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Abstract—This paper presents an application of Evolutionary
Computation (EC) to the benchmark of the safety isolating
transformer problem. The benchmark adopts multidisciplinary
optimization strategies, namely the multidisciplinary feasible
(MDF) and the individual discipline feasible (IDF) formulations.
The benchmark meets the requirements of engineers and sci-
entists working with machine design problem, such as in the
first part of the design process that is the choice of structure
and materials. The EC methods employed in this paper are
based on Evolutionary Algorithms (EAs), namely two variants of
Differential Evolution (DE), two variants of Hybrid Adaptive DE
(HyDE) and the Vortex Search (VS). The results showed in this
paper suggest that EA methods are competitive with the classical
optimization method, the sequential quadratic programming
(SQP). Among the developed EAs, HyDE-DF is able to obtain
better values than SQP on a significant battery of trials.

I. INTRODUCTION

Optimal design of the safety isolation transformer is a
complex problem, which requires accounting for different
physical phenomena. The transformer can be represented by an
analytical model [1]. Usually, analytical models can be solved
within fast number evaluations and with acceptable level of
accuracy. The study in [2] addresses the optimal design of the
isolation transformer adopting the use of single-level multidis-
ciplinary optimization strategies, namely the multidisciplinary
feasible (MDF), individual discipline feasible (IDF) and all-
at-once (AAO). While single-level methods (MDF, IDF and
AAO) have been widely studied and have made full proof of
their capabilities in the past. However, most of the studies
available in the literature have addressed the optimal design
of transformers using classical optimization approaches [2].
Evolutionary algorithms (EA) are an alternative to classical
optimization and have showed their potential to a high num-
ber of applications in power systems [3]. EAs have gained
some attention due to its effectiveness in providing acceptable
solutions to complex problems when many times classical
optimization cannot deal. EAs present numerous advantages
that contribute to their success in the energy domain, including
their simplicity of implementation and can handle nonlinear,
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non-differentiable and non-separable functions without much
of convergence compromise [3]. This paper is based on the
benchmark presented earlier in [4] of the multidisciplinary
optimal design of a single-phase low-voltage safety isolation
transformer. We apply advanced state-of-the-art EAs methods
to the design problem of safety transformer and compare the
results with those available on the L2EP benchmark1. One of
the EAs we adopt and develop in the work is called Hybrid
Adaptive Differential Evolution or HyDE2. HyDE has been
developed by the authors of ISEP/GECAD and has showed
excellent performance in the past in a decent number of
problems and benchmark functions [5], [6], [7]

This paper is organized as follows: after this Introduction,
Section II describes the optimization problem of the safety
transformer design; Section III presents the formulation of two
benchmark problems (MDF and IDF); Section IV presents the
adopted HyDE algorithm in the paper (including other EAs
that have been included for comparison); Section V presents
the results and discussion of the paper while Section VI
discloses the conclusions of the work.

II. SAFETY TRANSFORMER DESIGN PROBLEM

Many analytical test functions are available in the litera-
ture to compare optimization algorithms. They exhibit some
interesting features such as explicit equations, fast to com-
pute, obvious minimum, and scaled decision variables. As
algorithms’ performances depend on the optimization problem
and the model, the benchmark used in this paper aims to
compare them for design (pre-sizing) problems in electrical
engineering and more precisely in electromagnetic devices.
This benchmark exhibits other interesting features such as
multiphysics, implicit equations, highly constrained, badly
scaled design variables, and multiple minima. Fully detailed
materials of this benchmark are available online1. The physical
phenomena within the transformer are thermal, electric and
magnetic, all expressed in equations. This model consists in
two sub-models. The first one contains electric and magnetic
equations and requires the knowledge of copper temperature
and voltage drop. Its assumptions are uniform distribution of
magnetic induction in the iron core and no voltage drop due
to the magnetizing current. The magnetic field in coils is in

1http://optimisation.l2ep.ec-lille.fr/benchmarks/
2HyDE is available in https://fernandolezama.github.io/CodesImple
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the direction of the coil axis. The thermal sub-model requires
the knowledge of iron and copper losses. Its main assumption
is uniform temperature in coils and iron. To address the
multidisciplinary coupling, two formulations are used.

