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Abstract—Microservices are small and independently deploy-
able services. They can be developed on different platforms
and communicate via lightweight protocols, what makes them
highly interoperable. The interoperability between microservices,
as well as their reuse and customization needs make this kind of
systems adequate to constitute a Software Product Line. However,
there is no automatic approach to support the designing of
Microservices-Based Product Lines (MBPLs). To move towards
the development of MBPLs, this work presents an approach,
named MOEA4MBPL, to extract Feature Models (FMs) from a
set of microservices-based systems. These FMs intent to leverage
interoperability, enabling the practitioners to reason about reuse
and/or customization of functionalities. The proposed approach
is based on multi-objective evolutionary algorithms, optimizing
three objectives, namely precision and recall of products de-
noted by an FM, and conformance with existing dependencies
between microservices. MOEA4MBPL was evaluated with six
microservices-based systems, using the algorithms NSGA-II and
SPEA2. Our approach was capable of finding FMs with good
trade-off values of precision and recall, satisfying all dependencies
among the microservices. SPEA2 found better fronts of solutions
than NSGA-II, but the latter always executed faster and could
find single solutions closer to an ideal solution than the former.

Index Terms—microservices, multi-objective optimization,
variability model, product line.

I. INTRODUCTION

Microservices are a software development technique that

has been adopted by many companies in recent years [1].

Microservices are small, autonomous and independently de-

ployable services that work together [2]. The benefits of

microservices-based systems are [3]: reduced effort for mainte-

nance and evolution, increased availability of services, ease of

innovation, continuous delivery, ease of DevOps incorporation,

and facilitated scalability.

Another advantage of microservices-based systems is the

heterogeneous interoperability, which refers to the ability to

integrate parts of different systems implemented in different

programming languages and platforms [4]. For example, pro-

cessing a complex business rule, which requires the coordi-

nation among a Java-based application, a PHP application,

and a COBOL program, requires a complex solution in a

monolithic architecture, but would be easier managed in a

microservices-based architecture. This is a common situation

in many companies that deal with different platforms and

legacy systems. Interoperability has also an appealing char-

acteristic of providing easier reuse of functionalities. A recent

study with practitioners has pointed that microservices also

have the goal of supporting reuse and customization [1]. Such

a study stated that variability is a key criterion for structuring

a microservices-based architecture.

Reuse and customization are the core goal of Software

Product Lines (SPLs) [5]. Then, some studies in the litera-

ture have taken into account these characteristics to model

microservices-based systems as SPLs [6], [7], [8]. However,

such studies do not provide an automatic approach to support

the designing of a Microservices-Based Product Line (MBPL).

Given the aforementioned limitation, we propose in this pa-

per an approach named MOEA4MBPL (Multi-Objective Evo-

lutionary Algorithm For Microservices-Based Product Line).

MOEA4MBPL extracts variability models, a.k.a. Feature

Models (FMs), from different microservices-based systems.

Such FMs can be used for defining an MBPL, leveraging

interoperability and allowing artifacts reuse in different sys-

tems. Our approach is based on Multi-Objective Evolutionary

Algorithms (MOEAs), and employs an evolutionary process to

find a set of FMs with trade-off that best represent the actual

microservices-based systems we are dealing with. The goal is

to maximize precision (deriving only desired systems), recall

(including all desired systems), and conformance (with respect

to existing dependencies between microservices).

MOEA4MBPL was evaluated with six microservices-based

systems, using the MOEAs Non-Dominated Sorting Genetic

Algorithm (NSGA-II) [9] and Strength Pareto Evolutionary

Algorithm (SPEA2) [10]. Our approach was capable of finding

FMs with good trade-off values of precision and recall, sat-

isfying 100% of the dependencies among the microservices.

SPEA2 found better fronts of solutions than NSGA-II, but the

latter always executed faster and could find single solutions

closer to an ideal solution than the former.

