
Scalarizing Functions in Bayesian Multiobjective
Optimization

Tinkle Chugh

Department of Computer Science, University of Exeter, UK
Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic

Abstract—Scalarizing functions have been widely used to con-
vert a multiobjective optimization problem into a single objective
optimization problem. However, their use in solving computation-
ally expensive multi- and many-objective optimization problems
using Bayesian multiobjective optimization is scarce. Scalarizing
functions can play a crucial role on the quality and number of
evaluations required when doing the optimization. In this article,
we compare 15 different scalarizing functions in the framework of
Bayesian multiobjective optimization and build Gaussian process
models on them. We use the expected improvement as infill
criterion (or acquisition function) to update the models. In
particular, we analyze the performance of different scalarizing
functions on several benchmark problems with different number
of objectives to be optimized. The review and experiments on
different functions provide useful insights in using a scalarizing
function, especially for problems with a large number of objec-
tives.

Index Terms—Pareto optimality, evolutionary multiobjective
optimization, surrogate, metamodel

I. INTRODUCTION

Many real-world optimization problems have multiple con-
flicting objectives to be achieved and use black-box computa-
tionally expensive simulators. Surrogate-assisted optimization
methods have been widely used in the literature to solve such
problems. Many of these methods use Bayesian optimization
involving Gaussian processes (or Kriging) as surrogate models.
The Gaussian processes provide an advantage over other
types of surrogate models because of their ability to provide
uncertainty in predictions. For more details about surrogate-
assisted methods, see e.g. surveys [1], [2], [3], [4], [5].

A generic framework of a Bayesian optimization method
is shown in Figure 1. In the first step, a set of samples
is generated e.g. using a design of experiment technique
like Latin hypercube sampling [6]. In the second step, these
samples are then evaluated with expensive objectives. In the
third step, a termination criterion is checked. If the termination
criterion is met, nondominated solutions from all expensive
evaluated solutions are used as the final solutions. Otherwise,
surrogate models are built using evaluated solutions in the
fourth step. An optimizer e.g. an evolutionary algorithm is
then used with the models in the fifth step to find promising
samples by using an appropriate infilling criterion (or updating
criterion or acquisition function). In the sixth step, a fixed
number of samples generated with the optimizer is selected
which are then evaluated with expensive objective functions.

All six steps mentioned above are important in the per-
formance of a Bayesian optimization method [7]. In this
article, our focus is on the fourth step i.e. building or training
surrogates. Once, the samples are evaluated with expensive
objective functions in the second step, there can be different
ways to build surrogates. The most common way is to build
surrogate for each objective function [8], [9], [10]. Another
way is to build a surrogate for a scalarizing function after
converting multiobjective optimization problem into a single
objective optimization problem [11], [12], which is also the
focus of this article. There are other approaches for building
surrogates like the classification of solutions into different
ranks or classes [13], [14], [15]. For details on other ways of
building surrogates, see [1], [3], [16]. Note that a scalarizing
function can also be used after building models on each
objective function e.g. as in [10] to do a local search. In
this article, we focus on building surrogate after converting
a multiobjective optimization problem into a single objective
by using a scalarizing function.

There are two main advantages in using a single surrogate
when solving an expensive MOP. The first one is that only one
surrogate is used in the solution process instead of multiple
surrogates, which reduces the computational burden e.g. the
training time especially in many-objective (usually more than
three objectives) optimization problems. The second advantage
is that one can use an infill criterion proposed for single-
objective optimization problems which also reduces the com-
putational complexity. In the literature, a little attention has
been paid in using scalarizing functions for building surrogates
on them and only a few studies exist in the literature. For
instance, in [11], an augmented achievement scalarizing func-
tion (AASF) was used and in [12], hypervolume improvement,
dominance rank and minimum signed distance were used
(more details are provided in the Section III).

It is worth important to be pointed out that several studies
exist [17], [18], [19], [20], [21] on using scalarizing functions
without using them in a Bayesian optimization method. In this
article, we study 15 different scalarizing functions and build
surrogates on them in solving (computationally) expensive
MOPs and particularly, focus on answering the following
research questions:

1) are different scalarizing functions perform different to
each other under the same framework?
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Fig. 1: A generic framework for a surrogate-assisted optimization method

2) are surrogate models built on a given scalarizing function
sensitive to the number of objectives ?

