

Parallel and Distributed MOEA/D with Exclusively
Evaluated Mating and Migration

Yuji Sato
Faculty of Computer and

Information Sciences
Hosei University

Tokyo, Japan
yuji@k.hosei.ac.jp

Mikiko Sato
School of Information and

Telecommunication Engineering
Tokai University

Tokyo, Japan
mikiko.sato@tokai.ac.jp

Mads Midtlyng
Graduate School of Computer

and Information Sciences
Hosei University

Tokyo, Japan
midtlyng.madsalexander.9c@stu.

hosei.ac.jp

Minami Miyakawa
Department of Electronic

Information Systems Engineering
Sinshu University

Nagano, Japan
miyakawa@shinshu-u.ac.jp

Abstract�This paper proposes a method for many-core-based
large-scale parallel and distributed computation of MOEA/D, a
decomposition-based evolutionary multi-objective optimization
algorithm. Standard parallel MOEA/D on many-core
environments provides fast execution time, but uniformity and
diversity of the Pareto front may be lost. To avoid this problem,
we propose a method of defining a virtual overlapping zone
between partitions and selecting individuals for mating and
migration by evaluating individual populations in this area using
weight vectors of adjacent partitions. Using a two-objective
constrained knapsack problem for evaluation, we compare the
proposed method with standard single-core execution, no-
migration parallel MOEA/D, and parallel MOEA/D with standard
migration, and show that the proposed method is effective in
improving diversity in solution searching while shortening
execution time and increasing the accuracy of solution searching.

Keywords�MOEA/D, parallel and distributed processing,
many-core environment, multi-objective evolutionary algorithms

I. INTRODUCTION
In recent years, many technologies have been developed to

realize �smart cities�. The smart city concept integrates
information and communication technology, and various
physical devices connected to the cloud network to optimize the
efficiency of city operations and services and connect to citizens.
Therefore, most of real-world problems in the smart city are
multimodal interface problems and/or multi-objective
optimization problems involving several conflicting objectives.

Cloud systems may offer tens of thousands of virtual
machines, terabytes of memories and exabytes of storage
capacity. The current trend toward many-core architecture
increases the number of cores even more dramatically: we may
have more than a million cores to offer extremely massive
parallelization. Next, concomitant with advances in modern
computational science, the field of evolutionary computing is
shifting rapidly to the massive computing era where
optimization problems can be characterized by a large number
of decision variables, a large number of conflicting objectives,
and expensive evaluation functions. As a result, a recent trend in
multi-objective evolutionary algorithms is to increase the
population size to approximate the Pareto front with high

accuracy, and research on parallel computation of multi-
objective evolutionary algorithms (MOEAs) has begun [1-8].

However, many parallel speedup methods proposed for
decomposition-based MOEAs like MOEA/D [9] are virtual
parallelization techniques using multi-thread technology in
multi-core processors that have a small number of physical CPU
cores. These techniques store all individual information in
shared memory and many of these prior studies cannot be
guaranteed to improve performance when applied to massively
parallel processing using many-core environments such as
GPUs [10], supercomputers, and clouds.

In this paper, we propose a method for parallel speedup of
MOEA/D. This method presupposes a many-core environment
such as GPUs and seeks to prevent degradation in the accuracy
of solution searching. For the benchmark problem similar to
real-world problems, we use a two-objective knapsack problem
with constraints. We evaluate and compare hypervolume (HV)
[11] values and execution times of MOEA/D on a single CPU,
simple parallel MOEA/D on each partitioned subpopulation,
parallel MOEA/D on each partitioned subpopulation with the
standard island migration model applied, and parallel MOEA/D
on each partitioned subpopulation applying the proposed
method to show the method�s effectiveness.