The contribution of this paper is to leverage the benefits of

microservices-based systems, mainly related to interoperabil-

ity. We want to benefit from the fact that the microservices-

based architecture style attempts to reduce the number of

choices for functionalities integration. Our approach is a first

step to enable reuse of microservices in different systems to

enhance the functionalities available in a software system. The

FMs can provide a general view of microservices organization

among different systems, enabling practitioners to reason

about reuse and/or customization of functionalities.
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This paper is structured as follows. Section II presents

related work. Section III describes MOEA4MBPL. Section IV

presents the setup followed to evaluate our approach. Results

are presented and analyzed in Section V. Finally, Section VI

concludes the paper and outlines future work.

II. RELATED WORK

Related work can be classified in two main categories: (i)

studies from the SPL field and (ii) pieces of works from the

Service-Oriented Product Line (SOPL) field [11].

In the first category, we find many studies to reverse

engineer FMs from feature sets [12], [13], [14], [15], [16],

[17], [18]. The most promising ones apply multi-objective

optimization. Despite being different problems, the main ideas

of these works can be explored in the context of microser-

vices. Considering that, our work is inspired by the approach

of Assunção et al. [17], [18], which uses multi-objective

evolutionary algorithms to extract variability-safe FMs based

on code dependencies of system variants. But differently

from these similar works in the SPL context, we address

another problem, which may have impact in the behavior of

algorithms.

Some authors [19] state the idea that microservices arose

by re-conceiving service-oriented computing. Then, there is

a relation between SOPL and the idea of MBPL. Lee et

al. [20] propose an approach that uses FM analysis to identify

services, but such an approach does not apply search-based

techniques. The work of Khosnevis and Shamn [21] receives as

input a graph of business activities (BPFM - Business Process

Family Model) and uses the NSGA-II algorithm to identify

the services and variabilities, considering metrics such as

cohesion, coupling, granularity, business entity convergence,

and commonality degree. Differently, our work extracts FMs

from functionalities of existing microservices-based systems.

We can find studies that integrate the use of microservices-

based architectures and SPL approach to develop, for instance,

a multi-tenant SasS (Software as a Service) [8] and WISE

(Weather In Sights Environment) system [7]. The work of

Naily et al. [6] proposes a framework for microservices-based

software taking into account the Software Product Line En-

gineering (SPLE). The framework process includes a domain

analysis step where the FM is derived. However, the mentioned

studies do not provide a general automatic approach.

Analyzing the categories of related work, we can see that

our approach, described in the next section, is the first initiative

to extract FMs from existing services towards an MBPL.

III. EXTRACTING FEATURE MODELS FOR MBPLS

MOEA4MBPL uses multi-objective optimization to extract

a set of FMs that describe variability among microservices-

based systems, having as basis previous work in the SPL

context [17], [18]. Instead of dealing with variants of a single

system and their features, in the work herein described we

have as input entire different systems, from the same domain,

and their microservices. By leveraging the microservices char-

acteristics of interoperability we move towards enhance the

microservices-based systems with new services/functionalities.

Details of the proposed approach are presented next.

A. Input

MOEA2BPL uses two input artifacts:

• Matrix of systems and microservices where the systems

are in the rows and all existing microservices are in the

columns. In the cells we indicate which microservice

belongs to each system. An example of this matrix, used

in the evaluation of the approach, is presented in Table II.

• Graph of dependencies between microservices where

dependencies existing between microservices are repre-

sented. Dependencies are identified based on existing

service requests. An example of this graph, used in the

evaluation of the approach, is presented in Figure 1.

B. Output

To design an SPL we use an FM to organize the mi-

croservices according to their dependencies and variabilities.

However, usually there is no a single solution for the problem

of defining an FM to represent a set of existing systems. This

is the reason for using a multi-objective approach.

MOEA4MBPL produces as output a set of FMs with

different trade-offs among three objectives, described below.

C. Objective functions

In our approach the MOEAs optimize three objective func-

tions. To compute them we defined two auxiliary functions.

Let us consider FM as the universe of feature models, MSS
the universe of microservices-based systems, and mss a set

of microservices-based systems informed as input. Based on

this terminology, we introduce the function msSystems:

Definition 1: msSystems(fm) returns the set of

microservices-based systems (i.e. products) denoted by a fea-

ture model fm.

