Community-Grouping Based Particle Swarm
Optimisation Algorithm for Feature Selection

Jianfeng Qiuf, Jiangchuan Wan', Lei Zhang!, Fan Cheng!
and Yongkang Luo!
tKey Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, China
School of Computer Science and Technology, Anhui University, Hefei 230039, China
Email: giujianf@ahu.edu.cn, 695261708 @qq.com, zl@ahu.edu.cn, chengfan @mail.ustc.edu.cn(Corresponding author)
2457248761 @qqg.com

Abstract—As a frequently-used dimensionality reduction tech-
nique in machine learning, feature selection has attracted inter-
ests in the last decade. Since feature selection is essentially a
combinatorial optimization problem, how to search the valuable
feature subset is a challenging optimization task. Particle swarm
optimization (PSO) algorithm and its variations have shown their
competitiveness in solving feature selection problem. However,
they have been proven to be easily trapped into the local optimal
in high-dimensional space due to their intrinsic characteristic of
quick convergence. To this end, an effective binary particle swarm
optimization algorithm, named CBPSOFS, is proposed for feature
selection, where a community-grouping based adaptive updating
strategy is designed to avoid trapping into the local optimum and
enhance the performance of PSO algorithm in feature selection.
To be specific, the correlationship among features is used to
construct the feature network, where multiple feature groups are
obtained by dividing the achieved feature network. Considering
that a community usually contains multiple similar features, the
proposed adaptive updating strategy utilizes these feature groups
to make the similar features not be included in the same particle
so as to maintain the diversity of the population in the evolution.
In addition, an information gain based initialization strategy and
a history information based resetting strategy are also developed
to improve the quality of obtained feature subset. Experimental
results on several real world datasets have demonstrated the
effectiveness of CBPSOFS in feature selection when compared
with the several state-of-the-art baselines.

Index Terms—feature selection; binary particle swarm optimi-
sation; community grouping; population diversity;

I. INTRODUCTION

With the rapid development of data acquisition, a large num-
ber of high-dimensional datasets with redundant, irrelevant and
even noisy features have been produced in different fields [1]—
[3]. These features not only increase the training time but also
decrease the classification accuracy of the trained classifier
[4]. Feature selection (FS) is to select the optimal feature
subset to achieve similar or better performance than using
all features, which is regarded as a combination optimization
problem [5]. Since the search space increases exponentially
with the number of the available features, how to obtain an
optimal feature subset is a challenging task.

During the past decade, a plenty of FS algorithms have
been developed, which can be simply classified into two
categories: filter and wrapper methods [5]. Filter methods
usually detect the feature subset according to the intrinsic
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characteristics of the data. Compared with the filter methods,
wrapper based methods can identify better feature subsets
than filter based methods since a classification algorithm is
employed to evaluate each candidate feature subset. To this
end, in this paper, we focus on the wrapper based methods.

In wrapper methods, identifying the optimal feature subset
by exhaustively searching has been considered to be effective
in small datasets. Due to the huge search space, the search
efficiency decreases dramatically on large datasets, which is
the main limitation of this category of methods. To this end,
greedy based heuristic algorithms, e.g., sequential forward se-
lection (SFS) [6] and sequential backward selection (SBS) [7]
etc, have been proposed to overcome the limitation mentioned
above. However, these algorithms may easily converge to local
optimal since no enough feature subsets are evaluated which
affects the quality of the chosen feature subsets [5].

Due to the good global search ability, a series of evo-
lutionary computation (EC) based FS algorithms have been
developed in recent years, and they can yield more effective
solutions [8]-[11]. Among these algorithms, PSO based FS
algorithms have attracted much attention due to its simpleness,
effectiveness and less parameters. However, these algorithms
could easily be trapped into the local optimal area in searching
the optimal feature subset when confronted with large search
space. Therefore, many variations of PSO algorithm have been
suggested to tackle this problem. For example, Chuang et
al. [12] proposed a variation of PSO algorithm for feature
selection, where a resetting strategy was developed when gbest
has kept the same value for a number of iterations. Xue et al.
[9] proposed three different strategies for updating personal
history best and global best particles, which can effectively
avoid to be trapped into the local optimal. Moradi et al. [13]
designed a local search operator to select the salient feature
subset to avoid the stagnation happening, which can be used
to guide the evolve process effectively. Recently, Qiu [10]
developed an adaptive chaotic jump strategy integrated into
an improved particle swarm optimization (BBPSO [14]) for
feature selection to prevent the stagnated particles from being
trapped into local optimal. In addition, several different updat-
ing mechanisms developed for escaping the local optima were
integrated into PSO algorithm for feature selection [15], [16].
Empirical results of these PSO variants have justified their



competitiveness in overcoming the local optimal in solving
FS problem.