To answer the questions above, we embed different scalar-
izing functions into the framework of efficient global opti-
mization (EGO) [22]. The algorithm uses the expected im-
provement criterion for updating the surrogates build on the
scalarizing function. We then test the method with different
scalarizing functions on several benchmark problems with
different numbers of objectives. We analyze the accuracy and
uncertainty provided by Gaussian process models on different
scalarizing functions with a different number of objectives.

The rest of the article is organized as follows. In the next
section, we provide a literature survey on using scalarizing
functions with and without building surrogates on them. In
Section 3, we give a brief introduction to different functions
with their mathematical formulations and merits and demerits.
In Section 4, numerical experiments are conducted to answer
the research questions mentioned above. We finally conclude
and mention the future research directions in Section 5.

II. RELATED WORK

Scalarizing functions have been used since decades in the
Multiple Criteria Decision Making (MCDM) community [20],
[21], [23], [24]. In evolutionary multiobjective optimization
(EMO) algorithms especially decomposition based, utilization
of scalarizing functions became popular in the last few years.
Many studies and algorithms exist in the literature utilizing
different functions for solving multi- and many-objectives op-
timization problems. Some of the well-known decomposition
based EMO algorithms utilizing different scalarizing func-
tions are nondominated-sorting genetic algorithm III (NSGA-
III) [25], multiobjective optimization based on decomposi-
tion (MOEA/D) [26] and its numerous versions [27] and
reference vector guided evolutionary algorithm (RVEA) [28].
For more details on the working principle of decomposition
based algorithms, see surveys on many-objective optimization
evolutionary algorithms [29], [30].

In [31], two different scalarizing functions weighted sum
and augmented Chebyshev were used adaptively in the solu-
tion process in the framework of MOEA/D by using a multi-
grid scheme. The proposed idea was tested on a knapsack
problem with four and six objectives and performed better than
the original version of MOEA/D. The authors extended their

work in [32], and modified the penalty boundary intersection
(PBI) function in MOEA/D to handle different kinds of Pareto
fronts. Two modified PBI functions called two-level PBI and
quadratic PBI were tested in the MOEA/D framework and the
algorithm with two new scalarizing functions performed better
than the original version.

A detailed study on different scalarizing functions and
their corresponding parameters was conducted in [33]. Instead
of proposing a new algorithm, the authors showed the per-
formance of the different scalarizing functions in a simple
(1+λ)-evolutionary algorithm [33] on bi-objective optimization
problems. In [17], the performance of 15 different scalarizing
functions was tested in MOEA/D [26] and MOMBI-II [34]
algorithms. The authors used a tool called EVOCA [35] to tune
the parameter values in different functions. Two algorithms
MOEA/D and MOMBI-II [34] with different scalarizing func-
tions were tested on Lame Supersphere test problems [36].
The authors found out that the performance of two algorithms
depends on the choice of scalarizing functions.

In [19], a hyper-heuristic was used to rank different scalar-
izing functions with a measure called s-energy [37]. The
proposed algorithm was tested on ZDT, DTLZ and WFG
benchmark problems with 2-10 objectives and compared with
MOMBI-II, MOEA/D and NSGA-III and found better re-
sults in most of the instances. In [38], two new scalarizing
functions called the multiplicative scalarizing function (MSF)
and penalty-based scalarizing function (PSF) were used in
MOEA/D-DE [39]. The proposed scalarizing functions per-
formed better than penalty boundary intersection, Chebyshev
and weighted sum scalarizing functions.

The first algorithm in Bayesian multiobjective optimization
method using a scalarizing function and building a surrogate
on it was proposed in [11] and known as ParEGO (for Pareto
based efficient global optimization). A Gaussian process model
[40] was used as a surrogate of the scalarizing function.
In the algorithm, a set of reference vectors was uniformly
generated in the objective space using simplex lattice-design
method [41]. In each iteration, the algorithm randomly selected
a reference vector among a set of vectors, which was then
used in the Chebyshev function to build the surrogate. The
algorithm was compared with NSGA-II [42] and performed
significantly better.

In a recent study in [12], three scalarizing functions, hy-



pervolume improvement, dominance ranking, and minimum
signed distance were proposed in solving expensive MOP.
These scalarizing functions do not use reference vectors and
preserve the dominance relationship. The authors also used
the framework of EGO and compared with SMS-EGO [9] and
ParEGO (i.e. with Chebyshev scalarizing function). The results
outperformed the ParEGO algorithm and performed similarly
to SMS-EGO in some cases.