II. BACKGROUND AND RELATED WORKS

A. Constrained Multi-objective Optimization Problem
Multi-objective optimization is a method that

simultaneously optimizes multiple objective functions in a
trade-off relationship. A constrained multi-objective
optimization problem (CMOP) is defined by the following
equations.

where f is an objective function vector which consists of m
conflicting objective functions and g is a constrained function.
The task is to find a set of x = (x1, x2, �, xn)
minimizing/maximizing m objectives under the constraint
functions.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Fig. 1 shows a conceptual illustration of the optimization of
two objectives. In multi-objective optimization, a currently
known solution that has a good evaluation value for any
particular objective function is called a non-inferior solution and
is regarded as an optimal solution. As shown in Fig. 1, there are
usually multiple non-inferior solutions. The set of non-inferior
solutions is called the Pareto optimal solution. The surface
formed by the Pareto optimal solution is called the Pareto front,
and the purpose of a search algorithm such as MOEAs is to
conduct searches so that the Pareto front takes a form that better
satisfies the criteria of the objective function.

Fig. 1. Conceptual illustration of the objective space for two objectives
optimization problems.

B. Conventional Parallel and Distributed MOEA/D
Basically, MOEAs can be categorized into dominance-based

and decomposition-based algorithms. NSGA-II [12] and SPEA2
[13] are representative dominance-based algorithms. These
techniques are based on the concept of Pareto dominance and
the use of some kind of density estimator. NSGA-II uses
solution ranking using non-dominated sorting and an estimator
based on crowding distance [11], while SPEA2 applies the
concept of strength and an estimator based on the distance to the
k-nearest neighborhood. On the other hand, decomposition-
based algorithm such as MOEA/D decomposes the original
MOP into a number of single-objective subproblems
constructed in a way such that the optimal solution to each of
these subproblems is a point on the optimal Pareto front.

A recent trend in MOEAs has been to increase the population
size to approximate the Pareto front with high accuracy [14].
Increasing the population size, however, results in an
exponential increase in the computational complexity required
for searching the Pareto optimal solutions. As a result, execution
time can be a problem when applying such an approach to
engineering applications. Research on parallel computation of
MOEAs has thus begun. Below, in this paper, we deal with the
parallelization of MOEA/D. We also use the Chebyshev (gte)
function to be minimized:

where x is a feasible solution, = (1, �, m) is a positive weight
vector, and is a reference point.

Several studies on parallel speedup of MOEA/D have
already been reported. The simplest implementation method is
the master-slave system. For single-objective optimization,
different slave processing units(PU)s are assigned to each

partitioned subgroup to evaluate individuals. The results of each
generation are aggregated in the master PU to select parent
individuals to generate next-generation individuals. Because the
master-slave system has transfer time overhead incurred when
sending data between the master PU and slave PUs, as the
degree of parallelism increases the rate of speed improvement
declines. This method is thus basically applied to small-scale or
medium-scale parallel speedup.

Nebro et al. [2] proposed a parallel MOEA/D algorithm
(pMOEA/D) that maintains diversity in solutions. pMOEA/D
assigns a different slave PU to each partitioned subgroup
constructed from several weight vectors. MOEA/D is executed
independently on each subgroup, and individuals are gathered
from each subgroup to the master PU according to a probability.
Parent individuals are then selected from all the solutions in the
master PU. In contrast to the standard master-slave method,
pMOEA/D can reduce the number of data transfers. However,
the overhead becomes greater in a many-core environment such
as GPUs when processing is carried out to aggregate all
individual information to the master PU.

Mambrini et al. [4] proposed a parallel decomposition
method (PaDe). This algorithm assigns a different slave PU to
each subgroup, which has a single-objective problem. MOEA/D
is executed independently on each subgroup by evaluating the
individuals of each group only with a function that aggregates
each subgroup�s weights. At a certain interval the worst T
solutions of each PU (island) is replaced with the T best
solutions from the neighboring islands by migration. This
method can also be applied to implementation on GPUs. Such
an implementation can bring about further speedup by storing
not only all individual information in the microprocessor�s
shared memory but also individual information of each island in
the local memory of streaming multiprocessors (SMs). On the
other hand, because the each subgroup�s individuals are
evaluated by just the function aggregating the weight vectors of
each PU, there is a high possibility that the distribution of Pareto
optimal solutions between subgroups will become sparse.