In this paper, we continue this research line by proposing
a novel community-grouping based adaptive updating strategy
under the framework of binary particle swarm optimization
algorithm for feature selection. Different from these algorithms
mentioned above, the proposed CBPSOFS utilizes the cor-
relationship among features to construct the feature network
and the feature communities obtained by dividing the feature
network are further used to guide the population evolution.
In summary, the main contributions can be summarized as
follows.

« A community-grouping based adaptive updating strategy
is suggested for PSO, which can avoid to be trapped
into the local optimal and improve the quality of the
identified feature subset. The suggested strategy utilizes
the feature community information to guide the particles
evolve and maintain the diversity of the population in the
evolution, where feature community is obtained by the
feature network constructed by the correlationship among
the features.

o Based on the suggested adaptive updating strategy, an
effective binary particle swarm optimization algorithm,
termed CBPSOFS, is proposed for feature selection. In
addition, an information gain based initialization strategy
and a history information based particle resetting strat-
egy are also suggested, with which the performance of
CBPSOFS can be further improved.

o We compare the proposed CBPSOFS with several state-
of-the-arts on eight datasets with different characteristics.
The experimental results demonstrate the effectiveness
of the proposed algorithm in terms of the number of
the selected features and the accuracy using the selected
feature subset.

The remainder of this paper is organized as follows. We first
give the preliminary of feature selection and the related work
in Section II. Section III presents the details of the proposed
algorithm and the empirical results by comparing CBPSOFS
with the state-of-the-arts are reported in Section IV. Section V
concludes the paper and discusses the future work.

II. THE PRELIMINARIES AND RELATED WORK

In this section, the preliminaries about feature selection
are firstly described, and then the related works on feature
selection with PSO algorithm are introduced.

A. Feature Selection Problem

Usually, feature selection is regarded as a combination
optimization problem, which is formulated as follows. Given
a dataset D with the features F' = {fi, fo, -+, fa}, there
exists an optimal feature subset F, C F, |F,;| < d that
can provide the better performance than using all ones. To
guide the evolution of the population, a fitness function Fitness
considering simultaneously the size of the selected feature
subset and the classification performance on it is defined as
follows, which is also adopted in the works of [15], [17], [18].

Min Fitness = a - ErrorRate + (1 — «) - FeatureRate (1)

where Error Rate = 1— Accuracy(C, F,,), FeatureRate =
|I:i’|, C' is a specific classification algorithm, |F| represents
the number of the features in the selected feature subset F,

« 1s an user-specified parameter.

B. Related Work on PSO based Feature Selection

PSO, as a promising optimization technique, has been
widely used for feature selection [11], [19], [20]. In the
following, we briefly review some representative works in
feature selection suggested to enhance the performance of
PSO algorithm by tackling the premature convergence. A
comprehensive survey for PSO based feature selection can be
found in [5].

