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Abstract�This paper proposes a method for many-core-based 
large-scale parallel and distributed computation of MOEA/D, a 
decomposition-based evolutionary multi-objective optimization 
algorithm. Standard parallel MOEA/D on many-core 
environments provides fast execution time, but uniformity and 
diversity of the Pareto front may be lost. To avoid this problem, 
we propose a method of defining a virtual overlapping zone 
between partitions and selecting individuals for mating and 
migration by evaluating individual populations in this area using 
weight vectors of adjacent partitions. Using a two-objective 
constrained knapsack problem for evaluation, we compare the 
proposed method with standard single-core execution, no-
migration parallel MOEA/D, and parallel MOEA/D with standard 
migration, and show that the proposed method is effective in 
improving diversity in solution searching while shortening 
execution time and increasing the accuracy of solution searching.  

Keywords�MOEA/D, parallel and distributed processing, 
many-core environment, multi-objective evolutionary algorithms 

I. INTRODUCTION 
In recent years, many technologies have been developed to 

realize �smart cities�. The smart city concept integrates 
information and communication technology, and various 
physical devices connected to the cloud network to optimize the 
efficiency of city operations and services and connect to citizens. 
Therefore, most of real-world problems in the smart city are 
multimodal interface problems and/or multi-objective 
optimization problems involving several conflicting objectives. 

Cloud systems may offer tens of thousands of virtual 
machines, terabytes of memories and exabytes of storage 
capacity. The current trend toward many-core architecture 
increases the number of cores even more dramatically: we may 
have more than a million cores to offer extremely massive 
parallelization. Next, concomitant with advances in modern 
computational science, the field of evolutionary computing is 
shifting rapidly to the massive computing era where 
optimization problems can be characterized by a large number 
of decision variables, a large number of conflicting objectives, 
and expensive evaluation functions. As a result, a recent trend in 
multi-objective evolutionary algorithms is to increase the 
population size to approximate the Pareto front with high 

accuracy, and research on parallel computation of multi-
objective evolutionary algorithms (MOEAs) has begun [1-8]. 

However, many parallel speedup methods proposed for 
decomposition-based MOEAs like MOEA/D [9] are virtual 
parallelization techniques using multi-thread technology in 
multi-core processors that have a small number of physical CPU 
cores. These techniques store all individual information in 
shared memory and many of these prior studies cannot be 
guaranteed to improve performance when applied to massively 
parallel processing using many-core environments such as 
GPUs [10], supercomputers, and clouds. 

In this paper, we propose a method for parallel speedup of 
MOEA/D. This method presupposes a many-core environment 
such as GPUs and seeks to prevent degradation in the accuracy 
of solution searching. For the benchmark problem similar to 
real-world problems, we use a two-objective knapsack problem 
with constraints. We evaluate and compare hypervolume (HV) 
[11] values and execution times of MOEA/D on a single CPU, 
simple parallel MOEA/D on each partitioned subpopulation, 
parallel MOEA/D on each partitioned subpopulation with the 
standard island migration model applied, and parallel MOEA/D 
on each partitioned subpopulation applying the proposed 
method to show the method�s effectiveness. 

II. BACKGROUND AND RELATED WORKS 

A. Constrained Multi-objective Optimization Problem 
Multi-objective optimization is a method that 

simultaneously optimizes multiple objective functions in a 
trade-off relationship. A constrained multi-objective 
optimization problem (CMOP) is defined by the following 
equations. 

 

where f is an objective function vector which consists of m 
conflicting objective functions and g is a constrained function. 
The task is to find a set of x = (x1, x2, �, xn) 
minimizing/maximizing m objectives under the constraint 
functions. 
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Fig. 1 shows a conceptual illustration of the optimization of 
two objectives. In multi-objective optimization, a currently 
known solution that has a good evaluation value for any 
particular objective function is called a non-inferior solution and 
is regarded as an optimal solution. As shown in Fig. 1, there are 
usually multiple non-inferior solutions. The set of non-inferior 
solutions is called the Pareto optimal solution. The surface 
formed by the Pareto optimal solution is called the Pareto front, 
and the purpose of a search algorithm such as MOEAs is to 
conduct searches so that the Pareto front takes a form that better 
satisfies the criteria of the objective function. 