To check the conformance of the FMs with dependencies

between microservices, we define the function holds:

Definition 2: holds(dep,ms) returns 1 if dependency dep

holds on the microservice-based system ms, and 0 otherwise.

A dependency dep holds for a microservice-based system ms

if the microservices involved in dep are also in conformance

with the tree relationship in the FM.

Considering these two auxiliary functions, in the following

we describe the objective functions of our approach.

Definition 3: Precision (P) returns how many of the

microservices-based systems denoted by a feature model fm

are among the desired microservices-based systems mss.

precision(mss, fm) = |mss∩msSystems(fm)|
|msSystems(fm)|

Definition 4: Recall (R) returns how many of the desired

microservices-based systems mss are denoted by a feature

model fm.

recall(mss, fm) = |mss∩featureSets(fm)|
|mss|



Definition 5: Dependency Conformance (DC) expresses

the degree of conformance of a feature model fm with a

dependency graph dg.

dependencyConformance(fm, dg) =

∑

dep∈dg

dep×







∑

fs∈featureSets(fm)

holds(dep, fs)

|featureSets(fm)|







All the three objective functions were designed for a max-

imization problem, where the values are between [0,1].

D. Representation of Individuals and Initial Population

To represent the individual we use a simplified version of the

SPLX meta-model1, which defines both structure and semantic

of FMs (similar to [18]). For this, a set of composite objects

inherited from a generic class Feature describes the tree-

like structure of the FM. Another set of objects were designed

to represent the Cross-Tree Constraints (CTCs) between the

features2. Based on this representation, the initial population is

generated by creating random feature trees and random CTCs.

For this task we used the tools FaMa [22] and BeTTy [23].

E. Genetic Operator

To select individuals for mutation and crossover, we employ

standard tournament selection. In the evolutionary process

there are some domain constraints to ensure the semantics

of the solutions. These constraints are: (i) every feature must

appear exactly once in the FM tree; (ii) all FMs have a

fixed set of features, so in different FMs only the relations

between features are different; (iii) CTCs can only be either

requires or excludes; (iv) CTCs must not contradict

each other; (v) there is a maximum number of CTCs that must

not be exceeded. These domain constraints were not designed

to consider cases of contradictions between CTCs and FM

tree. In such cases, the evolutionary process will discard the

solutions because of their bad fitness value.

1) Mutation: The individuals are mutated by applying

modifications in randomly selected parts of the FM tree or

in the CTCs (similar to [18]). The modification is randomly

selected from the following lists:

• Mutations performed on the tree:

– Swap two features in the feature tree;

– Change an Alternative group to an Or or vice-versa;

– Change an Optional or Mandatory relation to any

other kind of relation (Mandatory, Optional, Alter-

native, Or);

– Move a sub-tree in the FM tree to somewhere else

without violating the meta-model or any of the

domain constraints.

• Mutations performed on the CTCs:

– Add a new, randomly created CTC;

– Randomly remove a CTC.

1http://www.splot-research.org/
2Features are the building blocks for Software Product Lines, which in our

context are microservices.

2) Crossover: The crossover generates offspring in confor-

mance to the meta-model representation and to the domain

constraints (similar to [18]). The crossover process is:

1) Initialize the child with the root feature of Parent1. If

the root feature of Parent2 is a different one then it

is added to the child as a mandatory feature of its root

feature;

2) Traverse the first parent depth first starting at the root

and add to the child a random number of features that

are not already contained by appending them to their

respective parent feature already contained in the child

using the same relation type between them;

3) Traverse the second parent similarly as the first one;

4) Go to Step 2 until every feature is contained in the child.

The second child is obtained by performing the same

process but with reverse parents. The crossover of CTCs is

performed by merging all the constraints of both parents and

then randomly assigning a subset of to the first child and the

remaining to the second child.

IV. EVALUATION SETUP

This section describes how MOEA4MBPL was evaluated.

For further studies, we make available3 a package with the

raw data results, scripts, and tools herein described.