Chuang et al. [12] proposed an improved PSO algorithm
with the aim to skip the local optimum by resetting the value of
gbest. The motivation was inspired by the following fact that if
the value of gbest has kept unchanged for several iterations, the
population needed to be reset to enhance the ability of escaping
the prematurity. Experimental results have demonstrated its
effectiveness in overcoming local optimal. In recognizing
the superiority of the resetting strategy, a variety of useful
strategies have been proposed to maintain the diversity of the
population by activating the stagnated particles. M. Vieira et al.
[21] suggested a novel resetting swarm mechanism to avoid
premature convergence. To be specific, when the global best
solution has not changed for several iterations, all bits in the
gbest were resetted as zero. However, in these methods, due
to the lack of effective strategies for overcoming prematurity
convergence, the population easily traps into the local optimal.
To this end, Xue et al. [9] proposed three different pbest
and gbest updating strategies to guide the search with the
goal of avoiding to be trapped into the local optimal, among
which PSO (4-2) was considered to be more competitive and
promising in feature selection. Moradi et al. [13] recently
developed a PSO based hybrid feature selection algorithm,
named HPSO-LS. Specifically, for a given particle, the selected
features were grouped into two subgroups, ‘Xy' and ‘X’
based on pearson correlation coefficient [22]. Then two opera-
tors ‘Add’ and ‘Delete’ were designed to perform local search.
The results showed that the suggested local search strategy can
effectively guide the population evolve. Qiu [10] proposed an
adaptive chaotic jump strategy integrated into BBPSO [14]
algorithm, namely BBPSO-ACJ, where the chaotic behavior
was employed to activate the stagnated particles and further
enhance the search ability of the particles by overcoming the
local optimal.

The PSO variants mentioned above have demonstrated their
effectiveness in tackling the premature convergency, and in
this paper we will continue this research line by suggesting
a community-grouping based particle swarm optimization al-
gorithm, named CBPSOEFS, for feature selection. The basic
idea of CBPSOFS is to utilize the relationship among features
to generate a feature network and then divide the network



into several communities. Since the features in the same
community have more similar than the ones in different
communities, a community-grouping based adaptive updating
strategy is designed to guide the population evolution, which
can balance the exploitation and exploration well. The details
of the proposed algorithm is presented in next section.

III. THE PROPOSED ALGORITHM CBPSOFS

In this section, we first present the framework of CBPSOFS.
Then, we elaborate the suggested community-grouping based
adaptive updating strategy, which is the key component of
CBPSOFS. Finally, an information gain based initialization
strategy and a history information based particles resetting
strategy are given to further enhance the performance of
CBPSOFS.

A. The General Framework of CBPSOFS

Before we introduce the suggested framework of CBPSOFS,
the adopted binary encoding scheme is first described which
is used to represent a candidate feature subset. Specifically,
for each particle p;, where ¢ € {1,2,---,N} and N is
the size of population, the j-th feature is selected by the
particle p; and the corresponding bit is set as 1, i.e. p;; = 1,
otherwise p;; = 0. The proposed CBPSOFS adopts a similar
framework with standard binary particle swarm optimization
(BPSO) algorithm [23], which has been widely used as the
basic framework for feature selection [24]-[26]. It mainly
consists of three stages. In the first stage (Line 1-5), an
information gain based initialization strategy is suggested to
generate the population with good diversity. Then the correla-
tionship among features are used to construct a feature network
and several feature communities are generated by Louvain
algorithm [27]. In the second stage (Line 6-9), the obtained
feature communities are employed to design a community-
grouping based adaptive updating strategy which make the
similar features not be included in the same particle. In the
third stage (Line 10-15), to further enhance the performance of
the proposed algorithm, a history information based particles
resetting strategy is also developed to activate the stagnated
particles. The general framework of CBPSOFS is presented in
Algorithm 1.

From the above explanation of Algorithm 1, we can find
that there are three important components in CBPSOFS, that
is, a community-grouping based adaptive updating strategy
(Line 9), an information gain based initialization strategy (Line
1) and a history information based particle resetting strategy
(Line 13). In the following, we will introduce them in detail.

B. A Community-Grouping Based Adaptive Updating Strategy

Due to the quick convergency of PSO, the population
easily traps into local optimal especially in high-dimensional
search space. To tackle this issue, a community-grouping
based adaptive updating strategy is designed by employing
the obtained feature communities information. The main idea
is motivated by the following fact.

