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Abstract—False data injection attacks (FDIA) have drawn
significant interests recently after the discovery of vulnerabil-
ities of bad data detectors (BDD) deployed in the smart grid.
While most FDIA analyses focused separately on the aspects
of stealthiness, knowledge, resources, or expected consequences
of the attack, few have evaluated the relationship and trade-
offs among these factors to identify the worst-case scenario
in realistic operations. To fill the gap, this paper investigates a
strictly stealthy FDIA scheme with multi-objective evolutionary
optimization, which could compromise a small set of meters to
inflict large impacts on the smart grid in realistic scenarios.
Compared with existing attack schemes that relax the problem
with the �1-norm, the paper introduced the Improved Strength
Pareto Evolutionary Algorithm (SPEA2) as the solver to directly
obtain the �0-sparse attack vector. Meanwhile, the unobserv-
ability is ensured by not only bypassing the BDD but also
satisfying the physical and operational constraints. A three-step
constraint handling technique is also proposed for the SPEA2
to ensure the stealthiness and improve the efficiency of attack
vector identification in the worst-case scenario. Simulation
results on the IEEE 14-bus and 30-bus systems demonstrate
that the new multi-objective formulation discovers highly sparse
attack vectors with significant impacts on the system without
triggering immediate emergency responses. The influence of
alternative objectives and constraints has also been evaluated
to reveal the trade-offs among the attack’s stealthiness, sparsity,
and impact. The results are expected to facilitate better-
informed risk assessment and mitigation with refined worst-case
understandings.

Index Terms—Cyber-physical security, false data injection,
multi-objective optimization, smart grid, worst-case analysis.

I. INTRODUCTION

Recent vulnerability analysis of state estimation (SE) in

safety-critical systems has shed light on a high-threat attack

called the false data injection attack (FDIA), which injects

errors into the estimated states such that the conventional

bad data detectors (BDD) can not identify the manipulated

measurements [1]. This attack, if gone undetected, can mis-

lead decisions in automatic generation control, contingency

analysis, and economic dispatch [2], which have raised both

concerns and interests to fully investigate the threat.

The threat introduced by FDIA on PSSE relies on at-

tackers’ knowledge of power grid topology and resources

to manipulate substantial measurements. The availability of

knowledge and resources will enhance the attacker’s ca-

pability to launch a successful FDIA. However, in reality,

such knowledge and resources are mostly constrained. It has

been demonstrated that the probability of a successful stealth

attack vector decreases with the knowledge of the topology

and the number of attacked measurements [3], [4].

To accurately analyze the risk of FDIA, it is important

to investigate the minimal set of measurements required to

launch the stealthy FDIA. The original work on FDIA [1] did

not guarantee the finding of a feasible stealth attack vector

while requiring substantial amount of resources. Therefore,

the succeeding works explored the possibility of a guaranteed

stealthy attack vector leveraging minimal resources. For

example, relaxed �1-norm minimization of the attack vector

has been developed with [3] and without [5]–[7] the full

knowledge of grid topology. In addition, studies have also

tried to identify the minimal attack vector via heuristic

search for minimal attack vector [8], manipulation of the null

space [4], and the locally regularized fast recursive (LRFR)

algorithm [5]. Although these works have been successful

in proposing ways to minimize the sparsity of the attacked

measurements, the impact of the attacks remains unaddressed

as they assumed a random attack vector, which may render

the attack vectors insignificant in practice.

Meanwhile, the impact analysis of FDIA on power system

in the existing literature has some limitations. The potential

physical and cyber consequences have been exploited in

variants of FDIA schemes, including the malicious load

redistribution [9], [10], the intentional line overflow [11], and

the manipulated localized marginal price [12], among others.

The resilience analysis of the grid under the FDI attack in the

context of the voltage violation, line outage, and cascading

blackouts have also been explored in [13]. The impact of

FDIA taking into account the environmental and economical

uncertainties, namely the environmental/economic dispatch

(EED), was formulated in [14], utilizing a robust evolutionary

optimization algorithm (REOA). In the effort to maximize

the impact, however, these works did not consider how the

intensified attempts could also raise the chance of being

detected by the defender or the the number of resources that

were being leveraged by the attacker.

From attackers’ perspective, launching the FDIA with

fewer resources is beneficial if attackers can inflict desired

impacts on the power system and remain stealthy for a

long term. However, to the authors’ knowledge, maximizing

the attack impact with minimal resources while remaining
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stealthy remains a challenge to be addressed and this presents

a novel multi-objective optimization problem to solve.