A. Microservices-based Systems

Our evaluation relies on six open source microservices-

based systems. These systems are all from the same do-

main, namely virtual stores, and were developed by different

developers. The subject systems are: Hipster Shop4, Sock

Shop5, eShopOnContainers6, Vert.x Micro-shop7, Shopping

Cart8, and Stan’s Robot Shop9.

To collect the input data for our approach, we identified the

characteristics of each microservices-based system. First, we

downloaded all projects, then started checking if there was

any kind of architecture, that is, a documented architecture.

We found some basic images with some microservices names,

calling instructions, and infrastructure components. Not all

systems have this architecture, then the source code was used

for all systems, which are developed in different programming

languages such as GO, JavaScript, Python, and Java. In addi-

tion to the source code, we read the available documentation,

also used in the collection of the input data for MOEA4MBPL.

B. Identified Microservices and Dependencies

Following the methodology presented in the previous sec-

tion, we identified 14 different microservices/features, which

are incorporated in different configurations on the six subject

systems. We named these features with a brief description of

each one in Table I.

3https://wesleyklewerton.github.io/CEC2020 Evaluation Package.zip
4https://github.com/GoogleCloudPlatform/microservices-demo
5https://github.com/microservices-demo/microservices-demo
6https://github.com/dotnet-architecture/eShopOnContainers
7https://github.com/sczyh30/vertx-blueprint-microservice
8https://github.com/thangchung/ShoppingCartDemo
9https://github.com/instana/robot-shop



TABLE I
MICROSERVICES IDENTIFIED FOR ALL SIX SYSTEMS.

Name Description

Frontend Microservice used as user interface and respon-
sible for calling other microservices.

User Manages the customers and user authentica-
tion.

Payment Manages credit card information and payment
tasks with the specified amount and usually
returns a transaction ID.

Catalog Provides the list of products and the ability to
search for products.

Cart Stores items in the user’s shopping cart.
Order Retrieves user cart, prepares order and requests

payment, shipment and email notification.
Product Provides detailed information about products.
EmailContact Sends email to customers/users.
Shipping Provides shopping cart-based shipping cost es-

timates.
Marketing Shows advertisements based on certain context

words.
Recommendation Recommends other products based on what is

provided in the cart.
Audit Allows administrators to audit user data based

on property database and external servers.
Currency Converts a cash amount into another currency.
Location Retrieves user location to support advertise-

ments and currency conversion.

The matrix with the six subject systems and their features

is presented in Table II. The features Frontend, Payment,

Catalog and Cart are mandatory in all systems. On the

other hand, the other features vary among the systems.

To identify dependencies between microservices and fea-

tures, we analyzed the information available in the projects,

as aforementioned. However, not all systems have clear de-

pendency information. Some systems have a service recorder

in their model, and there is no direct and explicit call to a

particular microservice. For instance, we had to deeply analyze

the source code for eShopOnContainers and Stan’s Robot Shop

to collect more accurate information.

We could observe that the number of dependencies is quite

varied. This information was revealed based on the call direc-

tions between microservices found in the basic documented

architecture and in the deep analysis of the source code. Fig-

ure 1 presents the dependency graph obtained for all systems.

There are many dependencies between the microservices, in

some cases in both directions. This is a complex situation to

serve as benchmark to evaluate the ability of our approach to

find FMs in conformance with these dependencies.

The graph analysis reveals that Frontend and Order

require several other microservices for their functionality.

Order has eight dependencies and three microservices de-

pend on it, whereas Frontend depends on ten microservices

and five microservices depend on it.

C. MOEAs and Parameters

We applied NSGA-II and SPEA2 in our evaluation. NSGA-

II adopts an elitism strategy classifying the solutions according

Frontend

Catalog

Shipping

Order Marketing

Recommendation

Currency Cart

User Product

Payment EmailContact

Fig. 1. Dependencies identified considering call requests between microser-
vices for all six systems used in the evaluation.

their dominance. SPEA2 uses an external archive to cre-

ate the fronts of non-dominated solutions. These algorithms

are commonly applied in search-based software engineering

approaches [24]. For the experimentation we rely on the

implementations available on ECJ Framework10.