Algorithm 1 The General Framework of CBPSOFS

Input: D: the dataset, d: the number of features, C: the set of
class label of the dataset, Maxiter: the maximum number of
iterations; IN: population size, w: inertia weight, ¢, c2: learning
factors, Umin; Umae: the minimum and maximum velocity of the
particles; m: the number of iteration of Pppes: not being updated;

Output: The final output optimal feature subset Pgpest

1: P < InfoGainBasedInitial (N, D, d, C);

2: group < Obtain different feature communities using Louvain
algorithm;

3: Fitness < Calculate the fitness values of the particles in P

using (1);

¢ Ppbest = P; Pypest = argmin,e,  y{Fitness(pi)};

: Counts = zeros(1,N);

: for iter = 1 to Maxiter do

P’ « Update the particles using the formulas in BPSO [23];

CR < Calculate the adaptive updating probability value for

each particle using the formulas (2) to (4);

9:  P" < CommunityBasedAdaUpdate (P’, group, CR, d);

10:  Update Pppest of the population;

11:  Index < Find the indexes of the particles which have not

been updated;

12:  Counts(Index)+ = 1;

13: [P, Counts] < HisInfoBasedParticleRest (N, d, Pppest, P,

m, Counts);
14: Pgpest = argmin;e,  y{Fitness(pi)};
15: end for
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Similar particles in decision space may have been projected
into the same or similar positions in objective space, which
may lead them to be trapped into local optimal. Thus, employ-
ing the similarity to balance the exploration and exploitation
strength adaptively is considered to be helpful for escaping
the local optimal. In this paper, hamming distance is adopted
for measuring the similarity and used for designing the adap-
tive updating probability. The proposed community-grouping
based adaptive updating strategy is performed as follows.

Firstly, a weight matrix W with d x d is constructed based
on pearson correlation coefficient [22], where the weight w;;
(w;; € (0,1)) denotes the correlation between the i-th feature
fi and the j-th feature f;, d is the number of features.
Then the matrix W is transformed into a 0 — 1 matrix W'
controlled by using a threshold 6. f; and f; are considered
as connected, w,’;j = 1, if the value w;; is larger than the
predefined threshold 6. Otherwise is disconnected, w;j = 0.
To obtain feature community grouping information, Louvain
algorithm [27] is employed to cluster on the matrix W' and
a series of feature communities are achieved. The features in
the same community have more similarities among them than
the ones in different communities, which are considered as the
reference information used for the following adaptive updating
strategy.

Secondly, an adaptive updating probability is designed to
balance exploration and exploitation in different evolutionary
stages. Specifically, for any two particles p; and p;, the
hamming distance between them is firstly defined as the sum
of the positions which have different binary values in Eq. (2)
and is normalized into [0, 1].
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To quantize the variation of the particle diversity, in this
paper, we define the similarity of each particle based on the
hamming distance, which is shown in Eq. (3).

N , . X ite
Zj:l,j;ﬁi | Ha’n(pupj) < Mamzer 0.5 ‘ 3)
N

Sim(pi) =

For each particle p;, Eq. (3) calculates the similarity with
its neighbours, iter is the current iteration and Maxiter is
the maximum number of iteration.

In BPSO, the particles converge quickly, which leads the
population close to the local optimal in the early stage, and
more exploration operators are required. While in the late
stage, intensifying exploitation operation is helpful to find the
potential optimal solution. Based on this fact, an adaptive
updating probability is defined as Eq. (4) to balance the
strength of exploration and exploitation.

CR(p:) = (1 — Sim(p;)) x e~ 5P @

With the adaptive updating probability defined above, a
community-grouping based adaptive updating operator is pro-
posed. To be specific, firstly, one particle p; is selected
randomly, and the other particle p; which has the maximum
hamming distance with p;, is selected as a candidate and
updating particle. The updating operator is performed on the
selected two particles by utilizing the found feature commu-
nities. Fig. 1 illustrates the process of the suggested adaptive
updating operator for the selected particles.

Fig. 1 gives 10 features which have been divided into two
feature communities A and B using Louvain algorithm, i.e.,
A= {fl?f?vf3af57f77f"3} and B = {f47f67f87f10}' As
shown in Fig. 1 (a), the particle p; is randomly selected from
the population, and p; is the particle with the maximum ham-
ming distance with p;. Let crmaz = maz(CR(p;), CR(p;)),
rand € (0,1) be a random number. If rand < crmaz,
the suggested community-grouping based updating process is
performed in Fig. 1 (b) to (d).