 

 
Fig. 1. Conceptual illustration of the objective space for two objectives 
optimization problems.  

B. Conventional Parallel and Distributed MOEA/D 
Basically, MOEAs can be categorized into dominance-based 

and decomposition-based algorithms. NSGA-II [12] and SPEA2 
[13] are representative dominance-based algorithms. These 
techniques are based on the concept of Pareto dominance and 
the use of some kind of density estimator. NSGA-II uses 
solution ranking using non-dominated sorting and an estimator 
based on crowding distance [11], while SPEA2 applies the 
concept of strength and an estimator based on the distance to the 
k-nearest neighborhood. On the other hand, decomposition-
based algorithm such as MOEA/D decomposes the original 
MOP into a number of single-objective subproblems 
constructed in a way such that the optimal solution to each of 
these subproblems is a point on the optimal Pareto front. 

A recent trend in MOEAs has been to increase the population 
size to approximate the Pareto front with high accuracy [14]. 
Increasing the population size, however, results in an 
exponential increase in the computational complexity required 
for searching the Pareto optimal solutions. As a result, execution 
time can be a problem when applying such an approach to 
engineering applications. Research on parallel computation of 
MOEAs has thus begun. Below, in this paper, we deal with the 
parallelization of MOEA/D. We also use the Chebyshev (gte) 
function to be minimized: 

 

where x is a feasible solution,  = ( 1, �, m) is a positive weight 
vector, and  is a reference point. 

Several studies on parallel speedup of MOEA/D have 
already been reported. The simplest implementation method is 
the master-slave system. For single-objective optimization, 
different slave processing units(PU)s are assigned to each 

partitioned subgroup to evaluate individuals. The results of each 
generation are aggregated in the master PU to select parent 
individuals to generate next-generation individuals. Because the 
master-slave system has transfer time overhead incurred when 
sending data between the master PU and slave PUs, as the 
degree of parallelism increases the rate of speed improvement 
declines. This method is thus basically applied to small-scale or 
medium-scale parallel speedup. 

Nebro et al. [2] proposed a parallel MOEA/D algorithm 
(pMOEA/D) that maintains diversity in solutions. pMOEA/D 
assigns a different slave PU to each partitioned subgroup 
constructed from several weight vectors. MOEA/D is executed 
independently on each subgroup, and individuals are gathered 
from each subgroup to the master PU according to a probability. 
Parent individuals are then selected from all the solutions in the 
master PU. In contrast to the standard master-slave method, 
pMOEA/D can reduce the number of data transfers. However, 
the overhead becomes greater in a many-core environment such 
as GPUs when processing is carried out to aggregate all 
individual information to the master PU. 

Mambrini et al. [4] proposed a parallel decomposition 
method (PaDe). This algorithm assigns a different slave PU to 
each subgroup, which has a single-objective problem. MOEA/D 
is executed independently on each subgroup by evaluating the 
individuals of each group only with a function that aggregates 
each subgroup�s weights. At a certain interval the worst T 
solutions of each PU (island) is replaced with the T best 
solutions from the neighboring islands by migration. This 
method can also be applied to implementation on GPUs. Such 
an implementation can bring about further speedup by storing 
not only all individual information in the microprocessor�s 
shared memory but also individual information of each island in 
the local memory of streaming multiprocessors (SMs). On the 
other hand, because the each subgroup�s individuals are 
evaluated by just the function aggregating the weight vectors of 
each PU, there is a high possibility that the distribution of Pareto 
optimal solutions between subgroups will become sparse. 

Derbel et al. [5] proposed MP-MOEA/D, which brings 
copies of populations of solutions belonging to neighboring 
weight vectors to the each weight vector to mate solutions 
belonging to the weight vector. When implemented on multi-
core processors, this algorithm is well-suited for improving the 
speed of thread-based parallelization, which uses shared 
memory, and high accuracy of solution-searching can be 
expected. GPU implementation is also possible. However, 
because the groups of individuals are stored in global memory, 
the rate of performance improvement does not increase greatly 
relative to the increase in the number of CPU cores. 