A. Multidisciplinary feasible

The multidisciplinary feasible (MDF) formulation ensures
the consistency of the model and solves the non-linear implicit
system by using a fixed-point loop. The electromagnetic sub-
model computes the iron and copper losses, and updates the
voltage drop. The losses are inputs of the thermal sub-model
that computes the temperatures. At the beginning of the next
iteration, the electromagnetic sub-model updates the copper
conductivity according to its temperature, and the voltage drop.
Consequently, both sub-models run several times for each
model evaluation.

B. Individual discipline feasible

In the individual discipline feasible (IDF) formulation, the
model is not consistent. From the initial values of voltage
drop and copper temperature, the electromagnetic sub-model
computes the losses and updates the voltage drop. The thermal
sub-model computes the temperatures from the losses. After
one run of both sub-models, the copper temperature and
voltage drop are a priori not equal to their initial values. The
computing time of the model for IDF is consequently smaller
than for MDF.

III. BENCHMARK PROBLEMS FORMULATION

According to the multidisciplinary formulation used, two
optimization problems are given.

A. Multidisciplinary feasible (MDF)

The single-objective optimization problem of a safety-
isolating transformer contains seven design variables. There
are three parameters a, b, c for the shape of the lamination, one
for the frame d, two for the section of conductors S1, S2, and
one for the number of primary turns n1. There are eight non-
linear inequality constraints in the MDF optimization problem.
The copper and iron temperatures Tcond, Tiron should be less
than 120oC and 100oC, respectively. The efficiency should be
higher than 80%. The relative magnetizing current I10/I1 and
drop voltage ∆V2/V20 should both be less than 10%. Finally,
the filling factors of coils f1 and f2 should both be lower
than 0.5. The objective is to minimize the total mass Mtot of
iron and copper materials. As a mechanism prevents from an
infinite fixed-point loop, a constraint on the residue is added
to guarantee the convergence. Fig. 1 shows the structure of
the safety isolating transformer considered in this problem.

To summarize, the optimization problem is minimization of
Mtot (total mass in kg):

minimize Mtot (1)

s.t.

Tcond ≤ 120◦C; Tiron ≤ 100◦C;
I10
I1

≤ 0.1;
∆V2

V20
≤ 0.1

Fig. 1: Structure of a safety isolating transformer [4].

f1 ≤ 1; f2 ≤ 1; η ≥ 0.8; residue < 10−6

3mm ≤ a ≤ 30mm; 14mm ≤ b ≤ 95mm

6mm ≤ c ≤ 40mm; 10mm ≤ d ≤ 80mm

200 ≤ n1 ≤ 1200; 0.15mm2 ≤ S1 ≤ 19mm2

0.15mm2 ≤ S2 ≤ 19mm2

B. Individual discipline feasible (IDF)

To ensure the model consistency, two additional equality
constraints are used with two additional variables that link the
physics: Tcond IDF and ∆V2 IDF are respectively the initial
values for the copper temperature and the voltage drop. The
additional equality constraints are the difference between the
initial values and the updated ones.

The optimization problem becomes:

minimize Mtot (2)

s.t.

Tcond ≤ 120◦C; Tiron ≤ 100◦C;
I10
I1

≤ 0.1;
∆V2

V20
≤ 0.1

f1 ≤ 1; f2 ≤ 1; η ≥ 0.8; residue < 10−6

3mm ≤ a ≤ 30mm; 14mm ≤ b ≤ 95mm

6mm ≤ c ≤ 40mm; 10mm ≤ d ≤ 80mm

200 ≤ n1 ≤ 1200; 0.15mm2 ≤ S1 ≤ 19mm2

0.15mm2 ≤ S2 ≤ 19mm2

40oC ≤ Tcond IDF ≤ 400oC

0.1V ≤ ∆V2 IDF ≤ 24V



The size of the optimization problem is larger with IDF
formulation which may lead to a higher number of model
evaluations. Moreover, some algorithms could be in difficulty
with equality constraints.