III. SCALARIZING FUNCTIONS

In this section, we summarize 15 different scalarizing
functions. All these functions have already been explained in
details in the literature [43], [21]. Therefore, we provide a
brief summary of these functions.

We define a multiobjective optimization problem (MOP) as:

minimize {f1(x), . . . , fk(x)}
subject to x ∈ S

(1)

with k(≥ 2) objective functions fi(x): S→ <n. The vec-
tor of objective function values is denoted by f(x) =
(f1(x), . . . , fk(x))

T . The (nonempty) feasible space S is a
subset of the decision space <n and consists of decision
vectors x = (x1, . . . , xn)

T that satisfy all the constraints. The
scalarizing functions are as follows:
1) Weighted sum (WS): The weighted sum combines dif-

ferent objectives linearly and has been widely used [21].
It converts the a MOP into a single-objective optimization
problems as:

g =

k∑
i=1

wifi. (2)

One major limitation in using WS is that it cannot find
solutions in non-convex parts of the Pareto front.

2) Exponential weighted criterion (EWC): EWC was first
used in [44] to overcome the limitations of WS:

g =

k∑
i=1

exp(pwi − 1) exp(pfi). (3)

As mentioned in [43], the performance of the function
depends on the value of p and usually a large value of
p is needed.

3) Weighted power (WPO): The weighted power defined
below can find solutions when the Pareto front is not
convex. However, it also depends on the parameter p as
in EWC.

g =

k∑
i=1

wi(fi)
p. (4)

4) Weighted norm (WN): The weighted norm (or Lp metric)
is a generalized form of the weighted sum:

g = (

k∑
i=1

wi|fi|p)1/p. (5)

The weighted norm has been used in MOEA/D [26].
Likewise EWC and WPO, its performance also depends
on the choice of the p parameter.

5) Weighted product (WPR): The weighted power is defined
as:

g =

k∏
i=1

(fi)
wi . (6)

It is also called as product of powers [43] and can find
solutions in non-convex parts of the Pareto front. However,
like EWC, WPO and WN, its performance depends on the
value of p.

6) Chebyshev function (TCH): The Chebyshev function can
be derived from the WN function with p = ∞. This
function has been used in many EMO algorithms such as
MOEA/D [26] and its versions [27]:

g = max
i

[wi|fi − z∗i |], (7)

where z∗i is the ideal or utopian objective vector. In this
work, we normalize the expensive objective function values
in the range [0,1] before building the model. Therefore, z∗i
is a vector of zeros.

7) Augmented Chebyshev (ATCH): In [24], it was suggested
that weakly Pareto optimal solutions can be avoided by
adding an augmented term to TCH:

g = max
i

[wi|fi − z∗i |] + α

k∑
i=1

|fi − z∗i | (8)

Moreover, this function was the first to be used as a
surrogate in [11].

8) Modified Chebyshev (MTCH): A slightly modified form
of MTCH was used in [45]:

g = max
i

[
wi(|fi − z∗i |+ α

k∑
i=1

|fi − z∗i |)
]

(9)

As mentioned in [21] that main different between ATCH
and MTCH is the slope to avoid weakly Pareto optimal
solutions.

9) Penalty boundary intersection (PBI): The PBI function
was first used in MOEA/D and used as the selection
criterion for balancing convergence and diversity:

g = d1 + θd2, (10)

where d1 = |f · w
‖w‖ | and d2 = ‖f − d1

w
‖w‖‖. The PBI

function has been widely used in EMO algorithms [27].
However, as shown in [46] its performance is effected by
the θ parameter.

10) Inverted penalty boundary intersection (IPBI): To en-
hance the diversity of solutions, IPBI was proposed in [47]:

g = θd2 − d1, (11)

where d1 = |f ′ · w
‖w‖ | and d2 = ‖f ′ − d1 w

‖w‖‖ and f
′
=

znadir− f . In this work, we considered the vector of worst
expensive objective function values as znadir.

11) Quadratic PBI (QPBI): Recently, an enhanced version of
PBI function was proposed in [32]:

g = d1 + θd2
d2
d∗
, (12)



where d1 and d2 are same as in PBI and d∗ is an adaptive
parameter and defined as:

d∗ = α
1

H

1

k

∑
(znadir − zideal) (13)

where α is a pre-defined parameter and H is a parameter
used in generating the reference (or weight vectors) in
decomposition based EMO algorithms. For more details
about these parameters, see [26], [28].

