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Abstract—Researchers have spent a considerable effort in eval-
uating the goodness of a solution set obtained by an evolutionary
multi-objective algorithm. However, most performance metrics
assume that the knowledge of the exact Pareto-optimal set is
available. Also, most metrics evaluate an algorithm’s performance
based on the final solution set, which fails to capture their
performance during intermediate generations. In this paper, we
investigate a running performance metric which can be applied
to measure the performance at any time during the algorithm
execution and no true optimum needs to be known for computing
the metric. In general, multi-objective algorithms either improve
the convergence based on the dominance relation or the diversity
in the solution set. Our proposed running metric makes use
of this fact by keeping track of the indicators regarding the
extreme points and the ND solution set each generation and
derives measures of convergence and diversity. Moreover, by
introducing a threshold and comparing the values of indicators
a set of termination criteria is also suggested. Finally, we
demonstrate how our running performance metric can be used
to compare multiple evolutionary multi-objective algorithms with
each other. An implementation of the proposed methodology is
available at pymoo, a multi-objective optimization framework:
https://pymoo.org.

Index Terms—Multi-objective Optimization, Performance In-
dicator, Running Metric.

I. INTRODUCTION

In multi-objective optimization, the convergence and diver-
sity of a set of non-dominated (ND) solutions to the true
Pareto-optimal (PO) front must be considered in defining a
performance metric. To accomplish a fair comparison of two
solution sets various performance metrics have been proposed
in the past [4], [12], [14], [16]. There are at least two issues
with the past performance comparison studies. First, in most
EMO studies, the performance of an EMO algorithm was
computed only with the final ND set. Such a metric does not
provide how the algorithm is able to come up with the final
performance – ”Was the algorithm gradually and consistently
improving its performance from start to the end of a run?”,
or ”Were there sudden spurts of improvements with a long
stagnation?”. While comparing two or more algorithms, the
comparison of the final ND set does not provide many vital dy-
namics of each algorithm – ”Did one algorithm perform better

in early generations and then slowed down towards the end?”,
or ”Did one algorithm outperform another from the start to
the end?”. A static evaluation of algorithms using the final ND
points does not reveal any of these important characteristics
of them. This calls for a running performance metric, which
can provide a generation-wise performance profile so that a
more detailed understanding of the algorithm’s performance
or a relative performance of two or more algorithms can be
achieved.

The second issue with most performance metrics is that
they require the knowledge of the true PO front. For example,
the Inverse Generational Distance (IGD) metric [4] and its
extension IGD+ [12] require a reference set of solutions from
the true PO front. Clearly, such metrics cannot be applied to
a real-world problem for which PO solutions are not available
before an EMO is run. The popularly used hypervolume [17]
metric requires a reference point (preferably a point close to
the nadir point). Again, without knowing the PO front, the
nadir point information is not available. Many studies have
shown that the hypervolume metric value largely depends on
the chosen reference point [11]. Due to the lack of knowledge
of PO solutions, researchers still use the hypervolume metric
with a questionable outcome.

In this paper, we address this vital issue and seek ways
to update the above-mentioned metrics without any use of
the true PO front and extend them to be used as any-time
performance metrics for multi-objective optimization. Besides
the description of the running IGD metric, we also propose a
set of termination criteria based on convergence and stability
of extreme points in the evolving ND set and diversity of
ND solutions. We demonstrate the working of the running
metric and proposed termination criteria on two-objective ZDT
problems (including ZDT5) and three to eight-objective DTLZ
problems. We also describe how the proposed running IGD
metric and termination criteria can be used to compare two or
more EMO algorithms based on the entire history of evolution
from start to end of multiple optimization runs and not on
the basis of the final ND set only. We argue that such a
dynamic running metric plot provides more information about
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the characteristics of different algorithms on specific problems.
In the remainder of this paper, we provide a brief summary

of existing running metrics for multi-objective optimization in
Section II. The development of the proposed running metric
is provided next in Section III. Results on a number of two to
eight-objective problems and on two real-world problems are
provided in Section IV. Finally, conclusions of this study are
made in Section V.

II. RELATED WORK

A running performance metric for MOEAs was first pro-
posed in [6]. It showed the need to consider not only the
final ND set of solutions for evaluating an EMO algorithm’s
performance but also intermediate solution sets during an
optimization run. The authors then suggested to calculate the
average normalized distance to the closest PO point for each
ND solution in a generation in order to measure the level
of convergence. Moreover, a diversity measure based on grid-
wise entropy in the objective space was proposed. Both metrics
together were used to keep track of generation-wise dynamics
of an EMO. These metrics suggested in 2002 assumed that
the knowledge of the true PO front is available.

