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Abstract—The explosion in the number of electric vehicles
(EVs) has had a significant impact on the energy systems and
structures of cities. Large-scale EVs inevitably increase the
load on the grid, while uncoordinated vehicle to Grid (V2G)
technologies pose challenges to the stability and security of the
grid. This paper introduces a global intelligent method to find
optimal cooperation charging/discharging strategies for EVs to
minimize the operation cost. EVs aggregates co-ordinate the
energy information and needs of all EVs and use real-time pricing
based on micro-grid loads to influence EV charge-discharge
behavior. Particle swarm optimization (PSO) is introduced to
solve the EV scheduling problem. This study also discusses the
negative impact on the energy system of different strategies for
charging EVs. Simulation shows that this smart charging strategy
and improved PSO can effectively decrease the operation cost of
EVs and reduce the load for each micro-grid.

Index Terms—Optimal scheduling, Electric vehicles, Particle
swarm optimisation, Microgrids, Global strategy

I. INTRODUCTION

Recently, electric vehicles (EVs) are rapidly increasing in
number because of their significant advantages: high energy
efficiency and green transportation [1]. Furthermore, the break-
through of battery material technologies and the development
of rapid charging technologies have more eased the bottleneck
problems which affect the usability of EVs. However, the
construction of the existing energy infrastructure is far behind
the growing trend of EVs. EVs bring not only convenience
and environmental protection but also treats and challenges
to the energy system, such as load grows, voltage decrease,
frequency concussion, network congestion, etc [2], [3]. The
potential factors of EVs which affect the urban energy system
are battery capacity, charging requirement, travel behavior. As
EVs spread as a means of transportation, the impact will be
felt across different power networks.

On the other hand, the management of charging of EVs
is a very complex problem with unpredictable dynamics and
volatility [4]. Besides, different vehicle to grid technologies
which achieve the two-way interaction between the energy
system and EVs also make the issue for connecting EVs with
a grid more complicate [5], [6]. Coordinated charging can ef-
fectively improve the utilization rate of energy, while irregular
charging aggravates the system load of the energy system.

Similarly, coordinated discharge can effectively reduce the
load demand of the energy system, while disorder discharge
can impact the stability and security of the power network [7].
Therefore, it is more important to study economic and effective
scheduling strategies to manage charging and discharging
behaviour of EVs to enhance the potential beneficial effects,
such as flattening the load curve [8], reducing the system cost
[9] and operation losses [10].

The scheduling of EVs should first meet their transporta-
tion demands, then enable their reasonable interaction with
the grid. Considering these factors, for specific application
scenarios, an appropriate scheduling strategy and an efficient
optimization solution are essential. At present, a lot of work
has been done to study the optimal scheduling strategy of EVs.
Here, we briefly summarize it from the perspective of models
and algorithms.

From the model point of view, some specific researches
of EV scheduling have been developed for EV coordination
management. Tushar et al. [11]proposed a central joint control
scheduling method based on residential MG. The technique
focuses on the surplus power of EVs within the local area to
enhance the reliability and stability of the energy system by
coordinating with household appliances. Thomas et al. [12]
investigated the impact of the randomness of electric cars
connected to a smart office building MG on a power system.
In this research, the bi-directional energy trading capability
of EVs is considered within working time. Mavrovouniotis et
al. [13] considered the scheduling problem for charging EVs
within a charging station which is designed to be installed
in a parking area. The goal of management is to coordinate
the charging process of EVs parked in the parking lot to
reduce potential damage to the charging station. Shaaban et
al. [14] proposed an on-line coordination strategy for EVs
charging control in a smart distribution network. The goal
of this research is to maximize the owners satisfaction and
minimize system operation costs without exceeding the limit.
Due to the uncertainty of EVs travel behavior, it is observed
that most of the researches focus on how to manage the EVs
which are connected in a specific energy network. However, in
practice, the distance by using EVs as daily travel is more than
the range of two energy grids. For example, commuter cars
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will connect the energy grid in the home area and the working
area separately in a typical working day. Therefore, the overall
impact of charging and discharging of EVs on different MGs
should also be concerned.