Fig. 2 shows a GPU�s block diagram. Unlike a multi-core 
processor, where all CPU cores access the same shared memory, 
a GPU has a small local memory within each streaming 
multiprocessor, which is capable of high-speed transfer, and a 
large global memory, which is slow. As a result, special care 
such as considering how to store data must be taken to ensure 
high-speed performance. 

Many of the studies described above are parallelization 
speedup methods suitable for multi-core processors, which use 
shared memory. Only one method, PaDe, is suitable for GPUs, 



which improve performance by storing individual information 
in SMs� local memory. However, this method cannot maintain 
sufficient solution accuracy. In this paper, we propose a method 
for large-scale parallel MOEA/D that is suitable for many-core 
architecture like GPUs. 

 
Fig. 2. Conceptual illustration of the objective space for two objectives 
optimization problems.  

III. PROPOSED METHOD

A. Difficulties of Parallel MOEA/D on GPU 
MOEA/D decomposes the original MOP into a number of 

single-objective subproblems. Let us denote ( 1, �, n) be a set 
of n uniformly distributed weight vectors defining n 
subproblems. MOEA/D archives a population P = (x1, �, xn), 
each individual xi (i = 1, �, n) corresponding to a current best 
solution for one subproblem. Here, subproblems  
having disjoint T-neighbors Ne(i), i.e. T closest weight vectors 
and corresponding current best solution. At each generation, for 
every subproblem i, two solutions are selected as parents at 
random from this T-neighbors Ne(i) to generate an offspring 
solution x� and if gte(x�, i) < gte(xi, i) then set xi = x�. 

Fig. 3 shows an example of a standard partitioning of the 
objective space when implementing parallel MOEA/D on a 
GPU. In this figure, the original multi-objective optimization 
problem is organized into ten single-objective subproblems 
using weight vector 1 to 10 and assigned to four partitions (P1A
to P1B, P2A to P2B, P3A to P3B, P4A to P4B,). Here, weight vectors 
and the individual information assigned to each partition is 
stored in local memory in a different streaming multiprocessor 
(SM) on the GPU, and MOEA/D is executed in parallel in each 
SM. For example, in this figure, weight vectors 4, 5, 
individuals x4, x5 in the partition 2 are stored in SM2, and weight 
vectors 6, 7, individuals x6, x7 in the partition 3 are stored in 
SM3. Since SM consists of several tens of processing cores and 
local memory, it is possible to execute MOEA/D in parallel 
using hundred times more physical PUs than multi-core 
processors. On the other hand, in a weight vectors adjacent to a 
partition, such as 5 or 6 in Fig. 3, the individual information of 
the neighborhood assigned to the adjacent partition cannot be 
used, and the distribution of the Pareto optimal solution in the 
vicinity of the partition tends to be sparse. This problem cannot 
be solved by general island migration models. This is because 
an elite individual evaluated based on weight vectors belonging 
to an adjacent partition is not necessarily an elite individual 

when evaluated using weight vectors belonging to the partition. 
On the other hand, if individual information assigned to SM3 
among individuals belonging to T-neighbors of weight vector 5

in partition 2 is moved to SM2 and evaluated, the accuracy of 
the solution search can be maintained. However, data transfer 
between SMs needs to be performed via global memory, and 
since the communication speed is 100 times slower than the 
communication speed in the SM, sufficient speedup cannot be 
expected. 

 
Fig. 3. Standard distribution of solutions in the case of four partitions.  