III. PROPOSED METHODOLOGY

A performance metric for evaluating an EMO algorithm
must consider the following aspects: (a) handle differently
scaled objectives, (b) emphasize a solution set converging as
close as possible to the true PO front, and (c) emphasize
the diversity of the ND set in the objective space [3]. These
aspects need to be addressed by a performance metric, whether
it is a running metric for evaluating an EMO’s performance
at any generation or a static metric which is applied only
to the final ND set. While the normalization issue can be
addressed easily due to the existence of a set, the convergence
and diversity issues require special attention. Depending on
the algorithm and characteristics of optimization problems,
the above two phases for convergence and diversity might be
clearly separable, alternating, or interwoven [15]. Recognizing
the above, we refer to the convergence phase to extreme
solutions in an EMO run with CE and the diversity creating
phase with CD. The convergence phase CE is characterized by
having found the (optimal) extreme points which is necessary
to ensure suitable normalization for improving the diversity.

A. Convergence to Extreme Points

During the convergence phase CE , an EMO algorithm
continually discovers new solutions that dominate existing
solutions from one generation to the next. Presumably, this
takes place in the early generations of an optimization run.
Therefore, the current set of ND solutions gets significantly
changed from one generation to the other. A measure of the
change can be derived from the movement of the extreme
points of the current ND solutions in the objective space. The
extreme points in a multi-objective context can be defined
with two points: realized ideal point z∗ which is a vector
constructed with the minimum of all objectives and is usually

a non-existent solution, and a realized nadir point znad which
is constructed with the maximum of ND solutions in the
objective space. We refer to a realized ideal or nadir point at
generation t by z∗(t) and znad(t), respectively. Our method
keeps track of the movement of these two extreme points
from one generation to the next by considering the maximum
absolute difference of each component. For the realized ideal
point, the normalized change from (t−1)-th to t-th generation
is given by:

∆t−1, t z
∗ =

M
max
i=1

z∗i (t− 1)− z∗i (t)

znadi (t)− z∗i (t)
. (1)

By definition it is guaranteed that z∗i (t − 1) ≥ z∗i (t) and
znadi (t) ≥ z∗i (t). Therefore, the nominator and denominator
are guaranteed to be equal or greater than zero. If the denom-
inator equals to zero, we neglect normalization for the i-th
component. For the nadir point znadi , the normalized change
is defined analogously:

∆t−1, t z
nad =

M
max
i=1

znadi (t− 1)− znadi (t)

znadi (t)− z∗i (t)
. (2)

The proposed metrics, ∆t−1,t z∗and ∆t−1,t znad , are
illustrated in Figure 1. ND solutions found in generation
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Fig. 1: A visualization of the realized ideal z∗ and nadir points
znad in a transition from generation t (triangles) to t + 1
(circles) during the convergence phase CE .

t − 1 are represented by blue circles and in generation t by
orange triangles. The black arrows illustrate the ideal and
nadir points movement from one generation to another. In
the figure, z∗ and znad have moved significantly which is
also indicated by large values of ∆t−1,t z

∗ and ∆t−1,t z
nad .

Such a scenario is typical for the first few generations of
an EMO algorithm. It is also important to highlight that
since z∗ and znad are unstable during the CE phase, the
normalization of the objectives is unstable. Thus, any running
metric will also produce an incoherent measure of an EMO’s
performance from one generation to the next, particularly
when the knowledge of theoretical ideal and nadir points are
not available.

However, in a later generation a relatively small ∆t−1,t z
∗

and ∆t−1,t znad will imply that the boundary points have



started to settle down. This will indicate that the extreme points
of the ND solution set are not moving significantly anymore
and, therefore, the algorithm has achieved its convergence
phase CE by anchoring the extreme points and is now ready
to concentrate on maximizing the diversity of intermediate ND
solutions.

B. Enhancing Diversity

When the algorithm enters the diversity phase CD, the
movement of the extreme points is insignificant. From this
generation on, the normalization of the objectives will also
stabilize. A stable normalization for the CD phase is important,
since the diversity measure must calculate the distance be-
tween ND solutions involving all objectives. However, during
the CD phase, it is still expected that the boundary points
will change slightly. To make a more reliable computation
of a diversity metric, we propose a cumulative approach. We
accumulate the ND solutions from the initial generation to
the current generation (τ ) and calculate the realized z∗ and
znad points from the accumulated set. Then, we determine the
following normalized i-th objective value of j-th ND point at
t-th generation P (j)

i (t) using P (τ) as follows (0 ≤ t ≤ τ ):

P̄
τ,(j)
i (t) =

P
(j)
i (t)− z∗i (τ)

znadi (τ)− z∗i (τ)
. (3)

Note that z∗ and znad points are calculated at the τ -th
generation.