More specific, we firstly select the features satisfying the
condition p; ; # pj k, wWhere p;  denotes the k-th feature in
the particle p;, kK = 1,--- ,d. Then, we calculate and assign
a ratio for each selected feature, taking the feature f; as an
example (f; € A), the ratio BitCR is defined as follows.

_ 1Cjkl+1 k=
BitCR = (7-‘A| 1 T (5)
— | T’A‘r s Pik = 1

where |C’7;¢}1 (|C;k]) is the number of the selected features
in p; (p;) which 'Ibelongs to the same community with the

feature fj. |A| denotes the size of the community A. Usually,
the large ratio means that the feature has more probability
of being selected for performing crossover, which results in
the features of the same community as few as possible being
included in the same particle. In Fig. 1, since the generated

random number is less than BitCR(3) and BitCR(6), the
corresponding feature f3 (shown in Fig. 1 (a)) and fg (shown
in Fig. 1 (b)) are exchanged. Feature fy is not exchanged
due to rand > BitCR(9). The whole procedure of updating
the particles in the population by utilizing the community
information is presented in Algorithm 2.

Algorithm 2 CommunityBasedAdaUpdate

Input: P: the population;
group: the feature community information;
CR: the adaptive crossover probability;
d: the number of the features;
Output: (: the updated population;
1: while |Q| < |P| do
2:  randomly select a particle p;, p; is the particle with the
maximum hamming distance with p;;

3:  cermaz = maz(CR(p;), CR(p;));
4:  if rand < crmax then
5: for k =1 to d do
6: if Dik #* Pj.k then
7 Index = Find(group == group(k)) ; // Find the
indexes of the features in the same community with
feature f;
8: if p;x, == 1 then
9: IndSum = length(Find(p;, 1ndec == 1)); // Find the
number of the selected features in particle p; which
belong to the same community with the feature fy;
10: BitCR = 1-(IndSum+1)/length(Index);
11: end if
12: if p; x == 1 then
13: IndSum = length(Find(p;, rndex == 1));
14: BitCR = 1-(IndSum-+1)/length(Index);
15: end if
16: if rand < BitC'R then
17: Pik <> Djks .,
18: generating t\X//O 1/1pdated particles p; p;
19: Q=QU{p;p;};
20: end if
21: end if
22: end for
23:  end if

24: end while

C. The Information Gain based Initialization Strategy

Usually, random initialization is a frequently-used method to
generate initial population. However, the quality of the initial
population could be further improved if the prior information
about the problem has been considered. To this end, an
information gain based initialization strategy is proposed for
generating the initial population with good diversity. Algorith-
m 3 presents the main procedure of the proposed initialization
strategy, which includes two steps: the information gain calcu-
lation (stepl, Line 1-4), and the population initialization with
the calculated information gain (step2, Line 5-8).

In the first step, information gain (IG), as a popular and
widely applied method [28], [29], is calculated and used to
measure the correlation between features and class labels. To
be specific, the information gain I(f; C) between the feature
f and class C is defined as follows.
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where n is the number of the possible values in feature Cf
and m represents the number of class. In Eq. (6), if I(f;
is larger, the feature f and class label C' are more correlated.
Then, we sort the results and group them into two parts. The
first half (High-InfoGain group) has a stronger correlation with
the class labels than the remaining half (Low-InfoGain group).
In the second step, we employ the information gain as a
kind of prior knowledge to generate the initial population.
To maintain the diversity of the initial population, a random
integer Krand is used to determine the number of the features
in each individual, where Krand € (0,0.6d] and d is the
number of features of the dataset. To make more features
with high correlation be selected, ceil(rand(0.5,1) x Krand)
features are chosen randomly from High-InfoGain group and
the remaining ones are selected from Low-InfoGain group.

I(f;C) =

), ¢;j) log,

Algorithm 3 InfoGainBasedInitial

Input: N: the size of population; D: the dataset; C': the class label
set; d: the number of features;
Output: P: Initial population;
1: for i =1to d do
2: InforGain(i) = I(f3;
3: end for
4: [High — InfoGain, Low — InfoGain| = Sort(InfoGain);
/I Sort the information gain values InfoGain in descending
order and divide them into two parts: High-InfoGain and Low-
InfoGain;
: fori=1to N do
Di{1,2,--,d} <+ zeros(1,d);
Krand < a random integer generated from (0,0.6d];
ceil(rand(0.5,1) * Krand) features are selected from
High-InfoGain randomly; Krand — ceil(rand(0.5,1) =
Krand) features are selected from Low-InfoGain randomly;
Di, (51,2, y < ones(1, Krand);
: end for

C) //f; denotes the i-th feature;

?