Table III presents the parameter settings for both algorithms.

The number of generations and the archive size parameters

were empirically calibrated. The remaining parameters are the

same adopted in [18]. We performed 30 independent runs

for each algorithm on a machine with an Intel® CoreTM i7-

3632QM CPU with 2.2 GHz, 16 GB of memory, and running

on a Linux platform.

D. Quality Indicators and Statistical testing

We used the well-known quality indicator Hypervolume

(HV) to reason about the differences between NSGA-II and

SPEA2 [25]. HV was computed by using the recursive and

dimension-sweep algorithm implementation11 [26]. The refer-

ence point to compute HV was P=1.1, R=1.1, and DC=1.1.

We used the indicator Euclidean Distance from Ideal Solu-

tion (ED) to find the closest solutions to the best theoretical

objectives, i.e. an ideal solution [27]. For our maximization

problem, an ideal solution has the maximum value of each

objective, that is, P=1.0, R=1.0, and DC=1.0.

In the comparison of different computational intelligence

algorithms, the number of fitness evaluations is usually the

basis to measure computational effort to reach solutions. In

addition, we also considered runtime to analyze how fast/slow

the solutions were reached. We collected the runtime, in

milliseconds, of each independent run for each MOEA.

To check statistical difference between NSGA-II and

SPEA2 we applied the Wilcoxon signed-rank test [28]. To

corroborate our analysis we also compute the effect size with

the Vargha-Delaney’s Â12 measure [29]. Both Wilcoxon and

Â12 are commonly used for assessing randomized algorithms

in Software Engineering [24], [30].

10http://cs.gmu.edu/∼eclab/projects/ecj/
11http://lopez-ibanez.eu/hypervolume



TABLE II
MICROSERVICES IDENTIFIED FOR EACH ONE OF THE SIX SYSTEMS USED IN THE EVALUATION.

Systems
Microservices Hipster Sock eShopOn- Vert.x Shopping Stan’s Robot

Shop Shop Containers Micro-shop Cart Shop

Frontend X X X X X X

User X X X X X

Payment X X X X X X

Catalog X X X X X X

Cart X X X X X X

Order X X X X X

Product X

EmailContact X X

Shipping X X X

Marketing X X

Recommendation X

Audit X

Currency X

Location X

TABLE III
PARAMETER CONFIGURATIONS USED TO EXECUTE THE ALGORITHMS

NSGA-II AND SPEA2 DURING THE EVALUATION.

Parameters NSGA-II SPEA2

Number of Generations 1000 1000
Population Size 500 500
Archive Size - 50
Crossover Rate 0.7 0.7
Tree Mutation Rate 0.5 0.5
CTCs Mutation Rate 0.5 0.5
Number of Elites 25% 25%
Tournament Size 6 6
Maximum CTC Percentage for Builder* 0.1 0.1
Maximum CTC Percentage for Mutator* 0.5 0.5
Independent runs 30 30

* relative to number of features

V. RESULTS AND ANALYSIS

This section presents the results and analysis based on

quality indicators mentioned in the last section. In addition, we

present analysis of the best solutions found by each MOEA.

Table IV presents the results of HV, ED, and Runtime

considering the 30 independent runs or each MOEA. The

first two columns show the average and standard deviation,

in parentheses. Since we are dealing with a maximization

problem, lower values of HV are better. Runtime is computed

in milliseconds. The p-value and effect size of the comparison

between the 30 values of HV for each MOEA are shown in

the last three columns. For a deeper comparison, Figure 2 also

presents the boxplots for these three indicators.

From the results of Table IV we observe that SPEA2 reached

an average value of HV lower than the half of the NSGA-II HV

value. For corroborating our analysis, in Figure 2(a) we can

see that removing the outliers the difference is great, being the

values of HV reached by SPEA2 lower than one-third when

compared to NSGA-II. The p-value, that is lower than 0.05,

indicated significant difference with confidence of 95%. The

Â12 measure pointed a difference of large magnitude, where

there is 79% of chances SPEA2 reaches better results than

TABLE IV
RESULTS OF HYPERVOLUME (HV), EUCLIDEAN DISTANCE FROM IDEAL

SOLUTION (ED), AND RUNTIME OF THE 30 INDEPENDENT RUNS.