Now, that the ND sets at generations 0 ≤ t ≤ τ are
normalized with fixed z∗ and znad points, any existing
performance metric requiring a reference set P ∗ = P̄ τ (τ)
and an evolving ND set Q(t) = P̄ τ (t) can be computed to
evaluate the algorithm’s performance for the above-mentioned
generations. For example, the Inverted Generational Distance
(IGD) metric is a popularly used metric for this purpose, which
in its existing sense, requires the exact knowledge of the true
PO front P ∗:

IGD(Q(t), P ∗) =
1

|P ∗|

|P∗|∑
i=1

(
|Q(t)|
min
j=1

∥∥P ∗i −Qj(t)∥∥
)
. (4)

It measures the average distance from a solution in P ∗ to
the closest solution in Q(t) obtained by the algorithm at
generation t, for given τ . However, our above proposal does
not require the knowledge of true PO front, but the above IGD
metric can be computed as IGD(P̄ τ (t), P̄ τ (τ)) for 0 ≤ t ≤ τ .

To reduce the computational complexity of re-normalization
and IGD computations, we follow a simple procedure for our
CD measure. The average improvement of the IGD metric
from generation (t− 1) to t is computed as follows:

∅t = IGD(P̄ t(t− 1), P̄ t(t)). (5)

Note that, the normalization is performed with ideal and nadir
points computed at generation t.

In Figure 2, a solution set in generation (t − 1) and
generation t during the diversity phase CD is illustrated. First,
it is worth noting that the realized ideal and nadir points z∗ and
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Fig. 2: A visualization of the average change in IGD values
(∅t) from generation t−1 to t during the diversity phase CD.

znad are unaltered during the transition between generations.
Second, the diversity has improved which is obvious by
observing that the solution set in generation (t− 1) is biased
towards the boundary points P (1)(t − 1) and P (5)(t − 1)
and has only a single point P (3)(t − 1) at the center. The
metric ∅t is calculated by considering for each point in
P (t) with its closest point in P (t − 1). For the boundary
points the distance turns out to be zero because both points
exist in P (t − 1) and P (t). For the non-boundary points the
distances ||P (2)(t)−P (2)(t−1)||, ||P (3)(t)−P (3)(t−1)|| and
||P (4)(t)−P (4)(t−1)|| are summed up and the resulting value
divided by the size of ND set at generation t, |P (t)| = 5.

C. Termination Criterion

A termination criterion must be set based on an algorithm’s
satisfactory performance up until the generation. The proposed
metrics ∆t−1,t z∗, ∆t−1,t znad and ∅t are capable of
providing the information whether the EMO algorithm is in
the convergence phase, diversity creation phase or in a phase
which does not seem to change the current status of ND
solutions. For estimating the status for termination of any of
the above scenarios, we propose to use a sliding window (ω
generations) to compute the metrics and check against a pre-
specified threshold value (ε) for termination. While ∆t−1,t z

∗

and ∆t−1,t z
nad checks are done at every generation and the

respective CE completion is identified, the CD completion is
checked after the first ω generations are over and then at every
generation thereafter. The ∅t metric can be computed for two
consecutive generations for the past ω generations. If all ω
changes are below or equal to ε, the CD completion is de-
clared. When both convergence and diversity completions are
made, the EMO algorithm is terminated. Figure 3 illustrates
an exemplary decision for termination of an EMO.

In this example the algorithm is run up to six generations
and, therefore, five transitions exist. The termination is based
on a window size of ω = 3 which corresponds to the most
recent transitions 3 → 4, 4 → 5, and 5 → 6 (highlighted
in green). All values from earlier transitions (namely, 1 → 2
and 2 → 3) are not of interest for current calculations. To
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Fig. 3: Termination criterion after six generations (τ = 6) with
a sliding window size of three (ω = 3).

check whether the algorithm has completed the convergence
phase CE , we verify if ∆t−1,t z

∗ and ∆t−1,t z
nad have not

changed significantly in the past ω generations by comparing
their maximum metric values with a threshold ε. If all previous
values are below ε, we consider the algorithm has completed
CE . This clearly indicates the impact of a suitable choice
of ω and ε, because they directly decide if the algorithm
has completed CE or not. If the algorithm is found to have
completed its convergence phase, we further compare the
transition of ∅t with ε to determine if the diversity creation
phase is completed or not. If all past ω values of ∅t do
not exceed the threshold ε, we declare that the algorithm has
additionally completed CD. The completion of CE and CD
phases implies that the algorithm can be terminated.