Motivated by these gaps in the existing literature, this work

proposes a novel multi-objective optimization formulation of

the FDIA, which simultaneously minimizes the number of

compromised measurements and maximizes the impact of

the attack vector while remaining completely stealthy. The

first objective is achieved via the �0-norm minimization of

the attack vector. For the second objective, we investigate

two different expected impacts on the system based on

the assumed motivation of the attacker. In the first case,

we assume the attacker aims at direct manipulation of the

states to mislead control room decisions, and the objective is

thereby to maximize the error of estimated states injected

by the attacker. In the second case, the attacker aims to

report false branch flows to gain financial benefit without

overloading the line, and the objective is to maximize the

error of the branch power flow. Thus, two different multi-

objective optimization problems are formulated in this work.

To solve the proposed multi-objective optimization for-

mulations, the Improved Strength Pareto Evolutionary Al-

gorithm (SPEA2) [15] is implemented. This evolutionary

multi-objective algorithm efficiently demonstrates the trade-

off between sparsity and impact and can solve the problem

of direct minimization of �0-norm, which poses an NP-hard

problem for the conventional optimization algorithms. More-

over, To make the FDIA meet the stealthiness requirements,

the paper formulates constraints and proposes a three-step

constraints handling method to improve the efficiency in the

multi-objective optimization problems.

The contributions of this work are summarized as follows:

1) We propose a novel multi-objective optimization prob-

lem using the Improved Strength Pareto Evolutionary

Algorithm (SPEA2) to obtain the �0-sparse attack

vector with maximized impacts.

2) We consider the physical and operational constraints

on the measurements in generating the attack vector,

which will not only bypasses the BDD but also not

raise violations in the control centre. To meet these

stealthiness requirements, we apply a three-step con-

straints handling method.

3) We provide a comparative analysis between errors

injected into the state vector and branch power flows

as the potential impacts of the attack. Evaluations of

the impacts considering the attackers’ motivation are

offered.

4) We also provide analysis on how the constraints influ-

ence the impact performance of the attack model, and

were able to provide insights into the possible trade-off

between stealthiness and impact.

The rest of the paper is organized as follows: Section II

gives the introduction of the basic FDIA threat and the

challenges to be addressed. Section III describes the formu-

lation of the multi-objective FDIA scheme for the worst-case

analysis and gives the details of specific methods to solve the

proposed problems. Section IV presents the experiments and

performance evaluation. Section V draws the conclusions.

II. THE FDIA THREAT

A. The System Model

The state estimator processes the topology and estimates

accurate states of the system from raw measurements. In

the DC state estimation, we can write the problem as,

Z = Hs+ e, where Z is the measurement vector, H is the

topological matrix, also known as the Jacobian matrix, s is

the state vector, and e is the random noise often modeled as

the white Gaussian noise. The weighted least square (WLS)

solution can be obtained by ŝ = (HTR−1H)−1HTR−1Z
[16], where R is the noise covariance matrix. If M and N
are the numbers of measurements and states, respectively,

then H is an M ×N matrix with M � N .

In PSSE, the estimated state s is processed by the bad data

detection (BDD), which detects and eliminates bad data that

might be caused by meter noise, sensor failure or communi-

cation loss. A residual-based hypothesis test [16] is utilized

to validate the normalized �2-norm of the residual between

the observed and estimated states, that is ||Z−Hŝ||, via

the χ2-test. The test statistics indicates if a measurement is

corrupted, which then will be eliminated for better estimation

of the states. Specifically, ||Z−Hŝ|| is compared with a bad

data threshold τ and ||Z−Hŝ|| > τ indicated the presence

of bad data.

B. Stealthiness, Sparsity and Impact of FDIA Schemes

FDIA was first proposed by Liu et al. [1] and was

demonstrated that the availability of the full knowledge of

the topology H could allow the attacker to obtain the attack

vector a = Hc, where c is the injected state error, to be

undetectable by the residual-based BDD [1]. Mathematically,

za = Hs+ a+ e = Hs+Hc+ e = Hsa + e (1)

The residual of the attacked measurements becomes

ra = za −Hŝa = z+ a−H(̂s+ c) = z−Hŝ, which is

the same as residual before the attack and hence the attack

remains stealthy.