JJKrand

D. The History Information-based Particle Resetting Strategy

To further enhance the performance of the proposed algo-
rithm, a history information-based particle resetting strategy
is suggested in Algorithm 4 to recover the diversity of the
population, which is composed of two steps: one is to collect

=
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An example to illustrate the updating strategy for the selected particles with feature community information.

Algorithm 4 HisInfoBasedParticleRest

Input: N: the size of population; d: the number of the features;
Ppyest: the personal optimum solutions; P"': the updated popu-
lation; m: the maximum number of Pppes; not being updated;
Counts: the vector recording how many iterations of each
feature not been updated;

Output: P: Reseted population;

Counts: Updated vector;

1: P+ P”;

2: for j=1toddo

3 Frequency(j) = YN, ppf;”t,

4: end for

5: for j =1to d do )

6:  GenProbability(j) = zi:iﬁ:;::iﬁil(j);

7: end for '

8: fori=1to N do

9:  if Counts(i) == m then

10: Dif1,. 4y = zeros(1,d);

11: k = ceil(rand(0, [0.6d])); //determining the feature num-
ber randomly

12: (fut,*+, fur) = Roulettewheel Select(Gen Probability);
/Ichoosing k features using a roulette wheel based selection
mechanism according to GenProbability;

13: Di{ul,.. uk} = ones(1,k);
Counts(i) = 1;

14:  end if

15: end for

the preference information about each feature from its personal
history optimal solutions (stepl, Line 1-7), and the other is
to activate the stagnated particles according to the achieved
preference information (step2, Line 8-15).

In the first step, the selected frequency of each feature
(preference information) is calculated from its personal history
optimal solutions Pppes:. In the second step, the suggested
resetting process for the stagnated particles is performed as
follows: 1) the particles that keeps the same personal history
optimal solutions for a successive m iterations are selected as
candidate particles for performing the activation operation. 2)
for each candidate particle, a roulette wheel based selection
mechanism is employed to generate a new particle, where
k features are chosen according to the achieved preference
information.



IV. EXPERIMENTAL EVALUATION

In this section, we first give the experimental settings
including datasets, baselines, evaluation metrics and parameter
settings. Then, we empirically verify the performance of the
proposed CBPSOFS by comparing it with several baselines
for feature selection.

A. Experimental Setting

1) Dataset: In our experiments, the eight real-world
datasets are employed to verify the performance of the pro-
posed CBPSOFS, which can be download from UCI machine
learning repository!. The detailed characteristics of these
datasets are depicted in Table I.

TABLE I: The eight datasets with different characteristics

No DataSet # Features # Instances | # Classes
1 Wine 13 178 3

2 Australian 14 690 2

3 Parkinsons 22 195 2

4 German 24 1,000 2

5 Wdbc 30 569 2

6 Tonosphere 34 351 2

7 Spectf 44 267 15

8 Multi_features 649 2,000 10

To evaluate the performance of each candidate feature sub-
set, 10-fold cross-validation is employed in these experiments.
In addition, K nearest neighbor (KNN) algorithm is adopted
to evaluate the classification performance and K is set to 5 in
the following experiments to simplify the calculation.

2) Comparison Algorithms: We compare the proposed
CBPSOFS with four popular baselines, namely, BPSO [23],
PSO(4-2) [9], HPSO-LG [13] and BBPSO-ACJ [10]. Among
them, BPSO is a classical binary PSO and widely applied
as a baseline for developing BPSO based feature selection
algorithms. PSO(4-2) is an improved PSO algorithm, where
the proposed updating strategies for pbest and gbest could
avoid to be trapped into local optimal effectively. In HPSO-
LG, two basic local search operators were integrated into
PSO to enhance the performance of PSO for feature selection.
BBPSO-ACJ is a novel feature selection algorithm based
on BBPSO [14] where an adaptive chaotic jump strategy is
proposed to overcome the premature problem.