Derbel et al. [5] proposed MP-MOEA/D, which brings
copies of populations of solutions belonging to neighboring
weight vectors to the each weight vector to mate solutions
belonging to the weight vector. When implemented on multi-
core processors, this algorithm is well-suited for improving the
speed of thread-based parallelization, which uses shared
memory, and high accuracy of solution-searching can be
expected. GPU implementation is also possible. However,
because the groups of individuals are stored in global memory,
the rate of performance improvement does not increase greatly
relative to the increase in the number of CPU cores.

Fig. 2 shows a GPU�s block diagram. Unlike a multi-core
processor, where all CPU cores access the same shared memory,
a GPU has a small local memory within each streaming
multiprocessor, which is capable of high-speed transfer, and a
large global memory, which is slow. As a result, special care
such as considering how to store data must be taken to ensure
high-speed performance.

Many of the studies described above are parallelization
speedup methods suitable for multi-core processors, which use
shared memory. Only one method, PaDe, is suitable for GPUs,

which improve performance by storing individual information
in SMs� local memory. However, this method cannot maintain
sufficient solution accuracy. In this paper, we propose a method
for large-scale parallel MOEA/D that is suitable for many-core
architecture like GPUs.

Fig. 2. Conceptual illustration of the objective space for two objectives
optimization problems.

III. PROPOSED METHOD

A. Difficulties of Parallel MOEA/D on GPU
MOEA/D decomposes the original MOP into a number of

single-objective subproblems. Let us denote (1, �, n) be a set
of n uniformly distributed weight vectors defining n
subproblems. MOEA/D archives a population P = (x1, �, xn),
each individual xi (i = 1, �, n) corresponding to a current best
solution for one subproblem. Here, subproblems
having disjoint T-neighbors Ne(i), i.e. T closest weight vectors
and corresponding current best solution. At each generation, for
every subproblem i, two solutions are selected as parents at
random from this T-neighbors Ne(i) to generate an offspring
solution x� and if gte(x�, i) < gte(xi, i) then set xi = x�.

Fig. 3 shows an example of a standard partitioning of the
objective space when implementing parallel MOEA/D on a
GPU. In this figure, the original multi-objective optimization
problem is organized into ten single-objective subproblems
using weight vector 1 to 10 and assigned to four partitions (P1A
to P1B, P2A to P2B, P3A to P3B, P4A to P4B,). Here, weight vectors
and the individual information assigned to each partition is
stored in local memory in a different streaming multiprocessor
(SM) on the GPU, and MOEA/D is executed in parallel in each
SM. For example, in this figure, weight vectors 4, 5,
individuals x4, x5 in the partition 2 are stored in SM2, and weight
vectors 6, 7, individuals x6, x7 in the partition 3 are stored in
SM3. Since SM consists of several tens of processing cores and
local memory, it is possible to execute MOEA/D in parallel
using hundred times more physical PUs than multi-core
processors. On the other hand, in a weight vectors adjacent to a
partition, such as 5 or 6 in Fig. 3, the individual information of
the neighborhood assigned to the adjacent partition cannot be
used, and the distribution of the Pareto optimal solution in the
vicinity of the partition tends to be sparse. This problem cannot
be solved by general island migration models. This is because
an elite individual evaluated based on weight vectors belonging
to an adjacent partition is not necessarily an elite individual

when evaluated using weight vectors belonging to the partition.
On the other hand, if individual information assigned to SM3
among individuals belonging to T-neighbors of weight vector 5

in partition 2 is moved to SM2 and evaluated, the accuracy of
the solution search can be maintained. However, data transfer
between SMs needs to be performed via global memory, and
since the communication speed is 100 times slower than the
communication speed in the SM, sufficient speedup cannot be
expected.