B. Virtual overlap and exclusive evaluation 
In order to solve the above problem, we propose a method of 

defining a virtual overlapping zone between partitions and 
performing exclusive evaluation on the overlapping zone. The 
size of the virtual overlapping zone is determined by considering 
the T-neighbor size. Fig. 4 shows the virtual overlapping zone 
for partition 3 as an example. In Fig. 4, the physical area of 
partition 3 is from P3A to P3B, but P2BB and P3AA are defined as 
the virtual overlapping zone between partition 2 and 3. Here, in 
addition to all the individual information and weight vector 
information of partition 3 from P3A to P3B, the weight vector 
information of overlapping zones P3AA and P3BB is stored in the 
local memory of SM3. That is, for the individual information, 
only the information in the partition is stored, and for the weight 
vectors for the individual evaluation, the information in the 
adjacent virtual overlapping zone is also stored in the SM. 

Let�s xj
i, belong to T closest weight vectors Ne(j) in the 

virtual overlapping zone, be a current best solution evaluated 
using the weight vector i. In virtual overlapping zone, weight 
vector i archives the current best solution xi and xj

i. Here, xi is 
archived in the SM that stores i, and xj

i is archived in the 
adjacent SM that stores j. Fig. 5 shows an image diagram of 
sharing a weight vectors near the boundary between two 
adjacent partitions in the virtual overlap region when T-neighbor 
size is 2. Weight vectors 1 to 5, individuals x1 to x4 and x4

5 are 
stored in SM2 and similarly weight vectors 4 to 9, individuals 
x5 to x9 and x5

4 are stored in SM3 to execute MOEA/D in 
parallel. Then, at an appropriate interval, migration is performed 

x1 x2

x3

x4

x5

x6

x7

x8

x9

x10

Ne(5)

SM1

SM2

SM3

SM4



to copy x4
5 belonging to SM2 to SM3 and x5

4 belonging to SM3 
to SM2. In other words, with the partition boundaries as the 
boundary, selecting individuals for migration by evaluating 
individual populations in this area using weight vectors of 
adjacent partitions.  

 
Fig. 4. Depiction of how partitions overlap with each other to create folds.  

Fig. 5. Exclusively evaluated solutions inside a fold created between 
partitions.  

The pseudo code to be executed by each SM is summarized 
in Algorithm 1. Each SM executes in parallel some sub-problem 
with respect to weight vectors which is obtained by 
decomposition of the standard MOEA/D.  Basically, in standard 
MOEA/D on single-CPU, at each generation, for every sub-
problem i, xi and another solution is selected as parents at 
random from this T-neighbors Ne(i) to generate an offspring 
solution x�. On the other hand, in a case of distributed MOEA/D 
on GPU, in a weight vectors adjacent to a partition, the 
individual information of the neighborhood assigned to the 
adjacent partition cannot be used. To cope with this problem, 
another individual for generating an offspring solution x� are 
selected from the combination of T-neighbors Ne(i)* belonging 
to the partition and elite individuals xi

j (line 10) Next, if gte(x�, 

i) < gte(xi, i) then set xi = x�, and if offspring solution x� satisfies 
gte(x�, j) < gte(xi

j, j) then set xi
j = x� (line 22). Here, the random 

number generated in the overlapping zone is used as the initial 
value of xi

j. 

Note that the algorithm proposed here can also be applied 
to implement parallel speed-up of MOEA/D on multi-core 
processors which use shared memory. All of individuals and 
weight vectors in each partition are stored in shared memory, 
and evaluations of individuals belonging to each weight vector 
in a partition are processed in parallel using multi-threading 
technology. 

 

Algorithm 1: Pseudo code to be executed by each SMk, 
, K: the number of SM 

Input: Ne(t)*: neighboring sub-problems belong to the 
partition k; 

i for every Ne(t)*: neighbors� weight vectors; 
           xj

i, belong to T closest weight vectors Ne(j) in the 
virtual overlapping zone, be a current best solution 
evaluated using the weight vector i; // Input data by 
migration 

Output:  xi
j; // Output data by migration 

  1    INITIALIZE xi for every Ne(t)*, z*; 
  2    Until STOPPING CONDITION do 
  3          for Ne(t)* do  
  4                yi  xi; 
  5          end 
              // migration: Input xj

i from adjacent SM 
  6          for Overlapping Zone do 
  7                if  gte(xj

i, i) < gte(xi, i) then set xi = xj
i; 