Stealthiness has been the primary goal of FDIA schemes

[17]. From the attacker’s perspective, however, the stealth-

iness of FDIA often requests the attack vector to be non-

sparse [1], as more compromised measurements will make

it easier to impair the situational awareness and bypass the

BDD [3] [4]. In such case, the stealthy but non-sparse (i.e.,

large number of meters) attack may also inflict larger impact

onto the system with more misleading information.

However, a non-sparse attack often requires over 60%

of the measurements to be compromised [18]. As meters

are geographically dispersed and individually protected, it

could be challenging to compromise and manipulate such

large number of measurements concurrently with limited

resources. Nevertheless, minimizing the resources could also

lead to limited impact. Therefore, a two-fold challenge of

formulating an attack model, that simultaneously considers

the stealthiness, sparsity and impact, should be addressed in

the multi-objective FDIA scheme.



III. MULTI-OBJECTIVE FDIA SCHEME

Multi-objective Optimization Problem (MOP) involves

more than one objective function to be optimized simulta-

neously. Generally, a MOP can be formulated as [19]:

Minimize F(c) = [f1(c), f2(c), ..., fm(c)] (2)

subject to

⎧⎪⎨
⎪⎩

hi(c) = 0 i = 1, ..., p

gi(c) ≤ 0 i = 1, ..., q

cmin
i ≤ ci ≤ cmax

i i = 1, ..., d

(3)

where c is the d-dimensional decision vector, ci is the ith
decision variable; F is the objective vector consisting of m
objectives, which are competing and conflicting with each

other, fi(c) is the ith objective; p is the number of equality

constraints, and hi(c) = 0 is the ith equality constraint; q
is the number of inequality constraints, gi(c) ≤ 0 is the ith
inequality constraint; cmin

i and cmax
i are lower and upper

bound of ci, respectively.

The stealthiness requirements in this work are formulated

as different constraints. We consider not only the attack

model in section II.B [1], but also two practical power

grid constraints. First, the manipulated measurements do not

include generation and the load demand measurements of the

zero-load buses, as any change on these measurements can

be easily flagged as anomalies based on routine checks. In

other words, the additional false power injection will only be

added into the measurement of the load buses. Second, we

only consider the case where the attacker does not trigger

violations of voltage, power flow, etc. in the control room,

as the violations will still activate reactions even if they are

not recognized as intrusions.

Furthermore, we consider two different scenarios based

on the impact that an attacker may intend to inflict on

the system. One is the error injected into the state vector,

which the estimated voltage angle for DC SE. The other

one is the error injected into the branch power flow. The

detailed descriptions of these two scenarios are discussed in

the following subsections.

A. Scenario I: Injected Error into State Vector

Based on the DC assumption of PSSE, suppose the original

measurements consist of all branch flow measurements at the

from end (Pf ) and the to end (Pt), generated power (Pg),

load demands (Pd), voltage angles (Va) for all buses. Then,

the original measurement vector Z as the input of the state

estimator could be formulated as:

Z = [Pf ,Pt,Pg −Pd,Va]
T (4)

where Pg−Pd is the power injection of all buses; for buses

with no generator or load demands, the corresponding entries

of Pg and Pd will be zero, respectively. Then, the Jacobian

matrix H is accordingly formulated as follows:

H = [Bf ,Bt,Bbus, I]
T (5)

where Bf , Bt, Bbus are the admittance matrices for the from

end branch flow equation, the to end branch flow equation,

and the power injection equation, respectively [20]; I is

the identity matrix for the voltage angle. Based on the DC

assumption, Bt = −Bf . Therefore, according to (1), the

attack vector will be a = Hc. The post-attack measurement

vector will be Za = Z+ a.

When optimizing the sparsity, most studies have resorted

to a relaxed �1-norm minimization problem [3], [21]–[23],

though the sparsity itself shall be solved through the mini-

mization of �0-norm of a that is NP-hard and computationally

complex. In our work, we will also tackle the problem by

minimizing the �0-norm directly.

For the first scenario, the impact is considered as the

maximization of the errors injected into the state vector

(voltage angle), because the maximized state error can af-

fect automatic generation control, contingency analysis and

economic dispatch in the energy management system. The

formulation can be written as:

Minimize ‖a‖0 (6)

Maximize (Σnb
i=1|ci|)/(nb − 1) (7)

subject to a = Hc (8)

(Bbusc){i|i∈ID0} = 0 (9)

|Pf +Bfc| ≤ Tr (10)

Bbusc ≤ Pd (11)

|Va + Ic| ≤ 30◦ (12)

where c is the vector of injected state errors; nb is the number

of buses; Tr is the vector of branch thermal rating. ID0 is the

set of the indices of buses with no load demands. |·| is used to

take the absolute value of each entry of the matrix/vector. (6)

is the �0-norm of the attack vector a, representing the number

of attacked meters, which should be minimized; (7) is the

second objective function used to maximize the average error

injected to each state. For the constraints, (8) ensures that

the FDIA scheme follows the DC assumption; (9) ensures

that the buses with no load demands will have no additional

power injection; (10) ensures the attacked measurements

of branch flow are still within the branch thermal ratings;

(11) ensures that the compromised load demand is non-

negative; (12) ensures that absolute compromised voltage

angles should be within the threshold of 30◦.