Indicator
Average (Std dev.) Wilcoxon Â12 Effect Size

NSGA-II SPEA2 p-value NSGA-II SPEA2

HV
0.0275 0.0123

1.01E-04 21.00% 79.00%
(0.0112) (0.0084)

ED
0.5051 0.6864

1.36E-05 82.39% 17.61%
(0.1332) (0.1371)

Runtime
46.363,00 482.707,20

1.69E-17 100.00% 0.00%
(5.701,84) (126.951,86)

NSGA-II. For the indicator ED the difference on average was

not so great, see Figure 2(b), but still there is statistical dif-

ference, as pointed by Wilcoxon test and effect size measure.

Regarding ED, NSGA-II is the best MOEA, reaching better

solutions than SPEA2 in more than 82% of the runs. When

considering the single solution with the best trade-off among

the fitness objectives, NSGA-II is also better.

As mentioned in Section IV, we configured both MOEAs

with the same number of fitness evaluations, namely 500.000

(1000 generations * 500 individual). In addition, we also

collected the runtime for analysis, as shown in the last row of

Table IV. Here the algorithm NSGA-II was statistically better

than SPEA2, with the effect sizes showing that NSGA-II has

a lower runtime in 100% of the cases. This happens mainly

because SPEA2 uses a strategy based on archive, which makes

its evolutionary process slower.

We performed an analysis related to the number of solutions

found by each MOEA, considering the following sets of so-

lutions: (i) PFapprox: the solutions found in each independent

run; (ii) PFknown: has the non-dominated solutions considering

the union of all solutions of the 30 runs, i.e. the 30 PFapprox

sets of each MOEA; and (iii) PFtrue: contains the non-

dominated solutions considering the PFknown sets of NSGA-II

and SPEA2, i.e. the best solutions found for our problem.

On average NSGA-II found 373.50 (std dev. = 114.46)

and SPEA2 321.10 (std dev. = 86.21) solutions per run. We
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Fig. 2. Boxplot of the Hypervolume (HV), Euclidean Distance from Ideal
Solution (ED), and Runtime of the 30 independent runs of NSGA-II and
SPEA2. For the three indicators, lower values are better.

observed that many of these solutions in the PFapprox have

similar values of objectives, but different FMs. Considering

the PFknown, each MOEA found three non-dominated solu-

tions. These solutions are presented in the search-space in

Figure 3. Two solutions in the PFknown of both MOEAs

have the same objective values: (P=1.0, R=0.666, DC=1.0) and

(P=0.555, R=0.833, DC=1.0). Taking the additional solutions

of each MOEA, the SPEA solution (P=0.352, R=1.0, DC=1.0)

dominates the NSGA-II solution (P=0.25, R=1.0, DC=1.0).

In summary, the PFtrue is composed of three solutions, three

found by SPEA2, and only two found by NSGA-II. Regarding

the best solutions, NSGA-II found one solution belonging to

PFtrue in seven independent runs, on the other hand, SPEA2

found the best solutions in only two, where in one case SPEA2

found one solution and in another case two.

Figure 4 presents some FMs12, solutions with the best values

for the objective functions. Figures 4(a) and 4(b) were found

by both MOEAs, Figure 4(c) by SPEA2, which together with

the two previous ones form the set PFtrue. Figure 4(d) was

found by NSGA-II, but this solution is dominated by the one

of Figure 4(c). To illustrate the characteristics of one solution,

we will analyze Figure 4(a). Let us consider we will take this

FM for constructing a virtual store MBPL. By the FM denoted

in this figure we can derive 4 virtual stores, which all of them

are in the set of systems used as input, representing a P=1.0.

However, 2 systems would be missing, leading to a R=0.66.