Fig. 3. Standard distribution of solutions in the case of four partitions.

B. Virtual overlap and exclusive evaluation
In order to solve the above problem, we propose a method of

defining a virtual overlapping zone between partitions and
performing exclusive evaluation on the overlapping zone. The
size of the virtual overlapping zone is determined by considering
the T-neighbor size. Fig. 4 shows the virtual overlapping zone
for partition 3 as an example. In Fig. 4, the physical area of
partition 3 is from P3A to P3B, but P2BB and P3AA are defined as
the virtual overlapping zone between partition 2 and 3. Here, in
addition to all the individual information and weight vector
information of partition 3 from P3A to P3B, the weight vector
information of overlapping zones P3AA and P3BB is stored in the
local memory of SM3. That is, for the individual information,
only the information in the partition is stored, and for the weight
vectors for the individual evaluation, the information in the
adjacent virtual overlapping zone is also stored in the SM.

Let�s xj
i, belong to T closest weight vectors Ne(j) in the

virtual overlapping zone, be a current best solution evaluated
using the weight vector i. In virtual overlapping zone, weight
vector i archives the current best solution xi and xj

i. Here, xi is
archived in the SM that stores i, and xj

i is archived in the
adjacent SM that stores j. Fig. 5 shows an image diagram of
sharing a weight vectors near the boundary between two
adjacent partitions in the virtual overlap region when T-neighbor
size is 2. Weight vectors 1 to 5, individuals x1 to x4 and x4

5 are
stored in SM2 and similarly weight vectors 4 to 9, individuals
x5 to x9 and x5

4 are stored in SM3 to execute MOEA/D in
parallel. Then, at an appropriate interval, migration is performed

x1 x2

x3

x4

x5

x6

x7

x8

x9

x10

Ne(5)

SM1

SM2

SM3

SM4

to copy x4
5 belonging to SM2 to SM3 and x5

4 belonging to SM3
to SM2. In other words, with the partition boundaries as the
boundary, selecting individuals for migration by evaluating
individual populations in this area using weight vectors of
adjacent partitions.

Fig. 4. Depiction of how partitions overlap with each other to create folds.

Fig. 5. Exclusively evaluated solutions inside a fold created between
partitions.

The pseudo code to be executed by each SM is summarized
in Algorithm 1. Each SM executes in parallel some sub-problem
with respect to weight vectors which is obtained by
decomposition of the standard MOEA/D. Basically, in standard
MOEA/D on single-CPU, at each generation, for every sub-
problem i, xi and another solution is selected as parents at
random from this T-neighbors Ne(i) to generate an offspring
solution x�. On the other hand, in a case of distributed MOEA/D
on GPU, in a weight vectors adjacent to a partition, the
individual information of the neighborhood assigned to the
adjacent partition cannot be used. To cope with this problem,
another individual for generating an offspring solution x� are
selected from the combination of T-neighbors Ne(i)* belonging
to the partition and elite individuals xi

j (line 10) Next, if gte(x�,

i) < gte(xi, i) then set xi = x�, and if offspring solution x� satisfies
gte(x�, j) < gte(xi

j, j) then set xi
j = x� (line 22). Here, the random

number generated in the overlapping zone is used as the initial
value of xi

j.

Note that the algorithm proposed here can also be applied
to implement parallel speed-up of MOEA/D on multi-core
processors which use shared memory. All of individuals and
weight vectors in each partition are stored in shared memory,
and evaluations of individuals belonging to each weight vector
in a partition are processed in parallel using multi-threading
technology.