It is notable that the injected state error in this scenario

will directly mislead operator’s decisions in the control

room through the energy management systems and could be

proven costly. However, the impact on the state error might

not be directly translated into specific measurements, e.g.,

branch power flows if the latter is the attacker’s target. For

instance, if the attacker aims to misinform the operator about

an incoming transmission congestion and obtain financial

gains from a high-demand market [12], then he/she will

have to directly optimize the impact on the branch flow

measurements, not the state vector. Given this consideration,

we have also formulated another scenario with impacts on

the measurements refined from the state vector.



B. Scenario II: Injected Error into Branch Power Flow
Measurements

In this scenario, the attacker specifically aims to inject

errors to the branch power flow measurements as much

as possible. To achieve this impact, Scenario II aims to

maximize the average relative injected error of the branch

power flow while minimizing the same �0-norm of the attack

vector as in Scenario I. The problem could be written as:

Minimize ‖a‖0 (13)

Maximize
Σnbr

i=1|P fi − Pfi |/Tri

nbr
(14)

subject to (8)-(12) (15)

where P fi and Pfi are the manipulated and the original

branch flows of the ith branch, respectively; Tri is the

thermal rating of the ith branch; nbr is the number of

branches; the constraints are the same as to Scenario I.

C. Constraint Handling and Attack Vector Optimization

To find the critical attack vector for the FDIA, the in-

jected state error c is used as the decision vector for the

optimization solver. From (8)-(12), if we transform the matrix

expressions into a set of equalities or inequalities, we will get

(nb+nz) equalities and (2nbr+2nb) inequalities, where nz is

the number of zero-load buses. For a large scale system, such

number of constraints will limit the efficiency of the opti-

mization solver to locate the candidates on the feasible region

and find the optimal solutions. Therefore, we apply a three-

step constraints handling method from the aspects of relaxing

the number of constraints, compressing the searching space

for the decision vector, and improving the searching strategy

for the optimization algorithm, respectively. These methods

work together with the SPEA2 optimization to solve this

FDIA problem, which are described as follows.
1) Target Bus Selection: This method is used to deal with

the equality constraint (9), ensuring that the attacker will not

inject any error to the zero-load buses. The DC power flow

of zero-load buses is described in (16) [24]:

Pk =
∑
j∈k

Bkj(θk − θj) k ∈ ID0 (16)

where Pk is the power injection of the zero-load bus, Bkj is

the susceptance between bus i and j, and θk and θj are angles

of zero-load buses and their connected buses, respectively.

According to (16), if the angle deviation Δθ of a zero-

load bus is the same as that of its directly connected buses,

the power injection to the zero-load bus will not be changed.

Thus, we find all the connected buses for each zero-load

bus, and impose them with the same injected state error.

Moreover, if a zero-load bus shares the same connected buses

with another zero-load bus, all of these buses’ angle deviation

should be the same. Moreover, if the zero-load bus connects

to or be the slack bus, all of these buses’ angle deviation

should be zero. Therefore, we apply the following process

to determine the new decision variables:

Step 1: For each zero-load bus, find all its connected buses

and get a set Gi (i= 1,..., nz), which contains the indices of

its connected buses and itself. All these sets are added into

a set container Ω.

Step 2: Compare each set in pairs, if Gi ∩Gj �= ∅, then,

Gi,Gj = Gi ∪Gj . Then, delete the duplicate sets in Ω.

Step 3: Find the complementary set Ψ of the union of

all sets in Ω. Each element in Ψ is considered as a new

individual set and added into Ω.

Step 4: Delete the set contains the slack bus in Ω.

At the end of Step 4, we can inject the same state error

to buses that belong to the same set in Ω, and will not inject

any error to buses that do not appear in Ω, which ensures

that the zero-load buses remains unattacked. Thus, we get a

new decision vector x = (x1, x2, ..., xndim
)T , where ndim

is the number of sets in Ω, and xi is the injected state error

to the buses belong to the ith set in Ω. Then, constraint (9)

is accordingly removed and will not affect the process of

identifying x.