12) Angle penalized distance (APD): The APD function
is a recently proposed scalarizing function and used as
the selection criterion in reference vector guided many-
objective evolutionary algorithm (RVEA) [28]:

g = 1 + P (θ) · ‖f‖, (14)

where P (θ) = k( FE
FEmax )

α θ
γ , FE is the number of

expensive function evaluations at the current iteration and
FEmax is the maximum number of expensive function
evaluations. The angle between an objective vector f and
the reference vector to which it is assigned is represented
by θ and the minimum of all angles between a reference
vector selected and other reference vectors is represented
by γ. This function adaptively balances the convergence
and diversity based on the maximum number of function
evaluations. The performance of the function depends on
the value of α and FEmax.

13) Hypervolume improvement (HypI): The HypI is a re-
cently proposed scalarizing function in a surrogate-based
algorithm [12]. Given a set of solutions X , a nondominated
sorting is performed to find fronts of different ranks as in
[42]. Let the different fronts of ranks 1, 2, . . . are denoted
by P1, P2, . . . and the hypervolume of a front Pk given a
reference point r is denoted by H(Pk). Then hypervolume
improvement a solution x ∈ X belongs to the front Pk is
then given by:

g = H(x ∪ Pk+1). (15)

In this way, the Pareto dominance is preserved when
calculating the hypervolume contributions of solutions.
The performance of the function can be sensitive to the
reference point in calculating the hypervolume.

14) Dominance ranking (DomRank): This function is also
recently proposed in [12] and assigns fitness values based
on the ranks of different solutions as done in the MOGA
algorithm [48]. In [48], a solution is assigned a rank as:
rank(x)= 1+p, where p is number of solutions dominating x.
Similarly, in [12], given a set of solutions (with expensive
evaluations) X the fitness of a solution x is:

g = 1− rank(x)− 1

|X| − 1
. (16)

For instance, the rank of a solution x′ dominated by
all other solutions would be rank(x′) = 1 + |X| − 1,
and therefore, the fitness of solution would be g(x′) =

1− 1+|X|−1−1
|X|−1 = 0. Similarly, the rank of solutions belong

the first front will be 1. This function is maximized to
find samples for training the surrogates. For problems with
many-objectives, where all solutions are non-dominated

Gaussian Process parameters
Kernel (covariance function) squared exponential
Length scale bounds lower: 1e-6, upper: 100
Amplitude/signal standard devia-
tion bounds

lower: 1e-6, upper: 100

Noise standard deviation bounds lower: 1e-9, upper: 1
Optimization algorithm to maxi-
mize the likelihood function

Genetic Algorithm

TABLE I: Parameters used when building the Kriging model,
lb and ub denote the lower and upper bounds, respectively

TABLE II: Number of variables (n) for WFG and DTLZ suites

WFG DTLZ
k d l n n
2 4 4 8 6
3 4 4 8 7
5 8 4 12 9
10 18 4 22 14

i.e. belong to only one front, this scalarizing function
might not be suitable. In other words, if all solutions are
nondominated, their DomRank values will be same and the
algorithm embedding the model will not be able to solve
problems with many-objectives.

15) Minimum Signed Distance (MSD) [12]: The MSD func-
tion is proposed in [12] and defined as:

g = min d(x′, x) (17)

where x′ are the solutions belong the first front (or rank
one solutions) and d(x′, x) =

∑k
i=1 fi(x

′) − fi(x). For
instance, if a solution a dominates another solution b, then
g(a, x′) > g(b, x′). Similar to DomRank, this function is
not suitable for problems with many-objectives.

IV. NUMERICAL EXPERIMENTS

This section provides a comparison of different functions
after building surrogates on them. As mentioned we used the
framework of EGO [22] and built Gaussian process mod-
els as surrogates on the scalarizing functions. The expected
improvement criterion in EGO is maximized with a genetic
algorithm for selecting samples when updating the surrogates.
The parameters of the Gaussian Process including kernel and
bounds of hyperparameters are mentioned in Table I.