So far, most of the strategies and modelling for coordinated
management of EV charge and discharge have generally been
based on linear modelling, especially mixed integer linear
models [11], [12]. Some scholars have also modelled the
scheduling problem as a convex optimisation problem through
the relationship between EVs and the power grid. They prefer
to solve these problems quickly by using business optimisation
tools, such as GAMS [15], CVX [16], and CPLEX [17]. On
the other hand, some conventional mathematical optimisation
methods are also used to solve the scheduling problem of EVs
[18]. However, when the scale of EVs increases, the temporal
and spatial dimensions increase, or the model complexity
increases, these methods will get into trouble. Therefore,
now some intelligent optimisation algorithms, such as particle
swarm optimisation (PSO) [19], differential evolution (DE),
genetic algorithm (GA) [20], and ant colony optimisation
(ACO) [13], and so on, are also applied to the management of
EVs. It has been verified by a large number of scholars that
these new intelligent algorithms are more advantageous than
the traditional methods for solving large-scale and complex
problems [21]. However, it should be noted that any solution
method should be chosen, adjusted and improved according to
the specific situation of the solution in practice.

Based on the analyses above, a global dispatching model
of EVs is proposed by considering the two-way influence
between EVs and MGs within an urban area in this research.
The main aim of the problem is to reduce the impact on the
power system while meeting the transportation and economic
needs of EVs. PSO is used as a suitable method to solve the
problem. And some parameters are adjusted according to the
practice application. The simulation results also show that the
implementation of a global optimization scheduling strategy
has positive effects on both EVs and MGs.

The remainder of this paper is organized as follows. In
Section 2, the system framework of the scheduling problem
is introduced, and the mathematical model of an optimization
problem is also proposed. In Section 3, the optimal scheduling
strategy is presented in detail. In Section 4, a PSO algorithm
with some improvement according to the proposed approach
is introduced to solve the optimization object. In Section 5,
simulation based on two MGs is presented to investigate the
performance of the proposed charging strategy. Finally, the
conclusion will be presented in Section 6.

II. PROBLEM DESCRIPTION AND SCHEDULING MODEL

An urban energy network usually is made up of various
communities and economic areas, such as residential, business,
factory and agricultural areas. As an efficient method of
energy management, the time-of-use and tiered pricing result
in electric price differences between different places and time
periods.

Fig. 1. Optimized scheduling framework.

In view of the above situation, the optimal scheduling of
EVs should be considered from time and space as a whole. As
Fig. 1 shows, the energy framework consists of two different
types of MGs in this paper. A certain number of EVs are used
for transportation between the two energy systems. Therefore,
EVs will travel between two MGs and stay on a certain
period on both areas during a typical working day. From a
basic travel perspective, the optimal dispatch process should
consider the car owner schedule and requirements first. For
ease of operation, EV aggregates are introduced into the
management framework to coordinate the energy interaction.

A. Electric Vehicles

The impact of EVs on the energy system mainly depends on
the travel patterns, energy demand and battery characteristics.
Traffic patterns determine the travel status of an EV, the energy
consumption speed of energy, the connecting and off-line time.
Energy demand depends on the level of energy required by
the owner while the vehicle is leaving. The charging and
discharging power and rate, overall capacity is up to the battery
characteristics. In particular, the travel patterns and energy
demand of EVs are mainly concerned.

For each EV, the status of charge (SOC) is the relative
energy level:

SOC =
E

Ecap
· 100% (1)

where E is the existing energy of the battery, Ecap is the
rated capacity of the battery which comes from the EV
manufacturer. The SOC is totally up to the status of EV
and charging/discharging. When an EV has been disconnected
from the grid, the battery’s self-discharge and the energy
consumption of travel are the main reasons for the SOC varies.
When the EV is connected to the power grid, the SOC change
is determined by the charging, discharging, or idle mode of
the EV.