  8          end 
  9          Repeat tinterval times: //  
10                l  rand(Ne(t)* xj

i); 
11                y  Crossover_Mutation_Repair (xt, xl); 
12                for m {1, �, M} do 
13                      if  < fm(y) then   fm(y); 
14                end 
15                if g(y, t) < g(xt, t) then 
16                      xt y; 
17                end 
18                for Ne(t)* do 
19                      if  gte(y, i) < gte(yi, i) then set yi = y; 
20                end 
21                for Overlapping Zone do 
22                      if  gte(y, j) < gte(xi

j, j) then set xi
j = y; 

23                end 
                    // migration: xi

j  adjacent SM 
24    end 

IV. EVALUATION 

A. Experimental method 
To verify the accuracy of solution searching when the 

proposed method is applied, a feasibility study was carried out 
using multi-core processors. A CPU core was assigned to each 

p2BB

p4AA



partition, and each core independently held individual 
information. A function was provided to report solutions in 
partial overlapping zones by communicating between tasks. 

Using the constrained knapsack problem described below, 
two-objective optimization problems were evaluated. Here, 
considering that using these problems for evaluation takes time 
and that a general island model has many design variables, we 
conduct a comparison evaluation targeting two items � 
hypervolume and execution time � for the cases of executing 
standard MOEA/D on a single CPU, no-migration parallel 
MOEA/D, parallel MOEA/D with standard migration and 
parallel execution of MOEA/D using the proposed method. 

As constrained multi-objective optimization problems, we 
focus on mk-KPs [15]. The mk-KPs are defined in as follows. 

 

The problem has n items and k knapsacks, and each item i 
has m profits pij (j = 1,2,...,m) and k weights wil (l = 1,2,...,k). The 
task is to find a set of items 

maximizing m objectives while not exceeding k knapsack 
capacities cl. The knapsack capacity cl is defined as follows. 

 

 is the feasibility ratio for each knapsack (constraint), and 
we can control the strictness of the constraints by varying . The 
mk-KP problem is different from the multi-objective knapsack 
problem (MOKP) [16] in that the numbers of objectives m and 
knapsacks k can be independently determined. 

Parameters used in the experiment are listed in Table I and 
the test execution environment is summarized in Table II. 
Experimental results were taken to be the median of 31 trials. 

TABLE I.  EXPERIMENTAL PARAMETERS FOR KNAPSACK PROBLEM

Population Size 200 

Degree of Parallelism 4, 8, 16 20 
Number of Generations 5000

Neighborhood Size 5 

Number of Folding Weight Vectors 5 

Migration Interval 500 generations 

Migration Size 5 

Number of Objectives 2 

Constraints 2 

Crossover Rate 1.0 

Mutation Rate 0.05 

Number of Items 500 

Elimination Rate 0.5

TABLE II.  TEST EXECUTION ENVIRONMENT 

CPU 
Intel(R) Core(TM) i9-7920X CPU  
(Skylake-X, 12 cores, 24 threads, 2.90 GHz)

Memory 32GB DDR4 SDRAM 

OS Microsoft Windows�10 Pro (64-bit)

Compiler Visual C++ 12.0

B. Experimental results and discussion 
a) Examination of solution searching accuracy of no-

migration parallel MOEA/D: Fig. 6 shows the Pareto fronts 
after MOEA/D was executed for 5,000 generations with the 
total number of individuals fixed at 200 for the cases of single-
core execution (no parallelization) and no-migration parallel 
MOEA/D executed on four CPU cores (4 cores x 50 
individuals), eight cores (8 cores x 25 individuals), 16 cores (16 
cores x 12 individuals or 13 individuals), and 20 cores (20 cores 
x 10 individuals). 

From Fig. 6, we see that by parallelizing MOEA/D, diversity 
at both edges of the Pareto front increases. On the other hand, 
even though the degree of parallelism increased, convergence to 
the Pareto front (in the same generation) is reduced, and the 
solution distribution near partition boundaries became sparse. 
The reason may be that some of the individuals in the vicinity of 
the weight vector T near the partition boundary are assigned to 
the adjacent partition and cannot be used to select parents. 