A. Performance of different scalarizing functions

To compare the performance of different scalarizing func-
tions, we used DTLZ [49] and WFG [50] problems with 2,
3, 5 and 10 number of objectives. In DTLZ suite, the number
of variables was kept to k+5-1, where k is the number of
objectives. For the WFG suite, the number of variables is
defined by position (d) and distance (l) parameters. For two
objectives, d was set to four and 2 × (k − 1) for the rest of
the objectives. The distance parameter was set to four for all
objectives. To be summarized, the number of variables (n) for
DTLZ and WFG suites is given in Table II:

There are several parameters in different scalarizing func-
tions and we used the recommended values from the respective
articles. Different parameter values used are provided in Table



TABLE III: Parameters values used in different scalarizing
functions

Scalarizing function Parameter value
EWC p = 100
WPO p = 3
WN p = 0.5

ATCH α = 0.0001
MTCH α = 0.0001

PBI θ = 5
IPBI θ = 5
QPBI θ = 1
APD α = 2
HypI r (In table IV for DTLZ problems)

TABLE IV: Reference point in calculating hypevolumes in
HypI and as performance measure

Problem reference point
DTLZ1 400 × (1,k)
DTLZ2 1.5 × (1,k)
DTLZ3 900 × (1,k)
DTLZ4 2 ×(1,k)
DTLZ5 1.5 × (1,k)
DTLZ6 6 × (1,k)
DTLZ7 5 × (1,k)

III. For WFG problems, the reference point r in HyPI is
used as 2× znadir. The vector znadir contains the maximum
objective function values in the Pareto front of the given prob-
lem. We ran 21 independent runs for each scalarizing function
with 300 maximum number of expensive function evaluations.
We show the performance of different functions with inverted
generational distance (IGD) and hypervolume. To compare the
results of different functions, we used the Wilcoxon rank sum
test with Bonferroni correction. The mean IGD values with
standard deviation (in parentheses) for DTLZ problems are
provided in Table V. The results with hypervolume and other
detailed plots are in the supplementary material.

In Table V, the values statistically similar to the best value
are in bold, the best value is in the circle and the worst value
is underlined. As can be seen, the performance of different
functions varies with different problems and three functions
PBI, HypI, and APD outperformed other functions. Moreover,
WS, ATCH, and DomRank never had the best IGD value in
any of 64 instances. Note that, all these three functions have
statistically similar values to the best IGD value in many cases.
Another interesting observation from the results is that three
different scalarizing functions ATCH, DomRank and MSD
used in the literature for building surrogates on them were
not in the top list. On the other hand, scalarizing functions
used as the selection criterion in EMO algorithms e.g. APD
and PBI performed significantly better. These results indicate
that one needs to be cautious in selecting a scalarizing function
in solving an expensive MOP.

B. Sensitivity towards number of objectives

When using scalarizing functions for building surrogates
on them, the number of objectives can play a crucial role
in their performance. Before using the surrogate built on the

scalarizing function, we can analyze and visualize the fitness
landscape with respect to uncertainty of predictions.

An example of fitness landscapes of DTLZ2 with two and
10 objectives for different scalarizing functions are shown in
Figures 2 and 3, respectively. We used the same training data
for all scalarizing functions. Then we generated a testing data
set and used the model to get the predicted values (solid lines
in figures) and uncertainties of the predicted values (shaded
region in figures). For visualization purposes, we could show
only one of the variables values.

As can be seen, for the same training data set (and therefore
same objective function values), different scalarizing functions
gave different values. Therefore, the surrogate model to be
built strongly depends on the g function values. For instance, in
many-objective case, most of the solutions were nondominated
and functions which used the property of Pareto dominance
produced similar g values, as can be seen in the plots of
DomRank, and MSD in 10 objective cases. As the g function
values were the same for most of the solutions, the algorithm
(EGO in this work) for finding a sample to update the surrogate
by optimizing an infill criterion (EI in this work) was not
able to enhance the accuracy of the surrogates. Scalarizing
functions like APD and PBI did not use the property of Pareto
dominance and suitable for a large number of objectives.
In addition to the sensitivity towards many objectives, some
functions, EWC and WS did not perform well in most of
the problems. In EWC, the g function landscape is very
rugged as can be seen in figures and WS has the problem
of finding solutions in the non-convex parts of the Pareto
front. These results show that one needs to see or analyze
the landscape of scalarizing functions for the given training
data set before using them in the optimization. We observed
the similar behavior on other problems and landscapes on
other problems with different objectives are provided in the
supplementary material1.

V. CONCLUSIONS

This work focused on reviewing, analyzing and compar-
ing different scalarizing functions in Bayesian multiobjective
optimization for solving (computationally) expensive multi-
and many-objective optimization problems. We provided an
overview of different functions with their merits and demerits.
We built the surrogates on the different functions and com-
pared them with the different number of objectives. The results
clearly showed that some functions outperformed others in
many cases and some did not work in most of the cases. We
then analyzed the fitness landscape of different functions with
respect to the number of objectives. We found out that some
functions are sensitive to the number of objectives. In this
work, we did not compare the scalarizing functions with other
methods which do not use scalarizing function. Therefore,
comparison with other algorithms is a topic for future research.