All dependencies between microservices are respected in this

microservices-tree organization (DC=1.0). On the other hand,

with the FM presented in Figure 4(c) we can derive 17 virtual

12This FM-tree like representation was created using FeatureIDE: https:
//featureide.github.io/

stores, having all the six input systems, which leads to R =

1.0. However, the surplus of 11 systems decreases the value of

P, which is equal to 0.35. All solutions presented in Figure 4

have DC=1.0, which indicates they are in conformance with

the dependencies identified in the input systems, shown in

Figure 1. This is important, since the migration to a MBPL

using these FMs will not require to break any already existing

dependence among the microservices.

It is important to notice that in the FMs presented to illus-

trate our approach there are redundant cross-tree constraints,

marked with a warning symbol (o) and observed in the

constraint ¬Location ∨ Frontend in Figure 4(a). Such

situation happens during the evolutionary process, but the FMs

can be refined by the user, to remove this incoherence.

The results presented and analyzed in this section show that

SPEA2 was better than NSGA-II to find fronts of solutions

with the best values of objectives (shown by HV indicator).

Interestingly, SPEA2 found the best solutions in only two of

the 30 independent runs, but all of them composed the PFtrue.

On the other hand, NSGA-II was absolutely (in 100% of the

cases) the fastest algorithm of our evaluation, and found the

single solutions (in PFapprox) closer to an ideal point (shown

by ED indicator). Finally, MOEA4MBPL is capable to find

FMs with high values of precision and recall (denoting the

desired microservices-based systems), and satisfying 100% of

the dependencies between the microservices.

The discussions presented above are related to the op-

timization process. In a practical point of view, we can

discuss the advantages of proposing an SPL based on different

microservices-based systems in comparison to SPLs obtained

from system variants. When an FM is extracted from sys-

tem variants, usually the features represent common imple-

mentation of building-blocks, with only small modifications,

that will be used to configure different products. In an FM

obtained with MOEA4MBPL we also can reason about the

configuration of different products. In addition to this, since

our input are entire different systems, we can experiment

different microservices/features implementations. This allows

us to select the best implementations for the context we

have. For example, feature Payment is present in all six

web stores, with different implementations. We can try these

different implementations and choose the one that best fits our

context. All this experimentation of different implementations

is supposed to be an easy task due to the interoperability

between microservices.

VI. CONCLUDING REMARKS

This paper introduced MOEA4MBPL, an approach to ex-

tract FMs from a set of microservices-based systems. The

approach relies on multi-objective and evolutionary algorithms

and generates a set of FMs with good trade-off of three ob-

jectives: recall, precision, and conformance with dependencies

between the microservices.

In the evaluation, MOA4MBPL obtained solutions with high

objective values. The generated FMs represent all the desired

microservices-based systems and do not violate any existing
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Fig. 3. Three solutions found by NSGA-II and three solutions found by SPEA2 on the Search Space in different combinations of objectives. Two solutions
found by both algorithms have the same values for the three objectives, and one solution of SPEA2 has a better value of P, dominating the solution of
NSGA-II.

(a) P=1.0, R=0.666, DC=1.0

(b) P=0.555, R=0.833, DC=1.0

(c) P=0.352, R=1.0, DC=1.0
(d) P=0.25, R=1.0, DC=1.0

Fig. 4. Feature Models of the best solutions found by NSGA-II and SPEA2. Solutions (a) and (b) were found by both algorithms. Solution (c) was found
only by SPEA2 and dominates the solution (d) found by NSGA-II.



dependency. From this set, the software engineers can select

the best solution according to their needs. SPEA2 presented

the best value regarding HV and more solutions in PFtrue.

On the other hand, NSGA-II presented results with the best

value of ED and runtime. The approach reached good results

with both algorithms. However, deeper analysis should be

conducted in the future, including other MOEAs and systems.

We had some insights during the conduction of this study.

SPLs are commonly implemented using compositional or

annotative approaches [31]. In the context of microservices,

we have a third option, which is the use of APIs to integrate

implementation artifacts. Microservices seem to be adequate

to implement SPLs because of it well-modularization and

interoperability. However, the variability management in a

multi-tenancy environment is a complex situation that needs

to be deeper investigated.