3) Evaluation Metrics and Parameter Setting: There are
two metrics are utilized for evaluating the quality of the ob-
tained particle, where each particle denotes a selected feature
subset. The first metric is mean classification accuracy of the
classifier C', which is trained on the selected feature subset
and calculated in Eq. (7):

kM
1
MeanAccuracy = Vi Z Z Cj(Prei, Real;) (1)
j=11i=1

where k is the number of independent running times of the
algorithm, M is the size of testing dataset, Pre; is the label of

'https://archive.ics.uci.edu/ml/

the ¢-th testing instance predicted by the classifier C; trained
using the selected feature subset F); in the j-th run and Real;
is the real label of the i-th instance. When Pre; and Real;
is identical, C'(Pre;, Real;) equals to 1, otherwise equals to
0. The other metric is the average size of the selected feature
subsets during the k times and can be defined as follows.

k
. 1
MeanSize = % Z |F| 3

j=1

where F) is the best feature subset obtained in the j-th run,
|F;| represents the number of the selected features.

For fair comparisons, we adopt the recommended parameter
values suggested in their original papers [9], [10], [13], [23].In
CBPSOFS, the parameters are set as w =048, c1 = c2 = 2,
vmax = 4.0, m =5 and 6 = 0.6 respectively. In all the following
experiments, we fix the population size N = 30, the maximum
number of iteration is set as 100, & = 0.8 is the recommended
parameter value in [15]. To further verify the significance level
of any two algorithms, we employ T-test with significance
level 0.05 to whether the proposed CBPSOFS is significantly
better than other baselines. All algorithms are performed 10
runs independently using Matlab environment for each dataset.

B. The Comparison Results Between CBPSOFS and Baselines

In this section, the comparison results are presented to
demonstrate the effectiveness of the proposed CBPSOFS,
which are shown in Table II and Table III. The best results
are marked in bold.

From Table II, we can find that the proposed CBPSOFS
shows its superiority over the other baselines on most of the
datasets. Similarly, in Table III, CBPSOFS further demon-
strates its effectiveness in the mean classification accuracy.
Specifically, CBPSOFS is ranked the first on 6 datasets and
in the second on 2 datasets. The super performance of the
proposed algorithm is attributed to the fact that in the proce-
dure of feature selection, the features are divided into different
communities and the similar features are not included in the
same particle, which avoids to be trapped into local optimal.

Table IV shows the results of the T-test statistical test of
the proposed algorithm compared with the baselines. When
p-value is less than 0.05, there exists a significant difference
between the two algorithms. It can be seen from Table IV
that the proposed CBPSOFS is obviously better than the
comparison algorithms. From the analysis above, we can
conclude that the proposed CBPSOFS algorithm is a promising
feature selection method on the real datasets.

C. Effectiveness of the proposed strategies in CBPSOFS

In CBPSOFS, three different strategies are proposed and in
the following, we investigate the influence of these strategies
on the performance of CBPSOFS. Fig. 2 presents the best
fitness values of these algorithms with different iterations on
each dataset. Specifically, BPSO and CBPSOFS denote BPSO
algorithm and the proposed algorithm respectively. BPSO+C
represents the BPSO with the proposed community-grouping
based adaptive updating strategy, BPSO+C+Init denotes the



TABLE II: The mean and standard deviation values of Feature number obtained by five comparison algorithms. The best

results are highlighted in bold.

CBPSOFS HPSO-LG PSO(4-2) | BBPSO-ACJ BPSO
Data set [MeanSize Std [MeanSize Std [MeanSize Std [MeanSize Std [MeanSize Std
Wine 35 0.85 83 1.06 9 .25 59 12| 33 048
Australian 1.5 0.67 7 1.56| 44 1.33] 72 235 26 1.27
Parkinsons 48 132 11.8 1.93 86 375 104 212 4.8 1.13
German 25 178 121 238 7.1 354 98 399 53 1.49
Wdbc 4.6 084 163 263 7.1 384| 1475 324 51 1.37
Tonosphere 45 1.84 11 4.27 9 4.64| 32 092 57 1.26
Spectf 63 291 151 8.10| 9.7 4.8 8 6.02] 10.5 2.64
Multi_features| 270.3 6.38 322.1 15.07] 325.7 16.23] 3209 2.96| 309.3 8.46

TABLE III: The mean and standard deviation values of accuracy obtained by five comparison algorithms. The best results

are highlighted in bold.