2) Searching Space Compression with Linear Program-
ming (LP): LP is a linear optimization technique used to

optimize a linear function that subjects to a set of linear

constraints [25]. Here, we apply it to determine the lower and

upper boundaries for each decision variable in x by solving

the linear inequalities of (10)-(12). Since the decision vector

now has become x rather than c, the inequalities need to be

updated accordingly. The formulation of this LP problem is

expressed as:

Minimize xi, i = 1, .., ndim (17)

subject to |Pf +Bfx| ≤ Tr (18)

Bbusx ≤ Pd (19)

|Va + Ix| ≤ 30◦ (20)

Maximize xi, i = 1, .., ndim (21)

subject to (18)− (20) (22)

where the minimization and maximization of xi are cor-

responding to solving the lower and upper boundaries, re-

spectively; Bf , Bbus, and I are updated matrices, which are

expressed as follows:

Bf (:, i) = σ(Bf (:,Ωi)) i = 1, .., ndim (23)

Bbus(:, i) = σ(Bbus(:,Ωi)) i = 1, .., ndim (24)

I(:, i) = σ(I(:,Ωi)) i = 1, .., ndim (25)

where (:, i) is the ith column of the matrix; (:,Ωi) is the

matrix’s columns coming from the ith set in Ω; σ(·) is

an operation for the matrix, which returns a column vector

containing the summation of each row.

In this work, LP problems are solvable by most commer-

cial solvers to get the boundaries of each decision variable.

It should be noted that although LP can narrow the searching

space to some extent, it still cannot ensure that the candidate

solutions of evolutionary algorithm meet all the constraints

with high probabilities during the evolutionary process, be-

cause LP cannot accurately describe the shape of the feasible

region of the decision vector.



To efficiently guide individuals to the feasible region

during the optimization process, we further apply another

constraint handling technique, which is the constraint dom-

ination method, and will combine it with the Improved

Strength Pareto Evolutionary Algorithm (SPEA2).

3) SPEA2 with Constraint Domination: SPEA is a type of

evolutionary algorithm to solve multi-objective optimization

problems [26]. SPEA2 is the improved version of the SPEA,

which incorporates, in contrast to its predecessor, a fine-

grained fitness assignment strategy, a density estimation tech-

nique, and an enhanced archive truncation method [15]. In

each iteration, SPEA2 sorts the individuals of the population,

and select the next generation from the combination of

the current population and off-springs created by genetic

operators. The iteratively converged non-dominated solutions

in the archive set, which make up the estimated Pareto front

in the objective space, are the expected results of the multi-

objective optimization problem. All of these solutions are

feasible, which reflects the trade-off between the objectives.

The details of the SPEA2 are given as follows [15].

Definitions: At: population set at iteration t; At: archive

set at iteration t; N : population size; N : archive size; Ng:

maximum number of generations.

Step 1: Initialization: Set t = 0. Generate an initial

population A0 and create the empty archive set A0 = ∅.

Step 2: Fitness assignment: Calculate fitness values of

individuals in At and At. For each individual i in At and At,

the strength value is calculated using the following equation:

S(i) = |{j| ∈ At ∪At ∧ i � j}| (26)

where | · | denotes the cardinality of a set, ∪ stands for multi-

set union, � corresponds to the Pareto dominance relation,

and ∧ is logical AND. Then, the fitness F (i) is defined as

follow:

F (i) = R(i) +D(i) (27)

where the raw fitness R(i) of an individual i is calculated

by the following equation:

R(i) =
∑

j∈At∪At,i�j

S(j) (28)

To distinguish individuals with the same raw fitness, the in-

dividual density is calculated by the K-nearest neighbor [15]:

D(i) =
1

ηi,k + 2
(29)

where ηi,k is the distance between the ith and kth nearest

neighbors in the objective space. As a common setting, we

use k =
√

N +N .

Step 3: Environmental selection: Copy all non-dominated

individuals in both At and At to At+1. If the size of At+1

exceeds N , reduce At+1 with the truncation operator [15].

Otherwise, fill At+1 with dominated individuals in At and

At.

Step 4: Termination: If the stopping criterion t ≥ Ng is

satisfied, the output decision vectors are represented by the

non-dominated individuals in At+1, then, stop. Otherwise,

proceed to Step 5:.