IV. HYDE-DE AND OTHER EVOLUTIONARY ALGORITHMS

As we can see, the optimal design of a safety isolation trans-
former is a complex problem that cannot be easily solved, even
with the use of deterministic techniques. It is in this situations
when the use of alternatives methods, such as approximate
algorithms, becomes reasonable to find solutions in a more ef-
ficient way. Thus, we evoke the use of evolutionary algorithms
(EA) for the proposed optimization problem. EAs are a family
of optimization algorithms inspired by the evolution process
seen in nature [3]. Once a problem is mathematically defined,
including the objective function and a way to represent a
solution to the problem, different EAs can be explored to find
optimal and near-optimal solutions to a given problem. In this
paper, we applied a recently proposed self adaptive version
of the well-known differential evolution (DE) called Hybrid-
Adaptive DE with decay function, or HyDE-DF [8]. HyDE-DF
achieved the third place (out of 36 algorithms) in the 100-digit
challenge at CEC/GECCO 2019 [7].

In addition, we compare its performance againts other EAs,
namely DE/rand/1 and DE/target-to-best/1 [9], HyDE [5] (a
previous version of HyDE-DF), and the vortex search (VS)
[10]. We provide an explanation to these EAs in the following
subsections.

A. Hybrid-Adaptive DE with Decay Function

HyDE-DF is inspired in the evolutionary mechanism of
the original DE. For instance, HyDE-DF uses a population
(Pop) of individuals (solutions to the problem) ~xj,i,G =
[x1,i,G, ..., xD,i,G], where G is the generation number, and
i = [1, ..., NP ] is the number of individuals in the population,
to optimize a D-dimensional function. In an initialization
phase, NP solutions are generated randomly within the lower
and upper ranges [xlb,j , xub,j ] (i.e., the bounds defined in the
design variables of the isolated transformer in Eqs. 1 and 2).
HyDE-DF follows the general iterative process of EAs by
creating new solutions applying a mutation and recombination
operator, and performing elitist selection (solutions with better
performance in the objective function survive into the next
generation).

The first difference between DE and HyDE-DF is in the
mutation operator. HyDE-DF uses a new mutation operator
known as “DE/target-to-perturbedbest/1” (similar to that in
HyDE) in combination with a decay function as follows:

~mi,G = ~xi,G + δG · [F 1
i (ε · ~xbest − ~xi,G)] + F 2

i (~xr1,G − ~xr2,G)
(3)

where F 1
i and F 2

i , are scale factors in the range [0, 1]
independent for each individual i, and ε = N (F 3

i , 1) is a
random perturbation factor taken from a normal distribution
with mean F 3

i and standard deviation 1. F 1
i , F 2

i and F 3
i are

updated each iteration following the same rule of a well-known
adaptive version of DE called jDE algorithm (see Sect. III.B
of [11]). The new defined operator modifies the DE/target-
to-best/1 strategy with a perturbation of the best individual
(inspired by the evolutionary PSO [12]). This modification
tries to take advantage of the strong convergence properties
towards the best solution of these two strategies, but might
suffer from premature convergence in some cases. To alleviate
the premature convergence effect, the δG factor is used to
gradually decrease the influence of the term F 1

i (ε·~xbest−~xi,G)
responsible for the fast convergence towards the best individual
in the population.
δG is a function that decreases its value from 1 → 0,

gradually mitigating the influence towards xbest, and taking
advantage of the inherent DE exploitation capabilities in later
stages of the evolutionary process. The decay factor at each
generation G is calculated as:

δG = e1−1/a2

; with a = (GEN −G)/GEN (4)

where a is a value that linearly decreases from 1 → 0.
Such a decrease value of a is proportional to the number of
generations GEN . Figure 2 is used to illustrate the impact
of the decay factor in the evolutionary process. It can be
noticed that the decay factor reaches a value near to 0 at the
60% of the evolutionary process. In this way, the operator has
strong exploration properties towards the xbest in the first part
of the evolutionary process, while switching to a more local
exploitation phase at the end of it.