In this study, a day-ahead energy scheduling strategy will
be implemented, and the time will be divided into 24 intervals
which means the interval length is an hour per term. Set t =
1, 2, 3...T , where t is the index for the time slot contained in
one day duration, and T = 24. Assume g = 1, 2, ..., G is the
index for the period when EVs are connected with one MG
in the one-time slot. i represents which MG is connected. The
number of EVs is N , so the index of EVs can be expressed as
n = 1, 2, ..., N . From an operational point of view, when the



vehicle arrives at an MG, it can be regarded as connected to
the system, and the time of departure can be considered as off
the grid. Assuming that the driving behavior of all EVs can be
predicted, which means the following information is available
for each EV: 1) the initial SOCini; 2) the travel distance Dn

between two MGs for each EV; 3) The travel plan for each
EV, including the arrival time tarr, departure time tlea, and
travel time ttra. Therefore, the whole scheduling period can
also be expressed as follows:

T = [tarr,1..tlea,1, ttra..tarr,2..tlea2, ttra..tarr,G..tlea,G, ...T ]
(2)

• When the nth EV is traveling:

En,t = En,t−1 −
Dn

Ecap
·Dnra 4 t (3)

Here Dnra denotes the rated travel distance of the nth EV.
En,t indicates the energy value of the nth EV at time t.

• When the nth EV is connected with the MG:
En,t = En,t−1,g + Eobn,t−1,g∆t (4)

Here, Eobn,t−1,g refers to the amount of energy that can be
obtained from the nth EV in the (t − 1)th time with the gth
MG. As mentioned earlier:

• When the EV is charged, the charging power Pn,t−1,g >

0, and Eobn,t−1,g =
Pn,t−1,g

ηch
.

• When EV is discharged, the charging power Pn,t−1,g <

0, and Eobn,t−1,g =
Pn,t−1,g

ηdch
;

• While Pn,t−1,g = 0, EV is idle, and Eobn,t−1,g = 0.
Here, ηch and ηdch are the efficiency of charge and discharge
respectively.

B. Objective Function and Constraints

Economic factors are one of the main factors that affect
the participation of EV owners in the optimal management.
Therefore, the optimal scheduling objective selected in this
paper is to minimize the daily operation cost of the EV
aggregation, and function as follows:

Min F =

T∑
t

N∑
n

Pn,t · Cpricet (5)

The decision variable Pn,t is the charging power of each
EV at each time slot. The price variable Cpricet depends on
which MG the nth EV is charged at the moment t. Considering
the volatility and randomness of the energy system, the price
strategy adopted in this paper is different from the price
strategy immobilized one day ago. This pricing strategy will
vary strictly according to the timing and load demand of the
energy system. The price function is given in Eq. (4), and
adopted to model the dynamic charging/discharging price [17].

Cprice,t = k1 + (sfa · (P loadt,g +

N∑
n

Pn,t,g)) · k2 (6)

where k1, sfa, k2 are the price coefficients, and P loadt,g is the
total predicted load of the gth MG. Then, combining Eq. (5)

with Eq. (6), we can get the final cost function (7), which is
in a non-linear form.

Min F =

T∑
t

N∑
n

G∑
g

(Pn,t,g·(k1+sfa·(Pload,t,g+
N∑
n

Pn,t,g)·k2))

(7)
Next, we describe the constraints for the optimization prob-

lem. For protecting the battery life, the SOC level of each EV
should be kept within the safe range which is recommended
by the manufacturer. So, the first constraint is given as follows:

Eminn ≤ En,t ≤ Emaxn ,∀n, t (8)

where Eminn and Emaxn denote the minimum and maximum
values for EV n.

When EVs are connected to the grid for charging or
discharging, the power of charging and discharging is limited,
and it can be considered that EVs cannot charge and discharge
at the same time in the same scheduling time slot. It also means
that when EVs are disconnected with the MG or within the
travel time slot, the charging power is zero.

−
∣∣PDEmaxn

∣∣ ≤ Pn,t ≤ ∣∣PCHmaxn

∣∣ (9)

where PDEmaxn and PCHmaxn represent the maximum dis-
charging and charging limits, respectively.

At the same time, each vehicle has its own energy needs
based on its travel needs, which should be guaranteed when
they leave the MG.

En,g,tlea ≥ Ereqn,g ≥ Etran (10)

where En,mi,tlea indicates the energy level when the nth EV
leaves the ith MG, and Ereqn,g denotes the requirement level
of the owner when the EV is out from the ith MG. Both of
them should be greater than or at least equal to the energy
needed for the next trip. These values should also not exceed
the manufacturer’s battery safety limits with Eq. (8).