Step 5: Genetic operation: Perform binary tournament

selection with replacement on At+1 in order to fill the mating

pool, in which crossover and mutation operators are applied.

The new generation is set to At+1. Set t = t+ 1.

The constraint domination method is applied to deal with

the dominance relationship between each individual, which

will gradually evolve individuals to the feasible region in an

efficient manner [27].

Specifically, given two individuals a and b with nobj

number of objective functions, we calculate the number

of constraint violations nv(a) and nv(b) as well as the

objective vectors F(a) and F(b), respectively. Then a is

called dominating b when one of the following conditions

is met:

• nv(a) = 0, nv(b) > 0.
• nv(a) > 0, nv(b) > 0, nv(a) < nv(b).
• nv(a) = 0, nv(b) = 0,F(a) ≺ F(b).
where F(a) ≺ F(b) means ∀Fi(a) ≤ Fi(b), and at least

one Fi(a) < Fi(b), i = 1, 2, ..., nobj (Here we suppose all

objectives are to be minimized. If there are objectives that

need to be maximized, objectives’ sign should be reversed

when determining the dominance relation).

D. Execution of Multi-Objective FDIA

Fig. 1 shows the flow-chart of steps that we follow to

obtain the sparse attack vector with the great impact based

on the methods discussed above. The descriptions of each

step are given as follows:

Step 1: Obtain measurements from the SCADA and

formulate the measurement vector Z according to (4). Get

the Jacobian matrix H according to (5).

Step 2: Determine the new decision vector x with the

purpose of bypassing the zero-load buses by applying the

target bus selection proposed in section III.C.

Step 3: Compress the searching space for x by applying

the Linear Programming as the second constraint handling

technique introduced in section III.C.

Step 4: Implement the SPEA2 with constraint domination

to estimate the Pareto front based on the method in section

III.C. From the final Pareto front, we can get a set of non-

dominated solutions of x, based on which we can further get

a set of optional injected state error c and the corresponding

attack vector a.

Start

Get the SCADA 
measurements, determine the 
measurement vector Z and 

the Jacobian matrix H 

Determine the new decision 
vector x with the purpose of 

bypassing the zero-load buses

Narrow the searching space 
for x by applying the Linear 

Programming

Implement the SPEA2 
combined with the constraint 

domination method to 
estimate the Pareto front

Get the final injected state 
error c and the attack vector a

End

Step 1

Step 2

Step 3

Step 4

Fig. 1. Flowchart of the multi-objective optimization process to find the
sparse attack vector with the great impact.
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Fig. 2. The estimated Pareto fronts of two scenarios for IEEE 14-bus system.
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Fig. 3. The estimated Pareto fronts of two scenarios for IEEE 30-bus system.

IV. EXPERIMENT SETUP AND EVALUATIONS

A. Experiment Setup

The proposed scheme is evaluated on the IEEE 14-bus

and the IEEE 30-bus test systems with the MATPOWER

toolbox [20]. For the IEEE 14-bus system, we get 40 active

branch flow measurements (20 at the-from end and 20 at the

to-end), 5 generation power outputs, 11 load demands and

13 voltage angles (except for the reference bus) summing up

to a total 69 attackable meters. For the IEEE 30-bus system,

we get 82 measurements of active branch flows (41 at the-

from end and 41 at the to-end), 6 generation power outputs,

20 load demands, and 29 voltage angles, among which the

total number of attackable measurements is 137.

For the configuration of the SPEA2 algorithm, we set the

crossover parameter γ = 0.3, mutation parameter h = 0.6,

population size N = 500, archives size N = 100, and

iteration number Ng = 200. γ, N , and N are determined

empirically, while h = 0.6 is determined based on a number

of experiments. It was found that if we choose h smaller

or greater than 0.6, it will usually have lower convergence

rate compared with that of 0.6 when under the same iteration

number.

B. Attack Performance Evaluation

Fig. 2 and Fig. 3 show two different Pareto fronts for

two scenarios mentioned in Section III, which illustrate the

impact on the system in terms of both the averaged state

errors and the averaged branch power flow error for the 14-

bus system and the 30-bus system, respectively. The results

show that we are able to find out a group of non-dominated

solutions of c that outline the trade-off between the number

of measurements attacked and the expected impacts of FDIA

for both the 14-bus and 30-bus systems.