After the mutation operator is applied, the recombination
and selection process follow the same rules as the original DE.
For instance, the recombination operator is applied between
the mutant and the current target vector as:

~tj,i,G =

{
~mj,i,G if (randi,j [0, 1] < Cr) ∨ (j = Rnd)
~xj,i,G otherwise

(5)
where Cr is the recombination parameter that is updated

with the same jDE rule [13], and Rnd is a random integer in
the range [1, D] to guarantee that at least one element is taken
from the mutant individual ~mi,G.

New individuals are evaluated in a given fitness function to
measure the performance of an individual (i.e., the objective
functions described in Eqs. 1 and 2). After that, the elitist
selection process is performed and good solutions are pre-
served while solutions with lower fitness are deleted from the
population.

As can be seen, the second difference between DE and
HyDE-DF resides in the self-adaptation of parameters in-
volved. HyDE-DF uses the same mechanism as jDE algorithm
[13] to self-control the parameters F 1

i , F
2
i , F

3
i and Cri and

avoid the tuning of them for each problem. The only differ-
ence, regarding jDE, is that the main operator of HyDE-DF
employs three Fi parameters instead of just one. Therefore,
each individual in the population is extended with parameter
values F 1

i = F 2
i = F 3

i = 0.5 and Cri = 0.9.
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Fig. 2: HyDE-DF decay factor is used to gradually switch between the original HyDE operator to the DE/rand/1 operator.

B. Other EAs used for comparison

In this subsection, we briefly describe the algorithms used
for comparison purposes. The reader is directed to the follow-
ing references for further details: A detailed explanation of
DE can be found in [14]; HyDE is described in [5]; VS is
introduced in [10].

• DE/rand/1 is the most basic version of the main of
operator of DE, yet has been successfully applied to a
wide range of domains and problems. The main operator
of DE/rand/1 is defined as:

~mi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (6)

where ~xr1,G, ~xr2,G, ~xr3,G ∈ Pop are three random in-
dividuals from the Pop, mutually different from each
other. F is a mutation parameters usually set in the
range [0, 1]. After that, the recombination and selection
operators follows the same mechanisms as HyDE-DF.

• DE/current-to-best/1 strategy uses information of the best
individual in the population to modify the convergence
capabilities of the algorithm. Its main operator is defined
as:

~mi,G = ~xi,G+F (~xbest,G−~xi,G)+F (~xr1,G−~xr2,G) (7)

where ~xi,G is the current target vector, and ~xbest,G is the
solution with best fitness in the population. DE/target-to-
best/1, in its original form, favors exploitation only since
all the vectors are attracted toward the same best position
found by the entire population,thereby converging faster
toward the same point.

• Hybrid-adaptive DE (HyDE) is a new self-adaptive ver-
sion of DE proposed in [11]. HyDE uses a new mutation
operator known as “DE/target-to-perturbedbest/1”:

~mi,G = ~xi,G +F 1
i (ε · ~xbest − ~xi,G) +F 2

i (~xr1,G − ~xr2,G)
(8)

where F 1
i and F 2

i , are scale factors in the range [0, 1]
independent for each individual i, and ε = N (F 3

i , 1)
is a random perturbation factor taken from a normal

distribution with mean F 3
i and standard deviation 1. F 1

i ,
F 2
i and F 3

i are updated each iteration following the same
rule of a well-known adaptive version of DE called jDE
algorithm (see Sect. III.B of [11]). The new defined
operator modifies the DE/target-to-best/1 strategy with
a perturbation of the best individual (inspired by the
evolutionary PSO [12]). This modification tries to take
advantage of the strong convergence properties towards
the best solution of these two strategies, but might suffer
from premature convergence in some cases.

• Vortex search (VS) is classified as a single-solution based
metaheuristic, although its framework is very similar to
that of EAs as well. In each iteration, an N given number
of neighbor solutions are generated using a multivariate
Gaussian distribution around the initial solution. Those
N solutions are evaluated in the fitness function, and the
single-solution is updated with the best solution found.
The radius of search is gradually reduced during the
iterative process, favoring exploitation capabilities in the
final iterations. This process is iterative repeated until a
stop criterion is achieved [10].

C. Encoding of solutions and fitness function

One positive feature of EAs that share similar frameworks
(i.e., initialization, mutation, recombination, and selection),
is that they can be applied easily once a valid encoding of
solutions and a fitness function is defined. The reason we
selected the algorithms presented in Sect. IV, is because all
of them share similar iterative frameworks, so the comparison
can be done almost straightforward.