Algorithm 1: Pseudo code to be executed by each SMk,
, K: the number of SM

Input: Ne(t)*: neighboring sub-problems belong to the
partition k;

i for every Ne(t)*: neighbors� weight vectors;
 xj

i, belong to T closest weight vectors Ne(j) in the
virtual overlapping zone, be a current best solution
evaluated using the weight vector i; // Input data by
migration

Output: xi
j; // Output data by migration

 1 INITIALIZE xi for every Ne(t)*, z*;
 2 Until STOPPING CONDITION do
 3 for Ne(t)* do
 4 yi xi;
 5 end
 // migration: Input xj

i from adjacent SM
 6 for Overlapping Zone do
 7 if gte(xj

i, i) < gte(xi, i) then set xi = xj
i;

 8 end
 9 Repeat tinterval times: //
10 l rand(Ne(t)* xj

i);
11 y Crossover_Mutation_Repair (xt, xl);
12 for m {1, �, M} do
13 if < fm(y) then fm(y);
14 end
15 if g(y, t) < g(xt, t) then
16 xt y;
17 end
18 for Ne(t)* do
19 if gte(y, i) < gte(yi, i) then set yi = y;
20 end
21 for Overlapping Zone do
22 if gte(y, j) < gte(xi

j, j) then set xi
j = y;

23 end
 // migration: xi

j adjacent SM
24 end

IV. EVALUATION

A. Experimental method
To verify the accuracy of solution searching when the

proposed method is applied, a feasibility study was carried out
using multi-core processors. A CPU core was assigned to each

p2BB

p4AA

partition, and each core independently held individual
information. A function was provided to report solutions in
partial overlapping zones by communicating between tasks.

Using the constrained knapsack problem described below,
two-objective optimization problems were evaluated. Here,
considering that using these problems for evaluation takes time
and that a general island model has many design variables, we
conduct a comparison evaluation targeting two items �
hypervolume and execution time � for the cases of executing
standard MOEA/D on a single CPU, no-migration parallel
MOEA/D, parallel MOEA/D with standard migration and
parallel execution of MOEA/D using the proposed method.

As constrained multi-objective optimization problems, we
focus on mk-KPs [15]. The mk-KPs are defined in as follows.

The problem has n items and k knapsacks, and each item i
has m profits pij (j = 1,2,...,m) and k weights wil (l = 1,2,...,k). The
task is to find a set of items

maximizing m objectives while not exceeding k knapsack
capacities cl. The knapsack capacity cl is defined as follows.

 is the feasibility ratio for each knapsack (constraint), and
we can control the strictness of the constraints by varying . The
mk-KP problem is different from the multi-objective knapsack
problem (MOKP) [16] in that the numbers of objectives m and
knapsacks k can be independently determined.

Parameters used in the experiment are listed in Table I and
the test execution environment is summarized in Table II.
Experimental results were taken to be the median of 31 trials.

TABLE I. EXPERIMENTAL PARAMETERS FOR KNAPSACK PROBLEM

Population Size 200

Degree of Parallelism 4, 8, 16 20
Number of Generations 5000

Neighborhood Size 5

Number of Folding Weight Vectors 5

Migration Interval 500 generations

Migration Size 5

Number of Objectives 2

Constraints 2

Crossover Rate 1.0

Mutation Rate 0.05

Number of Items 500

Elimination Rate 0.5

TABLE II. TEST EXECUTION ENVIRONMENT

CPU
Intel(R) Core(TM) i9-7920X CPU
(Skylake-X, 12 cores, 24 threads, 2.90 GHz)

Memory 32GB DDR4 SDRAM

OS Microsoft Windows�10 Pro (64-bit)

Compiler Visual C++ 12.0

B. Experimental results and discussion
a) Examination of solution searching accuracy of no-

migration parallel MOEA/D: Fig. 6 shows the Pareto fronts
after MOEA/D was executed for 5,000 generations with the
total number of individuals fixed at 200 for the cases of single-
core execution (no parallelization) and no-migration parallel
MOEA/D executed on four CPU cores (4 cores x 50
individuals), eight cores (8 cores x 25 individuals), 16 cores (16
cores x 12 individuals or 13 individuals), and 20 cores (20 cores
x 10 individuals).