III. OPTIMIZATION METHOD

A. Particle swarm optimization (PSO)

PSO is a heuristic algorithm based on a stochastic optimiza-
tion of swarm intelligence. The basic concept was inspired by
the analysis and study of the foraging behavior of birds, which
was proposed by Eberhart and Kennedy in 1995 [22]. Because
of its simple operation and fast convergence speed, PSO has
been widely used in vehicle scheduling, energy management
and other fields. However, PSO has some problems in practical
applications, such as premature convergence, dimension disas-
ter, and easy to fall into local optima. So, the algorithm should
be adjusted and improved according to the actual optimization
problem.

In PSO, each particle can be regarded as a searching
individual in an N-dimensional real space, the current position
of the particle is a candidate solution of the corresponding
optimization problem, and the flight process of the particle
is the search process of the individual. The flight speed and
direction of particles are dynamically adjusted according to
the optimal historical position of particles and the optimal



historical position of the population. Therefore, each particle
has two properties: its velocity, which represents how fast
it moves, and location. The optimal solution of individual
search for each particle is called individual extremum, and the
optimal individual extremum in the swarm is regarded as the
current global optimal solution. The particles will update their
velocity and location iteration by iteration until the termination
condition is satisfied.

The velocity and location update formulas of the standard
PSO are expressed as follows:

Vi,d+1 = $·Vi,d+c1·rand·(Pi,d−Xi,d)+c2·rand·(Pg,d−Xi,d)
(11)

Xi,d+1 = Xi,d + Vi,d+1 (12)

where Vi,d refers to the ith particle velocity for dth iteration
in the N-dimensional search space, Xi,d indicates ith particle
position for the dth iteration, and similarly, Pi,d is the best
position of an individual particle, Pg,d is the optimal global
solution in the same iteration and dimension. $ is called
the inertia weight and by adjusting it, the global and local
optimization performance of PSO can be adjusted accordingly.
rand is a random parameter with a value range within [0, 1].
c1 and c2 denote learning factors, of which the former is the
individual learning factor while the latter is the social learning
factor, and they usually are set as a constant.

From Eq. (12), the position of the particle at the next mo-
ment is determined by the current position and velocity, while
the current velocity is determined by the original velocity,
individual extremum and global extremum.

B. Solving problem

1) Constraint pre-processing: Considering the transition of
EV among different MGs, the proposed scheduling strategy
can be regarded as a multi-period optimization problem. Due
to the strong time coupling between the energy level of EVs,
the value of Pn,t depends on Pn,t−1 with Eqs. (4), (8), (9) and
(10). If the range of variables and constraints are considered,
it would be difficult to solve the problem directly. So, the
constraints will be compressed first in this research.

According to Eq. (10), the SOC of each EV, while dis-
connected with each MG, should be greater than or equal to
the predetermined requirement value of the owner, and also
more than the minimum limit of the SOC. To ensure that the
constraint is satisfied, the initial energy from the last previous
period plus the maximum charging power at least should be
more than the energy required at this moment. In this way, the
SOC minimum level at each previous moment can be updated
according to the final energy requirement level.

The arrival time tarr, departure time tlea, maximum charg-
ing rate PCHmaxn , minimum battery level Eminn , and the
charging level En,req expected for each EV can be obtained
trough prediction and collection first, while an EV is connected
to one MG. Then, the new minimum power value ENewMin

n,t

which the EV should reach can be deduced by calculation with
Algorithm 1 at each moment.

Algorithm 1 The procedure of constraint pre-processing
1: Input the data En,req,Eminn , PCHmaxn , tarr, tlea.
2: for n = 1 : N do
3: En,tlea = En,req;
4: while tlea > tarr do
5: if En,tlea > Eminn then
6: ENewMin

n,tlea−1 = En,tlea ;
7: En,tlea−1 = En,tlea − pCHmaxn ;
8: else
9: ENewMin

n,tlea−1 = Eminn ;
10: end if
11: tlea = tlea − 1;
12: end while
13: end for

2) Algorithm adjustment: Like most stochastic algorithms,
PSO also needs to balance the diversity of population and
the convergence speed of the algorithm in the optimization
process, so as to achieve the best performance of the algorithm.
According to the function of inertial weight, a linear decreas-
ing function (see Eq. (13)) is used to replace the original fixed
weight. This method can enlarge the global search scope at the
initial stage and improve the convergence accuracy of the PSO
at the later stage.

$ = ($max −$min) · (ger − t) +$min, (13)

where $min and $max are the upper and lower limits of
the values of $, and ger is the total number of algorithm
iterations, and t is the count of current iterations.