For the two defined problems (i.e., the MDF formulation
from Eq. (1) and the IDF formulation from Eq. (2)), the
encoding of solutions is represented by vectors including the
design variables.

Particularly, a solution for the IDF formulation is defined
as a vector of dimension D = 7 as follows:

~x = [a, b, c, d, n1, S1, S2] (9)

where each element represents the value of a design variable.
On the other hand, the IDF formulation requires two extra



variables, thus, a solution is defined as a vector of dimension
D = 9 as follows:

~x = [a, b, c, d, n1, S1, S2, Tcond IDF ,∆V2 IDF ] (10)

Vectors with the above structures, having values withing
the allowed bounds of desing variables, can be evaluated
in objective functions described in Eqs. (1) and (2). The
resulting value is called the fitness of a solution, and reflect
the performance that a solution has. The less the value, the
better the individual. Therefore, the fitness functions used in
this study correspond to Eqs. (1) and (2).

V. RESULTS AND DISCUSSION

In this section we present the results using deterministic and
the developed EAs applied to the safety transformer problem.

A. Deterministic

The sequential quadratic programming (SQP) method from
MATLAB Optimization Toolbox is used. All options are set to
the default values. As the gradient is required, it is computed
by using a forward finite-difference approximation, resulting
in additional model evaluations. This method starts from an
initial solution given by the user. If no good starting point is
known, it may be drawn with the random uniform law.

Thus, the optimization process becomes stochastic and
statistics for the objective values are given in Tables I and
II with the mean computing time and the convergence rate
(conv). This last is defined as the number of solutions with
optimal objective value below the lowest one plus 2e-5 divided
by the number of trials.

We use SQP with two variations (SQP and an improved
SQPimp). Both have multi-start but to increase the conver-
gence rate of SQP, two techniques are used in SQPimp):
All design variables are scaled, and several initial solutions

TABLE I: Performance comparison of algorithms using MDF
formulation.

min max mean std time Conv

VS 2.312060 2.407100 2.340715 0.02 180.9 0.01
DE 2.311153 2.316645 2.312002 0.00 173.7 0.06
DE best 2.311153 2.386627 2.318276 0.01 172.6 0.02
HyDE 2.315386 2.417907 2.339663 0.02 178.5 0.01
HyDE-DF 2.311151 2.321686 2.311534 0.00 178.3 0.34
SQP 2.311220 9.72453 2.998278 1.54 0.1 0.13
SQPimp 2.311153 2.986595 2.331611 0.1 0.1 0.86

TABLE II: Performance comparison of algorithms using IDF
formulation.

min max mean std time Conv

VS 2.315072 2.940729 2.453896 0.10 176.3 0.01
DE 2.311410 2.409213 2.321811 0.01 166.7 0.01
DE best 2.311246 2.408570 2.335629 0.02 167.7 0.01
HyDE 2.366087 2.727329 2.495261 0.08 170.1 0.01
HyDE DF 2.311187 2.405398 2.320237 0.01 176.7 0.01
SQP 2.311193 7.082574 2.750605 0.93 0.2 0.11
SQPimp 2.311153 9.506476 2.437748 0.79 0.2 0.88
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Fig. 3: Average convergence of the tested EA. [a] MDF
formulation. [b] IDF formulation.

(multi-start) are randomly sampled. The results are given for
100 starting points with uniform sampling over the design
space. In Table I, it can be seen that MDF formulation SQP
reports a solution of 2.311220 kg and 2.311153 kg using
SQPimp. In IDF formulation (cf. Table II), SQP reported
value is 2.311193 kg while SQPimp is 2.311153 (the same as
MDF formulation). Convergence rate is improved as expected
when design variables are scaled (SQPimp) in both MDF and
IDF formulation, i.e. 86% and 88% against 13% and 11%,
respectively. The average number of evaluations is 187.