Future work should also consider other objective functions

and other kind of information regarding the microservices

such as non-functional properties, as well as the creation

of other architectural models required for an MBPL. For

example, dependency conformance deals with dependencies

between microservices, but it could be based on other types

of implementation artifacts, or be given by domain experts

based on their knowledge of the microservices-based systems.

Our work represents just a first step in this direction.
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“Combining service-orientation and software product line engineering:
A systematic mapping study,” Information and Software Technology,
vol. 55, no. 11, pp. 1845–1859, 2013.

[12] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire, “On extracting feature models from product descriptions,”
in VaMoS, 2012, pp. 45–54.

[13] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in ICSE, 2011, pp. 461–470.

[14] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “On extracting
feature models from sets of valid feature combinations,” in FASE, 2013,
pp. 53–67.

[15] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Feature model
synthesis with genetic programming,” in SSBSE, 2014, pp. 153–167.

[16] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed, “Reverse engineering feature models with evolutionary algo-
rithms: An exploratory study,” in Search Based Software Engineering,
G. Fraser and J. Teixeira de Souza, Eds. Springer, 2012, pp. 168–182.

[17] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Extracting variability-safe feature models from source
code dependencies in system variants,” in Annual Conference on Genetic

and Evolutionary Computation, ser. GECCO’15. New York, NY, USA:
ACM, 2015, pp. 1303–1310.

[18] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Multi-objective reverse engineering of variability-safe
feature models based on code dependencies of system variants,” Empir-

ical Software Engineering, vol. 22, no. 4, pp. 1763–1794, 2017.
[19] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices

from monolithic software architectures,” in 2017 IEEE International

Conference on Web Services (ICWS), June 2017, pp. 524–531.
[20] J. Lee, D. Muthig, and M. Naab, “A feature-oriented approach for de-

veloping reusable product line assets of service-based systems,” Journal

of Systems and Software, vol. 83, no. 7, pp. 1123–1136, 2010.
[21] S. Khoshnevis and F. Shams, “Automating identification of services and

their variability for product lines using NSGA-II,” Frontiers of Computer

Science, vol. 11, no. 3, pp. 444–464, Jun 2017.
[22] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “FAMA:

Tooling a framework for the automated analysis of feature models,” in
International Workshop on Variability Modelling of Software-Intensive

Systems (VaMoS), 2007, pp. 129–134.
[23] S. Segura, J. Galindo, D. Benavides, J. A. Parejo, and A. R. Cortés,

“BeTTy: benchmarking and testing on the automated analysis of fea-
ture models,” in International Workshop on Variability Modelling of

Software-Intensive Systems (VaMoS), 2012, pp. 63–71.
[24] T. E. Colanzi, W. K. G. Assunção, P. R. Farah, S. R. Vergilio, and

G. Guizzo, “A review of ten years of the symposium on search-based
software engineering,” in Search-Based Software Engineering, S. Nejati
and G. Gay, Eds. Springer International Publishing, 2019, pp. 42–57.

[25] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance assessment of multiobjective optimizers: An analysis
and review,” IEEE Transactions on Evolutionary Computation, vol. 7,
pp. 117–132, 2003.

[26] C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in IEEE

Intern. Conference on Evolutionary Computation, 2006, pp. 1157–1163.
[27] J. Cochrane and M. Zeleny, Multiple Criteria Decision Making. Uni-

versity of South Carolina Press, Columbia, 1973.
[28] R. Bergmann, J. Ludbrook, and W. P. J. M. Spooren, “Different

Outcomes of the Wilcoxon-Mann-Whitney Test from Different Statistics
Packages,” The American Statistician, vol. 54, no. 1, pp. 72–77, 2000.

[29] A. Vargha and H. Delaney, “A critique and improvement of the cl
common language effect size statistics of McGraw and Wong,” J. of

Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.
[30] A. Arcuri and L. Briand, “A Hitchhiker’s guide to statistical tests for

assessing randomized algorithms in software engineering,” Software

Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.
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