From Fig. 6, we see that by parallelizing MOEA/D, diversity
at both edges of the Pareto front increases. On the other hand,
even though the degree of parallelism increased, convergence to
the Pareto front (in the same generation) is reduced, and the
solution distribution near partition boundaries became sparse.
The reason may be that some of the individuals in the vicinity of
the weight vector T near the partition boundary are assigned to
the adjacent partition and cannot be used to select parents.

Fig. 6. Relationship between the degree of parallelism of no-migration parallel
MOEA/D and solution searching accuracy.

b) Differences in the impact of different migration
method: Next, to investigate the effects of migration due to
parallelization in which 200 individuals were divided among 16
cores, the following cases of solution searching were carried out
and their performance compared: obtaining Pareto solutions by
each core without migration (16-core No-Migration); classical
island model method, which like the proposed method sends the
best solutions in each group to the neighboring group at the
same migration interval (16-core Classical Migration); the
proposed method (16-core Partially Overlapping); and, as
reference, the conventional method using a single core (Single
Core). The parameters of the proposed method were Number of

Generations, Number of Folding Weight Vectors, Migration
Interval, and Migration Size as given in Table I.

Fig. 7 shows the Pareto fronts after MOEA/D was executed
for 5,000 generations. We see that when compared to execution
by a single core, parallelization reduces convergence to the
Pareto front. On the other hand, with parallelization the solution
distribution widens at both edges of the Pareto front (increased
diversity). Also, when the standard island migration model was
applied, while it is believed that there would be compatibility
with the optimization problem, compared with no-migration
both convergence to the Pareto front and the diversity of the
solution distribution are reduced. The reason may be that even
with the migration to adjacent partitions of elite individuals
evaluated on the basis of weight vectors in the relevant
partitions, this approach may not work effectively when
individuals are evaluated with weight vectors in the adjacent
partitions. On the other hand, when migration was carried out
using the proposed virtual overlap approach and exclusive
evaluation, convergence to the Pareto front and diversity of the
solution distribution both improved compared with no-
migration. In addition, the issue of the solution distribution
being dispersed near partition boundaries due to parallelization
is alleviated.

Next, the HV values and execution times under the same
testing conditions were compared, as shown in Fig. 8. Here,
when individuals are simply divided and parallel executions are
carried out, the execution time improves 6.8-fold. However,
solution searching accuracy falls slightly. As with the
conventional island model, simply passing the best solutions
within a group to neighboring groups at a constant time interval
reduces diversity at both edges of the Pareto front and the HV
value. In contrast, with the proposed overlap method the number
of individuals searched by each core for solutions increases
slightly. In addition, the time to process the migration increases.
As a result, while execution time increased slightly,
improvements in both execution time and solution searching
accuracy could be achieved due to the effect of the proposed
migration method.

Fig. 7. Migration methods and shapes of Pareto fronts.

Fig. 8. Comparison of solution searching accuracy and execution time for
5,000 generations due to differences in migration.

c) Relationship between degree of parallelism and
solution searching accuracy for same generation: From the
above experiments, we see that the proposed method improves
solution searching accuracy and diversity of solution
distribution more than no-migration parallelization and the
standard island migration model do. In addition, the problem of
the solution distribution�s becoming sparse near the partition
boundaries due to parallelization tends to improve. We thus
examined the relationship between solution searching accuracy
(HV value) and execution time for the same number of
generations by the proposed overlapping method when the total
number of individuals is kept constant and the degree of
parallelism (number of partitions) is changed. The number of
generations was set at 5,000 and the other parameters of the
overlap method were Number of Generations, Number of
Folding Weight Vectors, Migration Interval, and Migration
Size, as given in Table I.