A variation rule is introduced to increase the diversity of
PSO. In each generation of evolution, ten percent of the
population size was randomly selected for mutation, and
variation equation as follows:

γv = 0.1 · (1 + 4 · cos (t ∗ Pi/ger))
Xi,d =

(
Xmax
i,d −Xmin

i,d

)
· γv +Xi,d,

(14)

where γv is mutation factor, and Xmax
i,d , Xmin

i,d are the upper
and lower limits of the dth dimension of ith particle.

The proposed PSO algorithm for solving the EV scheduling
problem with MGs is shown in Fig. 2

IV. SIMULATION STUDY

In this section, optimization strategies and performance of
optimization algorithms are discussed in the form of case
studies through simulation experiments.

A. Parameters setting

Two types of typical MGs are selected to set an experimental
environment of simulation, namely office MG (MG1) and
residential MG (MG2). The basic load for each moment of
the two MGs is shown in Fig. 3. For the simulation time,
we take one day as the total optimal scheduling time, and
each hour is a time interval, that is, 24 intervals in total. The
commute time for an EV is usually connected to the office at
9-18, and to the home at 20-8. With respect to the randomness



Fig. 2. The proposed PSO algorithm.
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Fig. 3. The predicted load of MGs.

in the behavior of EVs, Monte Carlo simulation is used to
generate the travel distance and initial battery level for each
EV. Relevant data of the simulation are summarized in Table I.
To facilitate understanding and comparison of the results, some
assumption should be declared before simulation.

• All EVs participate in the coordination through EV
aggregates, scheduling in response to price strategies.

• Other energy losses of EVs are ignored, and only the
energy consumed by the trips is considered.

B. Simulation results

The simulation was implemented by MATLAB R2017a on
a laptop with i7 CPU and 8G memory. The simulation is
divided into five cases. For comparison purposes, the final
off-grid energy requirements of the first four cases were set
to the maximum. The fifth case is used to discuss the effects
of different energy requirements. The description of the cases
and the simulation results of each case are provided below.

TABLE I
PARAMETER SETTINGS

Model parameters
EV numbers 100
Battery capacity Ecap = 40 (kw)
Maximum/Minimum level of battery Emin

n =4,Emax
n =40 (kw)

Maximum charging/discharging rate PDEmax
n =PCHmax

n =7 (kw)
Efficient of charging/discharging ηch=ηch=100%
Travel energy level distribution range Etra

n ∈ [8%, 35%] · Ecap

Initial energy level distribution range Eini
n ∈ [40%, 65%] · Ecap

PSO setting
Population size 50
Inertial weight $min = 0.2, $max = 0.8
Learning factors c1 = c2 =0.5
Iterations 100
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Fig. 4. Load curve for Case 1: General charging condition without optimiza-
tion.

Case 1: General charging condition without optimization:
Case 1 is the base for the following other cases. In this case, all
EVs are not subject to optimal scheduling management, i.e.,
first reach first charge, which means all EVs will be directly
charged while reaching any MG. Once reaching the maximum
value of SOC, the process will be finished. Therefore, EVs will
not generate revenue from selling energy to the grid, and will
not be charged on the moderate price. On the other hand, MG
can not dispatch EVs through dynamic price to reduce the
impact of EVs penetration. As a result, the operation cost of
EVs aggregation is $360.1449, and the load curve is as shown
in Fig. 4. It can be seen from the results that the arrival of
EVs at the peak time of MGs will only worsen the situation
of the whole system.

Case 2: Optimizing charging in both MGs: In Case 2, EVs
are set to charge only, but not to communicate bidirectionally
with the grid via V2G. By implementing the global optimal
scheduling strategy, EVs can only find a suitable charging
period in response to the market price, thus reducing the
charging cost. In this situation, EVs cannot get the benefit
by feeding the electricity back to the grid. Similarly, the grid
cannot reduce the load by absorbing the extra power from
EVs, only shifting the load to reduce the system’s pressure
while EVs are connected. The total cost of EVs in this case
is $281.1522, and the load curve is as shown in Fig. 5.

Case 3: Optimization charging and discharging for each
MG: In this case, the scenario that EVs can only access
a single MG is optimized, but the global optimization of
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Fig. 5. Load curve for Case 2: Optimising charging in both MGs.
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Fig. 6. Load curve for Case 3: Optimization charging and discharging for
each MG.