 
Fig. 6. Relationship between the degree of parallelism of no-migration parallel 
MOEA/D and solution searching accuracy.  

b) Differences in the impact of different migration 
method: Next, to investigate the effects of migration due to 
parallelization in which 200 individuals were divided among 16 
cores, the following cases of solution searching were carried out 
and their performance compared: obtaining Pareto solutions by 
each core without migration (16-core No-Migration); classical 
island model method, which like the proposed method sends the 
best solutions in each group to the neighboring group at the 
same migration interval (16-core Classical Migration); the 
proposed method (16-core Partially Overlapping); and, as 
reference, the conventional method using a single core (Single 
Core). The parameters of the proposed method were Number of 



Generations, Number of Folding Weight Vectors, Migration 
Interval, and Migration Size as given in Table I. 

Fig. 7 shows the Pareto fronts after MOEA/D was executed 
for 5,000 generations. We see that when compared to execution 
by a single core, parallelization reduces convergence to the 
Pareto front. On the other hand, with parallelization the solution 
distribution widens at both edges of the Pareto front (increased 
diversity). Also, when the standard island migration model was 
applied, while it is believed that there would be compatibility 
with the optimization problem, compared with no-migration 
both convergence to the Pareto front and the diversity of the 
solution distribution are reduced. The reason may be that even 
with the migration to adjacent partitions of elite individuals 
evaluated on the basis of weight vectors in the relevant 
partitions, this approach may not work effectively when 
individuals are evaluated with weight vectors in the adjacent 
partitions. On the other hand, when migration was carried out 
using the proposed virtual overlap approach and exclusive 
evaluation, convergence to the Pareto front and diversity of the 
solution distribution both improved compared with no-
migration. In addition, the issue of the solution distribution 
being dispersed near partition boundaries due to parallelization 
is alleviated. 

Next, the HV values and execution times under the same 
testing conditions were compared, as shown in Fig. 8. Here, 
when individuals are simply divided and parallel executions are 
carried out, the execution time improves 6.8-fold. However, 
solution searching accuracy falls slightly. As with the 
conventional island model, simply passing the best solutions 
within a group to neighboring groups at a constant time interval 
reduces diversity at both edges of the Pareto front and the HV 
value. In contrast, with the proposed overlap method the number 
of individuals searched by each core for solutions increases 
slightly. In addition, the time to process the migration increases. 
As a result, while execution time increased slightly, 
improvements in both execution time and solution searching 
accuracy could be achieved due to the effect of the proposed 
migration method. 

 
Fig. 7. Migration methods and shapes of Pareto fronts.  

 
Fig. 8. Comparison of solution searching accuracy and execution time for 
5,000 generations due to differences in migration.  

c) Relationship between degree of parallelism and 
solution searching accuracy for same generation: From the 
above experiments, we see that the proposed method improves 
solution searching accuracy and diversity of solution 
distribution more than no-migration parallelization and the 
standard island migration model do. In addition, the problem of 
the solution distribution�s becoming sparse near the partition 
boundaries due to parallelization tends to improve. We thus 
examined the relationship between solution searching accuracy 
(HV value) and execution time for the same number of 
generations by the proposed overlapping method when the total 
number of individuals is kept constant and the degree of 
parallelism (number of partitions) is changed. The number of 
generations was set at 5,000 and the other parameters of the 
overlap method were Number of Generations, Number of 
Folding Weight Vectors, Migration Interval, and Migration 
Size, as given in Table I. 

Fig. 9 shows the relationship between solution searching 
accuracy (HV value) obtained after 5,000 generations and the 
required execution time while changing the degree of 
parallelism. Compared with a single CPU, execution time on 16 
cores is improved a maximum of 4.3-fold. On the other hand, 
overall solution searching accuracy falls gradually as the degree 
of parallelism increases. 

Fig. 10 shows a comparison of the shapes of the Pareto fronts 
obtained after 5,000 generations by four cores, 16 cores and a 
single CPU. It shows that compared with four cores, the solution 
distribution obtained by 16 cores became sparse near the 
partition boundaries. 

