, we have measured the error for
each of the previous algorithms at different milestones:
{1.2, 3.0, 6.0, 9.0, 12, 15, 18, 21, 24, 27, 30} · 105. To avoid
overwhelming the reader with all the convergence plots, we
are only going to show a subset of representative functions,
covering the different observed scenarios.

In the following paragraphs, we are going to present several
conclusions considering the convergence plots:

Fig. 4. Convergence plot for function F1

• In separable functions such as F1, see Figure 4, although
all the algorithms achieve the same results, sometimes
APO is able to do it more quickly.

Fig. 5. Convergence plot for function F5

Fig. 6. Convergence plot for function F7

• In non-separable functions there are two different be-
haviors. In some of them, such as F5, the best solution
is obtained in few FEs, and that value is not improved
for the remaining FEs (see Figure 5). In this function,
curiously, the best average results are obtained by the
random order criterion. This could be explained by the
fact that, whereas the median results are very similar, the
other criteria do not report robust results, which means
that average values are worse than those obtained by the
random criterion. In other functions, such as F7, APO
shows a greater efficiency, with a difference between
APO and the other execution order criteria that increases
with the FEs (see Figure 6).

• In non-separable functions, the behavior obtained is simi-
lar to the one shown in Figure 7. In these functions, APO
clearly obtains the best results.

• Finally, in the overlapping function, F15, there are several
algorithms with bad behavior, such as RO and DMO, and
the other ones are more similar, with a slight advantage
of APO.



Fig. 7. Convergence plot for function F13

Fig. 8. Convergence plot for function F15

C. Comparison with other algorithms

Finally, we compare our proposal (MOS using the APO
criterion) with state-of-the-art algorithms to analyze how com-
petitive it is. In particular, we have selected for comparions
the previous winner of the last LSGO competition held in
CEC’20192, the CC-RDG3 algorithm [11]. Additionally, we
are going to compare it against the original MOS algorithm,
to observe the improvement obtained by the new execution
order.

As in Section V-A, we are going to compare the algorithms
following two different procedures: first, with the average
ranking, and later using the LSGO competition procedure.

TABLE VI
AVERAGE RANKING OF THE PROPOSAL AND REFERENCE ALGORITHMS

Algorithm 1.2 · 105 6 · 105 3 · 106

CC-RDG3 1.40 1.67 1.93
MOS 2.13 2.40 2.30
MOS APO 2.47 1.93 1.77

2http://www.tflsgo.org/special sessions/cec2019.html

In Table VI, the average ranking is shown. We can see that
MOS APO achieves better relative results as FEs increase.
Finally, for FE = 3·106 the proposal achieves a better average
ranking that the current state-of-the-art, CC-RDG3.

Fig. 9. MOS APO vs. reference algorithms for FES=1.2 · 105

Fig. 10. MOS APO) vs. reference algorithms for FES=6 · 105

In Figures 9, 10, and 11 the results following the competi-
tion procedure are provided. It is clear that for a lower number
of FEs, CC-RDG3 obtains the best results, and that MOS APO
is able to improve as more FEs are used, obtaining the best
results with FES=3 · 106. The good results of MOS APO
demonstrates the convenience of choosing this participation
order in MOS to allow the most promising algorithms to
be applied first, while being flexible enough to adapt when
the situation changes. With these results in mind, it can be
concluded that MOS APO improves the results of the previous
LSGO competition winner.

These good results are mainly due to the non-separable
and overlapping functions, as can been in Figures 12 and
13, in which MOS APO obtains the best results compared
with both the original MOS and CC-RDG3. It is a remarkable
improvement because the original MOS had not a good
behavior in these functions.



Fig. 11. MOS APO) vs. reference algorithms for FES=3 · 106

Fig. 12. Performance of MOS APO vs. reference algorithms in non-separable
functions

Fig. 13. Performance of MOS APO vs. reference algorithms in overlapping
functions

VI. CONCLUSIONS

Multiple Offspring Sampling (MOS) is a framework for
developing hybrid evolutionary algorithms, and has been con-
sidered the state-of-art in LSGO for several years. MOS is
characterized by a dynamic adjustment of the contribution
of each of its components as a function of the improvement
obtained by each of them.

Although previous works have analyzed several MOS pa-
rameters, all the algorithms were traditionally applied in the
same order of the configuration file. However, the execution
order can have a strong influence on the search, because the
initial population used by one algorithm is the final population
created by the previous one.

In this work, we propose and compare different execution
order criteria, considering, apart from the aforementioned
fixed criterion, a random order, and two dynamic criteria
that depend, respectively, on the quality and participation
computed for each algorithm at each step (both in ascending
and descending order). From the comparisons, it is shown that
the best results are obtained when MOS uses the execution
order that considers participation and arranges algorithms in
ascending order.

This proposal, MOS with Ascending Participation Order
(MOS APO), is also compared not only with the original
MOS but also with the winner in the previous LSGO com-
petition, CC-RDG3, showing that, for the largest FEs, the
proposal obtained the best results. Thus, it can be concluded
that MOS APO should be considered the new state-of-the-art
method in LSGO.
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