EVs connecting to two MGs is not considered. Therefore,
the results of connecting EVs to residential MG and office
MG will be analyzed, respectively. The benefits obtaining of
EVs can only come from the optimized portion, and the cost
remains high for an unscheduled connection. The effect of the
result is also for MGs. The simulation results show that when
only the residential MG2 is optimized, the total operation cost
is $277.1427, and only optimal with MG1 is $331.2217. In
addition, it can be clearly seen from the change of load curve
in Fig. 6 that if only a single scenario is optimized without
considering the daily travel of EVs, the impact of EVs on the
power grid will still exist in the non-optimized portion.

Case 4: Optimization charging and discharging for both
MGs: In this case, the proposed scheduling model is applied
to the optimization process, which means that EVs will be
optimal charged and discharged on both MGs. In this situation,
the energy requirement of EVs while disconnected to each MG
is the same as the above two cases and set to the maximum of
the SOC. Within the optimization time of a day, EVs can get
optimized scheduling no matter which MG they are connected
to. They can not only charge at the appropriate price but
also sell back the excess power to the grid to earn profits.
Therefore, the total cost of this case is minimal compared to
the scenario above, and the final operation cost is $257.0839.
At the same time, as can be seen from the load curve, the travel
of EVs does not bring more severe burden to both grids.

Case 5: Further investigations: It is worth noting that in
the simulation, we found that if the required energy level is
set reasonably instead of the firm level, the performance will
be better. For example, based on the base loads of two MGs
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Fig. 7. Load curve for Case 4: Optimization charging and discharging for
both MGs.
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Fig. 8. Load curve for Case 5: Different levels of requirements.

0 10 20 30 40 50 60 70 80 90 100

Iteration

240

260

280

300

320

340

360

380

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Proposed PSO

Standard PSO

Fig. 9. Comparison of the proposed and standard PSO algorithms.

above, the level of requirements can be set as the maximum
while leaving the MG2 (residential MG), and 50% capacity
while disconnecting with MG1 (Office MG). Then, the overall
operation cost will be significantly reduced to $158.6271. And
the load of the MG as shown in Fig. 8 will be smoother.
However, this method requires the car owner is clear about
the travel plan, and coordinated with the load fluctuation of
the power system.

Through all simulation results above, it can be found that the
proposed optimal scheduling strategy can effectively reduce
the operation cost of EVs aggregation without bringing too
much impact to the power grid and the whole strategy can
also be adjusted according to the actual application scenario
to enhance the effect.

In addition, in order to evaluate the performance difference
between the proposed PSO algorithm and the standard PSO
algorithm, these two algorithms are run 30 times and the best
performance of each algorithm is shown in Fig. 9. Under the



same conditions which set the number of iterations to 100 and
the population size to 100, the accuracy of the proposed PSO
is better than the standard PSO. Therefore, it can be shown
that the proposed PSO algorithm is also well adapted to the
solution of this problem, and can quickly converge and obtain
the optimal solution.

V. CONCLUSIONS

The optimal management and scheduling of EVs in cities
should not only consider the impact on a regional energy sys-
tem but should be comprehensively evaluated in combination
with the travel mode of EVs. At the same time, the optimal
dispatching of EVs should not only meet the benefits of an
EV owner but also can actively explore the role in assisting
the energy system.

This article considers optimal scheduling schemes for EVs
commuting within an urban area in one day. The whole
dispatching strategy fully takes into account the normal travel
behaviors of EVs in daily operation. The proposed scheduling
strategy positively reduces the energy cost of EVs, and also
plays a positive role in the energy system. PSO is used to
solve the scheduling problem, and some adaption is made
according to the specific situation of the problem. The strategy
and algorithm are verified in the simulation results.

EVs will play a very important role in smart cities in the
future, whether it is the travel demand at the traffic level or the
auxiliary role at the power grid level. At the same time, we
can also see the great challenges brought by the diversity and
the increasing number of EVs. In the future, we will not only
further explore the efficient and practical optimal scheduling
strategy, but also study the dimension disaster brought by
large-scale EVs. How to keep pace with the problems and
provide more suitable solutions also needs to be paid more
attention.
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