CBPSOFS HPSO-LG PSO(4-2) BBPSO-ACJ BPSO

Data set [MeanSize Std [MeanSize Std [MeanSize Std [MeanSize Std [MeanSize Std
Wine 0.9642 0.0208| 0.9623 0.0154] 0.9358 0.04 | 0.9547 0.0438| 0.9038 0.0338
Australian | 0.8758 0.0195| 0.8604 0.0074| 0.8691 0.0276| 0.8517 0.0188| 0.8435 0.0131
Parkinsons | 0.9362 0.02 | 0.8724 0.0475| 0.8931 0.0513| 0.9121 0.0410| 0.8897 0.0604
German 0.7120 0.0134] 0.7043 0.0367| 0.6723 0.0190| 0.7213 0.0273| 0.7093 0.0210
Wdbc 0.9594 0.0052 0.9635 0.0146| 0.9447 0.0210] 0.9629 0.0096| 0.9392 0.0237
Tonosphere | 0.8933 0.0257| 0.8819 0.0292] 0.8781 0.0435| 0.8771 0.0369| 0.8680 0.0402]
Spectf 0.7888 0.0190| 0.7837 0.0475| 0.7442 0.0545| 0.7688 0.0667| 0.7625 0.0183]
Multi_features| 0.9637 0.0064| 0.9587 0.0082| 0.9301 0.0201| 0.9562 0.0087| 0.9557 0.0069

TABLE 1V: The calculated p-values from the
CBPSOFS versus other comparison algorithms.

T-test for the

P-value BBPSO-ACJ HPSO-LG PSO(4-2) BPSO
Wine < 0.05 < 0.05 > 0.05 < 0.05
Australian < 0.05 < 0.05 < 0.05 < 0.05
Parkinsons < 0.05 < 0.05 < 0.05 < 0.05
German < 0.05 < 0.05 < 0.05 < 0.05
Wdbc < 0.05 < 0.05 < 0.05 > 0.05
Ionosphere < 0.05 < 0.05 > 0.05 < 0.05
Spectf < 0.05 < 0.05 < 0.05 < 0.05
Multi_features < 0.05 < 0.05 < 0.05 < 0.05

BPSO+C algorithm with the proposed information gain based
initialization strategy, and BPSO+C+RS is the BPSO+C al-
gorithm with the proposed history information based resetting
strategy for activating the stagnated particles.

The results shown in Fig. 2 demonstrate the superiority of
the suggested strategies. Specifically, on most of the datasets,
BPSO+C inherits the advantage of BPSO in convergency and
obtains the better performance than BPSO. The reason is that
the proposed community-based adaptive updating strategy can
effectively escape local optimal by enhancing the diversity of
the population. Moreover, we note that the proposed initial-
ization strategy and the resetting strategy further improve the
performance of the proposed CBPSOFS. The results shown in
this figure have justified their effectiveness of jumping from
the local optimal.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a community-grouping based
PSO algorithm named CBPSOFS for feature selection. To
be specific, a community-grouping based adaptive updating

strategy is suggested, where the identified feature communities
are used to maintain the diversity and avoid to be trapped
into the local optimal. In addition, an information gain based
initialization strategy and a history information based particles
resetting strategy are developed to further enhance the perfor-
mance of the propose algorithm. Finally, we demonstrate the
effectiveness of the proposed algorithm on different datasets,
and the experimental results clearly validate that CBPSOFS
can get the feature subset with high quality. Since feature
selection has been proven to be a multi-objective optimization
problem [5], in the future, we would like to further explore
the performance of the proposed community based updating
strategy combined with different multi-objective evolutionary
algorithm framework, e.g. NSGA-II [30], LMEA [31], KnEA
[32] etc.
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