1https://github.com/tichugh/SCF
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Fig. 2: Approximated scalarizing function values (in solid line) with their uncertainty (in gray) on DTLZ2 two objectives. The
dots represent the training data set.
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Fig. 3: Approximated scalarizing function values (in solid line) with their uncertainty (in gray) on DTLZ2 10 objectives. The
dots represent the training data set.



Problem k WS EWC WPO WN WPR TCH ATCH MTCH
2 42.26 (8.13) 46.28 (16.52) 37.95 (20.37) 41.54 (7.98) 38.38 (9.24) 41.15 (7.59) 38.86 (5.55) 38.98 (7.00)

DTLZ1 3 41.55 (5.51) 41.03 (14.44) 33.07 (7.59) 42.60 (5.81) 34.86 (5.83) 39.33 (3.66) 39.81 (2.91) 40.32 (2.86)
5 38.40 (5.30) 34.56 (11.79) 29.82 (8.37) 38.85 (5.24) 37.24 (10.61) 36.92 (5.07) 38.88 (5.72) 38.23 (3.84)
10 38.65 (12.18) 39.07 (15.04) 34.51 (9.55) 39.29 (13.78) 31.14 (11.38) 35.91 (12.20) 37.54 (10.52) 38.09 (9.53)
2 0.19 (0.03) 0.14 (0.03) 0.05 (0.01) 0.19 (0.03) 0.19 (0.03) 0.04 (0.00) 0.04 (0.00) 0.04 (0.00)

DTLZ2 3 0.26 (0.02) 0.21 (0.02) 0.14 (0.01) 0.27 (0.02) 0.25 (0.01) 0.16 (0.01) 0.16 (0.01) 0.17 (0.02)
5 0.41 (0.02) 0.39 (0.04) 0.32 (0.01) 0.40 (0.02) 0.37 (0.02) 0.40 (0.01) 0.40 (0.02) 0.40 (0.01)
10 0.81 (0.04) 0.82 (0.03) 0.76 (0.02) 0.80 (0.05) 0.83 (0.04) 0.80 (0.03) 0.81 (0.04) 0.81 (0.03)
2 93.74 (10.84) 123.41 (43.55) 94.69 (20.13) 88.45 (12.71) 87.19 (8.14) 88.54 (14.42) 89.96 (12.05) 92.26 (12.10)

DTLZ3 3 99.90 (8.77) 115.48 (20.65) 90.15 (25.95) 90.38 (8.50) 89.41 (14.54) 99.88 (6.58) 97.63 (8.99) 93.69 (12.77)
5 93.10 (13.14) 137.71 (30.78) 105.19 (32.37) 100.31 (11.86) 93.92 (28.96) 96.68 (15.43) 95.11 (17.12) 95.96 (11.63)
10 101.40 (15.91) 116.94 (30.53) 103.88 (22.65) 109.04 (25.48) 117.87 (32.94) 90.99 (21.19) 103.90 (14.91) 93.17 (11.40)
2 0.34 (0.04) 0.41 (0.16) 0.34 (0.03) 0.38 (0.09) 0.45 (0.09) 0.32 (0.05) 0.33 (0.03) 0.33 (0.03)

DTLZ4 3 0.50 (0.05) 0.54 (0.08) 0.46 (0.03) 0.56 (0.05) 0.54 (0.08) 0.47 (0.03) 0.48 (0.04) 0.47 (0.04)
5 0.64 (0.03) 0.67 (0.06) 0.57 (0.02) 0.64 (0.03) 0.69 (0.04) 0.64 (0.03) 0.65 (0.04) 0.65 (0.04)
10 0.76 (0.03) 0.80 (0.03) 0.75 (0.03) 0.77 (0.02) 0.82 (0.02) 0.75 (0.03) 0.76 (0.02) 0.76 (0.03)
2 0.21 (0.03) 0.14 (0.02) 0.05 (0.01) 0.21 (0.03) 0.20 (0.03) 0.04 (0.01) 0.04 (0.01) 0.05 (0.00)