Fig. 9 shows the relationship between solution searching
accuracy (HV value) obtained after 5,000 generations and the
required execution time while changing the degree of
parallelism. Compared with a single CPU, execution time on 16
cores is improved a maximum of 4.3-fold. On the other hand,
overall solution searching accuracy falls gradually as the degree
of parallelism increases.

Fig. 10 shows a comparison of the shapes of the Pareto fronts
obtained after 5,000 generations by four cores, 16 cores and a
single CPU. It shows that compared with four cores, the solution
distribution obtained by 16 cores became sparse near the
partition boundaries.

Fig. 11 shows a comparison of HV value for 16 cores when
under the same conditions while trying a combination of setting
the migration interval to 100, 500 and 1000, and Fig. 12 shows
a comparison of the shapes of the Pareto fronts for 16 cores,
when increasing the total number of individuals to 400. The
results show that reducing the migration intervals do not
necessarily alleviates the problem of the solution distribution�s
becoming sparse to a certain extent, but show that there is an
appropriate migration interval. However, increasing the total
number of individuals and the number of individuals per core
greatly ameliorates this problem. This is because the number of
individuals was fixed at 200 and divided up among the cores, the
number of individuals per core decreased too much. The
solution distribution thus became sparse as the degree of

parallelism increases. Therefore, it is considered that this
problem can be improved by increasing the number of
individuals per core.

Fig. 9. Results of evaluation after 5,000 generations while changing degree of
parallelism.

Fig. 10. Comparison between the non-dominated solutions with 4 cores, 16-
core Virtual Overlap MOEA/D Method and single-core MOEA/D.

Fig. 11. Comparison of solution searching accuracy and execution time due to
differences in migration interval with 16 cores.

 (a) Pareto front for 200 populations

 (b) Pareto front for 400 populations

Fig. 12. Comparison of the shapes of the Pareto fronts for 16 cores, due to the
difference in population size.

d) Relationship between degree of parallelism and
solution searching accuracy for same execution time: When
considering practical applications, comparison on the basis of
execution time is often more important than the number of
generations. We thus investigated solution searching accuracy
(HV value) by using the proposed method when the degree of
parallelism of the CPU cores is changed (change in number of
group partitions) while maintaining the total number of
individuals at 200 and keeping the execution time fixed. For the
evaluation time, 1 second, the time to evaluate 1,600
generations by 16 cores, was used. The parameters of the
overlap method were Number of Folding Weight Vectors,
Migration Interval, and Migration Size as given in Table I.

Fig. 13 shows the relationship between degree of parallelism
and HV value when execution time is fixed. Evaluation time of
one generation was reduced by increasing the degree of
parallelism. As a result, when time is fixed, greater HV values
are obtained as the number of executed generations increase in
line with the increase in the number of cores.

Fig. 14 shows a plot of non-dominated solutions when eight
cores and 16 cores are used. By increasing the number of cores,
diversity at both edges of the solution distribution increases.
This shows that raising the number of cores is effective at
improving the HV value.

The results above show that the proposed method has both
the effect of ameliorating the problem of the solution
distribution near the partitioned boundaries becoming sparse and
improving diversity near both edges of the Pareto front when
MOEA/D is parallelized in a many-core environment like
GPUs. In addition, the proposed method is effective in reducing
execution time. However, our testing here is a feasibility study
evaluating the use of multi-core processors. Going forward, it is
necessary to evaluate using a many-core environment like
GPUs. Also necessary are an evaluation using multiple types of
test problems and an evaluation that increases the number of
objectives.

Fig. 13. HV values when execution time is fixed and the degree of parallelism
is changed.

Fig. 14. Comparison between the non-dominated solutions with 8, 16 cores
Virtual Overlapping Method of MOEA/D and single core MOEA/D.