For the Pareto fronts of Scenario I in Fig. 2 and Fig. 3,

when more meters are attacked, great impact could be

inflicted on the state variables. For the case of 14-bus

system, the magnitude of injected state error does not in-

crease significantly with the increasing number of attacked

meters. From Fig. 2, we can see that after attacking 3 more

meters from the minimum value of attacked meters (43), the

magnitude of injected state error increases from 1.98◦ to

approximately 2.1◦. Nevertheless, the injected error itself is

a quite moderate deviation from the original state values. The

minimum sparsity achieved here is approximately 58% which

is lower than what is claimed in [1]. On the other hand, for

the 30-bus system, from Fig. 3, it can be found that impact on

the state error has a sharp increase after attacking more than

40 meters, up to which point the state error does not increase

much with increased attacked meters. After this point the

injected state error increases from approximately 0.09◦ to

more than 0.14◦ (60%) given that 8 more meters have been

attacked. The minimum sparsity achieved here is 25%, which

is much more sparse than the 14-bus system. Therefore,

we can conclude that for larger system, the attacker can

inflict more impact in terms of the injected state error by

compromising fewer meters.

The Pareto fronts for Scenario II are shown with blue

crosses in Fig. 2 and Fig. 3. For the 14-bus system, the

impact in terms of the branch flow is quite substantial with

the minimum error being more than 39%. It could also be

realized from Fig. 2, that by attacking only 5 more meters

the branch error increases from approximately 39% to 45.7%.

The minimum sparsity in this case is 58% which is slightly

higher than in the case of Scenario I. On the other hand,

for the 30-bus system, although the injected branch error is

moderately high, the minimum impact being 7.6%, however,

the minimum sparsity achieved here is very low (26%). Here

also, from Fig. 2 and Fig. 3, we can say that for larger

systems, fewer meters are needed to be compromised to

inflict more impact.

C. Impact Analysis

We further compared the impacts between the two scenar-

ios and demonstrate how the attacker may choose to optimize

the impact on the system. Fig. 4 and Fig. 5 show the injected

state error at each bus under two scenarios for the 14-bus

and 30-bus system, respectively. It can be seen that for both

systems, in Scenario II, when the branch error injection is

maximized, the consequent deviation in the injected state

error is greater than in Scenario I. This could be explained

by the fact that injected state error in the measurements in

turn generates even larger state errors that is bypassed by the

BDD. The zero values of state errors indicates buses that are

directly connected with a zero-load or the reference bus and

thus were not attacked.

From the attacker’s perspective, the goal is to inflict as

much impact as possible by attacking fewer meters, which

is the worst-case scenario. In this regard, we have found that

the attacker may choose to maximize state error if he/she

wants to mislead the control room, in which case Scenario I

allows the attacker to inject moderate error into the estimated

states with attacking as few as 34 out of the 137 meters
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Fig. 5. The injected state error at each bus under two scenarios for the
IEEE 30-bus system.

for the 30-bus and 43 out of 69 for the 14-bus system.

Alternatively, the attacker may choose to report false branch

flow measurements and Scenario II will enable the attacker

to inflict a comparatively larger error on the branch flow

measurements and with compromising fewer meters. In both

scenarios, by formulating the objective function accordingly,

the attacker can optimize the impact with minimal efforts

and remaining stealthy to the PSSE.

D. Influence of the Constraints

To make our attack model strictly stealthy, we considered

a number of constraints on the attacked measurements as

introduced in Section III. However, the attacker may relax

some constraints with the cost of higher detection possi-

bility but which will inflict far greater impact. We have

examined the influence of these constraints to better analyze

the risks and possible countermeasures from the defender’s

perspective. To show this we removed one constraint at a

time and investigated the performance of the attack model

correspondingly. Fig. 6 and Fig. 7 shows the comparison of

the Pareto fronts with and without the constraints, for the

14-bus and the 30-bus system respectively under Scenario I.

Both the Figures for Scenario I show that the load demand

constraint has the greatest influence on the performance of

the attack model whose removal increases the injected state

error impact by more than two times for the 14-bus system

and more then 6 time for the 30-bus system, thereby affecting

the larger systems more severely. Similarly for Scenario

II, Fig. 8 and Fig. 9 also demonstrates the load demand

constraint influences most, removal of which will increase

the branch flow error 4 times for the 14-bus system and 7

times for the 30-bus system.

These results indicated that, if the attacker can compromise

the load buses such that the load demand becomes negative,
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this could lead to dire consequences and hence, the defender

could protect the load buses with such a detector that can

instantly detect the presence of a negative load demand.