B. Stochastic EAs

1) Algorithm settings: The parameters for each algorithm
where chosen according to other studies. For DE, the mutation
factor and recombination constant (F and Cr) were set to
the recommended values 0.5 and 0.9 respectively [15]. HyDE
and HyDE-DF [11] are a self-adaptive parameter versions but
initial values for F i and Cr where set to 0.5. VS algorithm
does not have any parameter to configure [10]. The size of
population (NP ) chosen is 10 and iterations (GEN ) is 10e4.

2) Performance comparison and results: The experiments
have been run 100 times to produce the statistical results
presented here. The performance of the EAs can be seen



TABLE III: Wilcoxon comparison of HyDE-DF (best EA method) against all others.

Function
HyDE-DF vs. VS HyDE-DF vs. DE/rand/1 HyDE-DF vs. DE/current-to-best/1

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 4.73E-30 5048 2 ’+’ 8.92E-08 4.02E+03 1031 ’+’ 5.44E-22 4897 1.53E+02 ’+’
IDF 3.21E-27 5020 30 ’+’ 0.258477 2855 2195 ’=’ 1.94E-09 4181 8.69E+02 ’+’
’+/=/-’ ’2/0/0’ ’1/1/0’ ’2/0/0’

Function
HyDE-DF vs. HyDE HyDE-DF vs. SQP HyDE-DF vs. SQPimp

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 1.58E-30 5050 0 ’+’ 5.24E-23 4928 122 ’+’ 8.47E-05 1403 3647 ’-’
IDF 1.58E-30 5050 0 ’+’ 3.98E-18 4747 303 ’+’ 7.63E-07 1134 3916 ’-’
’+/=/-’ ’2/0/0’ ’2/0/0’ ’0/0/2’

in Table I and Table II for MDF and IDF, respectively. In
MDF formulation, HyDE-DF achieves a better result than
both variants of SQP, with a reported value of 2.311151 kg.
Overall, DE variants are able to compete with SQP in MDF
formulation. Standard HyDE and VS is not as good as the
other tested EAs in this case with the worse reported min. and
mean values in both MDF and IDF (but not worse than the
mean values of SQP). The execution time under the proposed
algorithm settings varies between 172 and 181 seconds (MDF)
and 167 and 177 seconds (IDF). Standard DE versions are
lighter and thus faster in both cases. In IDF formulation, the
HyDE-DF can do better in mean values than SQP but not
better in the min. value than SQPimp. HyDE-DF obtains
the highest convergence rate3 of 34% in MDF formulation
whereas the convergence rate in IDF formulation is only 1%
in all the EAs, which means that a better solution may still
exist. Compared with other EAs, HyDE-DF is significantly
better than VS, DE variants and the standard HyDE, which is
proved by the Wilcoxon test in Table III.

The convergence plot in each iteration of HyDE-DF and
other tested EAs is shown in Fig. 3. HyDE-DF has similar
convergence characteristics in both problems, stabilizing after
8,000 iterations. DE versions converge faster than HyDE
variants and VS. However, HyDE-DF is able to overcome the
the limitations of exploitation seen in early versions of DE (get
stuck in a local optima). Nevertheless, DE performs quite well
here when compared to more recent EAs like standard HyDE
and VS. Indeed, VS has a similar convergence characteristic
of HyDE-DF by also implementing a decay function, which
in turns enables them to transit between exploration and
exploitation (the belly curve), however VS is stuck after a
while.

Since the results of HyDE-DF using NP=10 and
GEN=10e4 provided inferior performance in IDF regarding
the min. value when compared with SQPimp, cf. Table II, we
increased NP to 50 and GEN to 5e5. In a similar fashion
as the former results, we present the statistics of the 100 runs
in Table IV for this setting. In this case the results of both
DE and HyDE-DF compared with best results available from

3The convergence rate is a measure of how many solutions have been found,
within the defined tolerance that are equivalent in 100 runs.

SQP method are displayed. HyDE-DF is better than DE and
SQP in all measures (cf. Wilcoxon validity test in Table V).
DE performance by reference is only better or statistically
equivalent to SQPimp in MDF but not IDF formulation (cf.
Table V) The convergence rate in HyDE-DF increases to 86%
and 100% in MDF and IDF formulation but the execution
time increases from a few minutes to around one hour in this
setting.