DTLZ5 3 0.18 (0.02) 0.13 (0.02) 0.03 (0.01) 0.18 (0.02) 0.18 (0.02) 0.06 (0.01) 0.07 (0.01) 0.06 (0.01)
5 0.18 (0.03) 0.12 (0.02) 0.04 (0.01) 0.18 (0.03) 0.17 (0.03) 0.09 (0.02) 0.08 (0.01) 0.09 (0.02)
10 0.15 (0.02) 0.11 (0.01) 0.06 (0.01) 0.15 (0.02) 0.15 (0.02) 0.14 (0.02) 0.14 (0.03) 0.14 (0.03)
2 0.41 (0.03) 3.67 (0.32) 0.19 (0.04) 0.40 (0.02) 0.62 (0.18) 0.36 (0.08) 0.37 (0.09) 0.39 (0.09)

DTLZ6 3 0.46 (0.07) 3.58 (0.24) 0.49 (0.14) 0.53 (0.11) 0.82 (0.19) 0.42 (0.10) 0.46 (0.07) 0.44 (0.06)
5 0.74 (0.12) 3.71 (0.26) 1.27 (0.42) 0.75 (0.15) 1.19 (0.32) 0.85 (0.13) 0.75 (0.18) 0.88 (0.18)
10 1.71 (0.50) 3.51 (0.33) 1.62 (0.46) 2.26 (0.59) 2.99 (0.50) 1.57 (0.39) 1.68 (0.29) 1.48 (0.32)
2 0.22 (0.02) 3.27 (0.89) 0.30 (0.05) 0.24 (0.08) 0.35 (0.03) 0.25 (0.02) 0.25 (0.03) 0.25 (0.01)

DTLZ7 3 0.47 (0.05) 5.10 (1.16) 0.69 (0.13) 0.56 (0.04) 0.58 (0.04) 0.44 (0.03) 0.46 (0.03) 0.45 (0.03)
5 0.98 (0.05) 8.16 (2.35) 2.67 (1.76) 0.98 (0.04) 0.99 (0.04) 0.92 (0.02) 0.92 (0.07) 0.94 (0.03)
10 1.55 (0.08) 13.92 (3.39) 4.55 (3.09) 1.44 (0.05) 1.73 (0.14) 1.58 (0.07) 1.56 (0.07) 1.56 (0.06)

Problem k PBI IPBI HypI DomRank MSD QPBI APD
2 36.95 (6.20) 41.75 (12.41) 70.82 (24.42) 36.93 (10.38) 33.28 (12.12) 38.19 (11.76) 36.44 (4.26)

DTLZ1 3 34.63 (6.66) 43.24 (10.63) 60.13 (21.74) 37.79 (15.00) 32.37 (10.85) 30.92 (11.70) 34.58 (8.18)
5 13.42 (8.23) 36.59 (12.28) 48.57 (16.87) 34.74 (10.43) 21.29 (13.64) 26.69 (5.78) 28.94 (10.56)
10 31.60 (16.09) 36.73 (11.10) 39.49 (15.73) 39.97 (14.51) 34.94 (7.95) 35.80 (14.57) 29.89 (15.99)
2 0.11 (0.01) 0.08 (0.02) 0.08 (0.02) 0.10 (0.03) 0.13 (0.05) 0.09 (0.02) 0.04 (0.01)

DTLZ2 3 0.15 (0.01) 0.26 (0.02) 0.11 (0.01) 0.18 (0.02) 0.16 (0.03) 0.15 (0.01) 0.14 (0.01)
5 0.25 (0.01) 0.45 (0.01) 0.28 (0.02) 0.36 (0.01) 0.30 (0.06) 0.23 (0.00) 0.23 (0.00)
10 0.83 (0.04) 0.85 (0.03) 0.72 (0.06) 0.77 (0.04) 0.75 (0.06) 0.81 (0.04) 0.74 (0.04)
2 93.65 (14.09) 108.98 (20.84) 177.05 (64.60) 100.48 (36.21) 98.52 (13.61) 90.55 (11.43) 94.19 (13.95)

DTLZ3 3 91.46 (28.57) 98.01 (27.37) 169.47 (53.32) 112.14 (27.98) 78.94 (24.08) 68.90 (25.97) 104.18 (23.84)
5 58.51 (39.42) 102.92 (24.46) 170.63 (55.24) 117.51 (39.97) 75.52 (28.84) 101.55 (11.68) 56.92 (46.26)
10 82.01 (29.42) 108.02 (36.65) 126.97 (55.58) 118.07 (23.69) 102.90 (27.71) 98.89 (11.89) 99.95 (46.68)
2 0.30 (0.06) 0.32 (0.05) 0.26 (0.08) 0.33 (0.05) 0.34 (0.03) 0.33 (0.07) 0.22 (0.08)