V. CONCLUSION
This paper proposed a method for many-core-based large-

scale parallel and distributed computation of MOEA/D. More
specifically, we have proposed the method of defining virtual
overlapping zones between partitions and selecting individuals
for mating and migration by evaluating individual populations
in these areas using weight vectors of adjacent partitions. By
using a two-objective constrained knapsack problem for

evaluation, we compared the proposed method with standard
single core execution, no-migration parallel MOEA/D, parallel
MOEA/D with standard migration, and showed that the
proposed method is effective in improving diversity in solution
searching around partition boundaries and extreme non-
dominated solutions.

ACKNOWLEDGMENT
The authors would like to thank Prof. Toshio Hirotsu from

Hosei University for their variable discussion about
experimental results. This work was supported by JSPS
KAKENHI Grant Numbers JP19K12162.

REFERENCES

[1] Juan J. Durillo, Antonio J. Nebro, F. Luna and E. Alba, �A study of
master-slave approaches to parallelize NSGA-II,� in Proceedings of the
2008 IEEE International Symposium on Parallel and Distributed
Processing, 2008, pp. 1-8.

[2] A. J. Nebro and J. J. Durillo, �A Study of the Parallelization of the Multi-
Objective Metaheuristic MOEA/D,� in International Conference on
Learning and Inteligent Optimization (LION4), 2010, pp. 303�317.

[3] Hai-Lin Liu, Fangqing Gu, and Qingfu Zhan, �Decomposition of a
Multiobjective Optimization Problem into a Number of Simple
Multiobjective Subproblems,� IEEE Transactions on Evolutionary
Computation, vol. 18, no. 3, pp. 450 � 455, June 2014.

[4] A. Mambrini and D. Izzo, �PaDe: A parallel algorithm based on the
MOEA/D framework and the island model,� in Parallel Problem Solving
from Nature (PPSN XIII), 2014, pp. 711�720.

[5] B. Derbel, A. Liefooghe, G. Marquet and E. Talbi, "A fine-grained
message passing MOEA/D," in Proceedings. of 2015 IEEE Congress on
Evolutionary Computation (CEC), 2015, pp. 1837�1844.

[6] F. Luna and E. Alba, �Parallel Multiobjective Evolutionary Algorithms,�
Springer Handbook of Computational Intelligence, 2015, pp. 1017�1031.

[7] Y. Sato, M. Sato, and M. Miyakawa, �Distributed NSGA-II using the
divide-and-conquer method and migration for compensation on many-
core processors,� in 2017 21st Asia Pacific Symposium on Intelligent and
Evolutionary Systems (IES), pp. 83�88, 2017.

[8] Y. Sato, M. Sato, and M. Miyakawa, �Distributed NSGA-II Sharing
Extreme Non-dominated Solutions for Improving Accuracy and
Achieving Speed-up,� in Proceedings. of 2019 IEEE Congress on
Evolutionary Computation (CEC), 2019, pp. 3087-3094.

[9] Q. Zhang, H. Li., "MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition" in IEEE Transactions on Evolutionary
Computation, Volume 11, Issue 6, 2007, pp. 712-731.

[10] Best Practice Guide � GPGPU. http://www.prace-ri.eu/IMG/pdf/Best-
Practice-Guide-GPGPU-1.pdf#search=%27GPGPU+guide%27 (Cited
on Jan. 23, 2020)

[11] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Wiley; 1 edition, March 2, 2009.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, �A fast and elitist
multiobjective genetic algorithm: Nsga-ii,� IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182�197, Apr 2002.

[13] E. Zitzler, M. Laumanns, and L. Thiele, �SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization,� in
Proceedings of the EURO-GEN 2001 Conference, 2001.

[14] H. Ishibuchi, N. Akedo, and Y. Nojima, �Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,� IEEE
Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 264�283,
April 2015.

[15] D. P. Hans Kellerer, Ulrich Pferschy, Knapsack Problems. Springer,
2004.

[16] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Swiss Federal Institute of
Technology, Zurich, 1999.