Substantial studies have been devoted to investigate ways

to protect against FDIA, among which, data driven tech-

niques are more popular recently [28]–[30]. There are also

prevention based mechanisms [3], [9] where the critical

meters are found and protected. However, the constraint

influence analysis enables us to find the most vulnerable

buses in terms of the impact and in the event of an attack

that would alter the normal behavior, what should be the

immediate response.
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V. CONCLUSIONS

This paper proposed a novel multi-objective optimization

approach to analyze the false data injection attacks in power

system state estimation. Using the SPEA2, the proposed

approach efficiently minimizes the number of attacked meters

while maximizing the impact. The results have shown that

it is possible to implement a stealthy and sparse FDIA,

while the attackers can optimize the expected impact in terms

of injected errors on both the state vectors and the branch

power flows. More compromised meters will inflict greater

impact. In addition, the impact analysis also shows that,

comparatively fewer compromised meters will administer

greater impact to larger systems. Further, by considering al-

ternative constraints, we demonstrated the trade-off between

stealthiness and impact.

In future, we aim to investigate our attack formulation

considering the AC state estimation for enhanced threat

analyses. It has been shown that the attack formulated in DC

environment launched upon AC state estimator have higher

probability of detection [31], therefore it will be judicious

to consider AC FDIA for better risk analysis. Furthermore,

we aim to devise improved detection mechanism for this

attack formulation that takes into account the worst-case

scenario (i.e., no topology knowledge, minimum resources

and maximum impact).
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et Technologies under grant 2019-NC-254971.

REFERENCES

[1] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 13:1–13:33, Jun. 2011.

[2] R. Deng, G. Xiao, R. Lu, H. Liang, and A. V. Vasilakos, “False
data injection on state estimation in power systems—attacks, impacts,
and defense: A survey,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 2, pp. 411–423, 2016.

[3] M. Ozay, I. Esnaola, F. Y. Vural, S. Kulkarni, and V. Poor, “Sparse
attack construction and state estimation in the smart grid: Centralized
and distributed models,” IEEE Journal on Selected Areas in Commu-
nications, vol. 31, no. 7, pp. 1306–1318, 2013.

[4] J. Hao, R. Piechocki, D. Kaleshi, W.-H. Chin, and Z. Fan, “Sparse
malicious false data injection attacks and defense mechanisms in smart
grids,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp.
1–12, 2015.

[5] H. Zhong, D. Du, C. Li, and X. Li, “A novel sparse false data
injection attack method in smart grids with incomplete power network
information,” Complexity, vol. 2018, 2018.

[6] S. Xie, J. Yang, K. Xie, Y. Liu, and Z. He, “Low-sparsity unobservable
attacks against smart grid: Attack exposure analysis and a data-driven
attack scheme,” IEEE Access, vol. 5, pp. 8183–8193, 2017.

[7] J. Tian, B. Wang, and X. Li, “Data-driven and low-sparsity false
data injection attacks in smart grid,” Security and Communication
Networks, vol. 2018, 2018.

[8] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, “On false
data-injection attacks against power system state estimation: Modeling
and countermeasures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 717–729, March 2014.

[9] Y. Yuan, Z. Li, and K. Ren, “Modeling load redistribution attacks in
power systems,” IEEE Transactions on Smart Grid, vol. 2, no. 2, pp.
382–390, 2011.

[10] Y. Yuan, Z. Li, and K. Ren, “Quantitative analysis of load redistri-
bution attacks in power systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 9, pp. 1731–1738, September 2012.

[11] J. Zhang, Zhigang Chu, L. Sankar, and O. Kosut, “False data injection
attacks on power system state estimation with limited information,” in
2016 IEEE Power and Energy Society General Meeting (PESGM),
July 2016, pp. 1–5.

[12] L. Xie, Y. Mo, and B. Sinopoli, “Integrity data attacks in power market
operations,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 659–
666, December 2011.

[13] J. Yan, Y. Tang, Bo Tang, H. He, and Y. Sun, “Power grid resilience
against false data injection attacks,” in 2016 IEEE Power and Energy
Society General Meeting (PESGM), July 2016, pp. 1–5.

[14] J. N. Rodrigues de Assis, T. M. Machado-Coelho, G. Luı́s Soares, and
M. H. Soares Mendes, “Robust evolutionary optimization algorithm
for multi-objective environmental/economic dispatch problem with
uncertainties,” in 2018 IEEE Congress on Evolutionary Computation
(CEC), July 2018, pp. 1–6.

[15] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.
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