Tables VI and VII present the variables of the best solutions
found for MDF and IDF formulation using the increased NP
size and generations (NP = 50 and GEN = 5e5) using
the respective physical units as well as the values for the
constraints of the design problem.

TABLE IV: Performance comparison of best EAs increasing
population size (NP = 50) and generations (GEN = 5e5)
against SQPimp.

MDF formulation
min max mean std time Conv

DE 2.311151 2.311151 2.311151 4E-15 4525 1
HyDE-DF 2.311151 2.311151 2.311151 2E-15 4577 1
SQPimp 2.311153 2.986595 2.331611 1E-01 - 0.86

IDF formulation
min max mean std time Conv

DE 2.311154 2.311535 2.311249 8E-05 4313 0.20
HyDE-DF 2.311150 2.311150 2.311150 2E-13 4350 1
SQPimp 2.311153 9.506476 2.437748 8E-01 - 0.88

VI. CONCLUSIONS

In this paper an application of Evolutionary Computation
(EC) to the benchmark of the safety isolating transformer
problem has been presented. The presented benchmark prob-
lem adopts multidisciplinary feasible (MDF) and the individual
discipline feasible (IDF) optimization model. We apply several
Evolutionary Algorithms (EAs) to the benchmark problem
under MDF and IDF formulations. A comparison between
EAs and SQP algorithm is extensively made. The results
are evaluated using an adequate scientific approach adopting
Wilcoxon test to validate the statistical meaning of the average
results of the trials.

The results indicate that EA methods are competitive with
the SQP method (both SQP and SQPimp). Among the



TABLE V: Wilcoxon comparison of best EAs increasing population and generations against SQPimp

Function
HyDE-DF vs. DE/rand/1 HyDE-DF vs. SQP imp SQP imp vs. DE/rand/1

p-value T+ T- Winner p-value T+ T- Winner p-value T+ T- Winner

MDF 2.38E-07 5021 29 ’+’ 4.04E-28 4278 0 ’+’ 4.04E-28 0 4278 ’-’
IDF 1.58E-30 5050 0 ’+’ 5.05E-29 4560 0 ’+’ 8.32E-11 3916 644 ’+’
’+/=/-’ ’2/0/0’ ’2/0/0’ ’1/0/1’

TABLE VI: Best solutions found (MDF formulation) increasing population size (NP = 50) and generations (GEN = 5e5)

Parameter Desing
a b c d n 1 S 1 S 2 Obj. Mass

(mm) (mm) (mm) (mm) (-) (mm2) (mm2) (Kg)

HyDE DF 0.012917 0.050122 0.016611 0.043258 640.770836 3.25E-07 2.91E-06 2.311151
SQPimp 0.012917 0.050122 0.016611 0.043258 640.771478 3.25E-07 2.91E-06 2.311153

Constraints
T con Tiron DeltaV/DeltaV20 I10/I1 f1 f2 n

HyDE DF 108.8182 100 0.069082 0.1 1 1 0.800001
SQPimp 108.8182 100 0.069083 0.1 1 1 0.895537

TABLE VII: Best solutions found (IDF formulation) with increasing population size (NP = 50) and generations (GEN = 5e5)

Parameter Design
a b c d n 1 S 1 S 2 T cond IDF Delta V 2 Obj. Mass

(mm) (mm) (mm) (mm) (-) (mm2) (mm2) Co V (Kg)

HyDE DF 0.01292 0.05012 0.01661 0.04326 640.77092 3.25E-07 2.91E-06 108.8181 1.6580 2.311150
SQPimp 0.01292 0.05012 0.01661 0.04326 640.77136 3.25E-07 2.91E-06 108.8182 1.6580 2.311153

Constraints
T con Tiron DeltaV/DeltaV20 I10/I1 f1 f2 n

HyDE DF 108.8182 100 0.069082 0.100001 1.000001 1.000001 0.8954091
SQPimp 108.8182 100 0.069083 0.1 1 1 0.895537

developed EAs, HyDE-DF is able to obtain better values than
SQP and other tested EAs on a significant battery of trials,
regarding convergence and total mass (kg) objective function.
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