DTLZ4 3 0.45 (0.04) 0.49 (0.06) 0.50 (0.13) 0.50 (0.04) 0.41 (0.09) 0.42 (0.03) 0.41 (0.07)
5 0.55 (0.02) 0.73 (0.09) 0.82 (0.09) 0.63 (0.05) 0.71 (0.08) 0.58 (0.04) 0.56 (0.02)
10 0.72 (0.04) 0.88 (0.02) 0.91 (0.03) 0.78 (0.03) 0.76 (0.03) 0.72 (0.03) 0.78 (0.04)
2 0.12 (0.01) 0.08 (0.01) 0.07 (0.01) 0.09 (0.02) 0.14 (0.06) 0.09 (0.01) 0.04 (0.01)

DTLZ5 3 0.05 (0.01) 0.14 (0.02) 0.05 (0.01) 0.09 (0.02) 0.08 (0.02) 0.04 (0.01) 0.06 (0.01)
5 0.08 (0.02) 0.17 (0.02) 0.07 (0.01) 0.08 (0.02) 0.06 (0.02) 0.03 (0.01) 0.02 (0.00)
10 0.13 (0.03) 0.15 (0.02) 0.10 (0.02) 0.09 (0.02) 0.08 (0.02) 0.09 (0.01) 0.05 (0.01)
2 0.32 (0.10) 1.48 (0.24) 0.48 (0.22) 0.73 (0.51) 0.36 (0.08) 0.63 (0.28) 0.41 (0.18)

DTLZ6 3 0.24 (0.04) 1.53 (0.44) 1.50 (0.62) 2.69 (0.66) 1.68 (1.71) 0.57 (0.15) 0.24 (0.05)
5 0.31 (0.04) 2.33 (0.53) 2.48 (0.93) 2.52 (0.76) 3.60 (0.51) 2.24 (0.38) 0.34 (0.05)
10 0.55 (0.08) 3.55 (0.47) 3.20 (0.45) 3.26 (0.51) 3.61 (0.45) 2.43 (0.50) 1.01 (0.50)
2 0.24 (0.02) 0.37 (0.00) 0.08 (0.02) 0.41 (0.11) 0.32 (0.21) 0.73 (0.13) 0.23 (0.09)

DTLZ7 3 0.81 (0.13) 0.85 (0.07) 0.22 (0.12) 0.73 (0.14) 0.63 (0.32) 1.25 (0.33) 0.67 (0.19)
5 2.20 (0.36) 5.15 (2.82) 0.76 (0.13) 2.20 (0.62) 1.95 (0.93) 2.93 (0.23) 2.03 (0.40)
10 3.84 (0.49) 13.56 (3.45) 6.86 (5.17) 7.89 (4.05) 11.42 (4.56) 8.28 (2.66) 6.03 (2.87)

TABLE V: Mean IGD values and standard deviation (in parentheses) for DTLZ problems. The values statistically similar to
the best one are in bold, the best value is encircled the worst value is underlined
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[20] K. Miettinen and M. M. Mäkelä, “On scalarizing functions in multiob-
jective optimization,” OR Spectrum, vol. 24, pp. 193–213, 2002.

[21] K. Miettinen, Nonlinear multiobjective optimization. Boston, MA:
Kluwer, 1999.

[22] D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of
expensive black-box functions,” Journal of Global Optimization, vol. 13,
pp. 455–492, 1998.

[23] C.-L. Hwang and A. Masud, Multiple Objective Decision Making-
Methods and Applications. Springer, 1979.

[24] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and
Application. New York: John Wiley & Sons, 1986.

[25] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, pp. 577–601, 2014.

[26] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, pp. 712–731, 2007.

[27] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,” IEEE
Transactions on Evolutionary Computation, vol. 21, pp. 440–462, June
2017.

[28] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, pp. 773–791, 2016.

[29] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Proceedings of IEEE
Congress on Evolutionary Computation. IEEE, 2008, pp. 2419–2426.

[30] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys, vol. 48, pp. 13–35,
2015.

[31] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Simultaneous
use of different scalarizing functions in MOEA/D,” in Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2010, pp. 519–526.

[32] H. Ishibuchi, K. Doi, and Y. Nojima, “Use of piecewise linear and non-
linear scalarizing functions in MOEA/D,” in Parallel Problem Solving
from Nature – PPSN XIV, J. Handl, E. Hart, P. R. Lewis, M. López-
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