Fig. 11 shows a comparison of HV value for 16 cores when 
under the same conditions while trying a combination of setting 
the migration interval to 100, 500 and 1000, and Fig. 12 shows 
a comparison of the shapes of the Pareto fronts for 16 cores, 
when increasing the total number of individuals to 400. The 
results show that reducing the migration intervals do not 
necessarily alleviates the problem of the solution distribution�s 
becoming sparse to a certain extent, but show that there is an 
appropriate migration interval. However, increasing the total 
number of individuals and the number of individuals per core 
greatly ameliorates this problem. This is because the number of 
individuals was fixed at 200 and divided up among the cores, the 
number of individuals per core decreased too much. The 
solution distribution thus became sparse as the degree of 



parallelism increases. Therefore, it is considered that this 
problem can be improved by increasing the number of 
individuals per core. 

 

 
Fig. 9. Results of evaluation after 5,000 generations while changing degree of 
parallelism.  

 
Fig. 10. Comparison between the non-dominated solutions with 4 cores, 16-
core Virtual Overlap MOEA/D Method and single-core MOEA/D.  

 

 

Fig. 11. Comparison of solution searching accuracy and execution time due to 
differences in migration interval with 16 cores.  

 
 (a) Pareto front for 200 populations

 
 (b) Pareto front for 400 populations 

Fig. 12. Comparison of the shapes of the Pareto fronts for 16 cores, due to the 
difference in population size. 

d) Relationship between degree of parallelism and 
solution searching accuracy for same execution time: When 
considering practical applications, comparison on the basis of 
execution time is often more important than the number of 
generations. We thus investigated solution searching accuracy 
(HV value) by using the proposed method when the degree of 
parallelism of the CPU cores is changed (change in number of 
group partitions) while maintaining the total number of 
individuals at 200 and keeping the execution time fixed. For the 
evaluation time, 1 second, the time to evaluate 1,600 
generations by 16 cores, was used. The parameters of the 
overlap method were Number of Folding Weight Vectors, 
Migration Interval, and Migration Size as given in Table I. 

Fig. 13 shows the relationship between degree of parallelism 
and HV value when execution time is fixed. Evaluation time of 
one generation was reduced by increasing the degree of 
parallelism. As a result, when time is fixed, greater HV values 
are obtained as the number of executed generations increase in 
line with the increase in the number of cores. 



Fig. 14 shows a plot of non-dominated solutions when eight 
cores and 16 cores are used. By increasing the number of cores, 
diversity at both edges of the solution distribution increases. 
This shows that raising the number of cores is effective at 
improving the HV value. 

The results above show that the proposed method has both 
the effect of ameliorating the problem of the solution 
distribution near the partitioned boundaries becoming sparse and 
improving diversity near both edges of the Pareto front when 
MOEA/D is parallelized in a many-core environment like 
GPUs. In addition, the proposed method is effective in reducing 
execution time. However, our testing here is a feasibility study 
evaluating the use of multi-core processors. Going forward, it is 
necessary to evaluate using a many-core environment like 
GPUs. Also necessary are an evaluation using multiple types of 
test problems and an evaluation that increases the number of 
objectives. 

 
Fig. 13. HV values when execution time is fixed and the degree of parallelism 
is changed.  

Fig. 14. Comparison between the non-dominated solutions with 8, 16 cores 
Virtual Overlapping Method of MOEA/D and single core MOEA/D.  

V. CONCLUSION 
This paper proposed a method for many-core-based large-

scale parallel and distributed computation of MOEA/D. More 
specifically, we have proposed the method of defining virtual 
overlapping zones between partitions and selecting individuals 
for mating and migration by evaluating individual populations 
in these areas using weight vectors of adjacent partitions. By 
using a two-objective constrained knapsack problem for 

evaluation, we compared the proposed method with standard 
single core execution, no-migration parallel MOEA/D, parallel 
MOEA/D with standard migration, and showed that the 
proposed method is effective in improving diversity in solution 
searching around partition boundaries and extreme non-
dominated solutions. 
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