D. Visualizing the Running Performance Metric

In a real-world optimization scenario the objective function
can be computationally expensive and an optimization run
might take a couple of hours or days to complete. Therefore,
the continuous visualization of an algorithm’s performance
is a practical need during an optimization run. This means,
instead of the IGD or hypervolume metric values at the final
generation, the metrics must be presented generation-wise
from the start until the end of an optimization run. In this
paper, we call such a metric a running performance metric.

For such a scenario, the computational overhead to present
a meaningful visualization at the end of each generation can
be demanding, but we argue that in practical problems, such
computational overhead will still be negligible compared to
the evaluation time of a population of solutions. Even without
knowing the true PO front, we propose a novel way to compute
the CD metric as described below.

For visualization, we re-consider the interval of τ gen-
erations, at which the performance plot has to be updated.
For an easy implementation, τ can be initialized to ω (the
sliding window used for termination condition in the previous
subsection). From the start of an EMO run, the user waits until
the first τ generations are completed. The ND sets of all past

generations are collected to compute the realized ideal and
nadir points and all ND sets are normalized using Equation 3.
Then, the following IGD metric

∅τt = IGD(P̄ τ (t), P̄ τ (τ)) (6)

is computed for all past generations (0 ≤ t ≤ τ ). For
τ = ω = 5, such a plot is shown in Figure 4 with a
blue line. Although it requires re-normalization of ND sets
in all previous generations, but it ensures a strictly improving
performance of an algorithm. While the algorithm is running
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Fig. 4: Visualization of the running performance metric ∅τt at
generations τ = 5 and 10.

in the background, the user does not see any plot until
τ = 5 generations are elapsed. At generation 5, the plot for
∅5
t = IGD(P̄ τ (t), P̄ τ (5)) (blue line) appears, showing the

performance of the EMO for the past τ = 5 generations. To
compute this plot, all six ND sets (from generation t = 0 to
5) are normalized using the ideal and nadir vectors computed
at generation 5 and then IGD values are computed. The plot
shows that IGD is steadily improving with generation. The fact
that IGD at t = 5 is zero is not surpsiring, as the reference
set P̄ τ (τ) for the blue IGD line is the normalized ND set at
generation 5 or P̄ τ (5) itself.

Then, the algorithm continues and ideally a new IGD line
can be created using a re-normalization of all seven ND
sets (generations zero to six) and computing IGD with a
reference set P̄ τ (6). But, as mentioned above, this can be
time-consuming to re-normalize all ND sets from start, par-
ticularly when hundreds of generations have elapsed. Instead
of recomputing IGD at every generation, we can stagger τ
by another ω generations, so that τ ← τ + ω. The figure
shows the next IGD line at τ = 10 in green color. All ND
sets are collected until generation 10 and normalized. There-
after, ∅10

t IGD(P̄ τ (t), P̄ τ (10)) is computed for generations
(0 ≤ t ≤ 10). To paint a picture of the progress of the
algorithm from generation 5 to 10, both blue and green lines
can be shown for the user to comprehend, while the next
ω generations can be continued in the background. For not
making the IGD plots cluttered, only two most current IGD
plots can be shown at a time.

With the above visualization scheme, the termination of a
run still takes place using the low computational approach de-
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Fig. 5: Analysis of the proposed indicators during a run of NSGA-II on ZDT6 in 300 generations.

scribed in the previous section and the EMO can be terminated
by making a final IGD plot at the terminating generation.

In general, ∅t,τ can be computed with another multi-
objective performance indicator, such as hypervolume [17]
metric. However, since hypervolume becomes too computa-
tionally expensive for higher objectives, we do not pursue it
here.

IV. RESULTS

In the following, the behavior of the proposed running
performance metric and the proposed termination criteria are
tested on a number of test problems and two real-world
problems. We have used the state-of-the-art evolutionary multi-
objective optimization algorithms: NSGA-II [7] for problems
with two objectives and NSGA-III [9] for problems with three
or more objectives. All hyper-parameters, such as population
size and other evolutionary parameters are set based on the
standard recommendations [7], [9].

A. Convergence Behavior

First, we investigate the settlement of the ideal and nadir
points during an optimization run using our proposed CE
metric, given in Equation 3. We choose a representative
bi-objective test problem ZDT6 [18] for this purpose. In
Figure 5a, the change of the ideal point (z∗) and in Figure 5b
the change of the nadir point (znad) is shown.

Clearly, the changes of ideal points are less frequent and
significant compared to the changes of the nadir points. This
is additionally supported by similar observations made for
NSGA-III in [2]. Both figures indicate that the boundary points
can be considered to have settled only after 100 generations
are elapsed. In Figure 5c, the generational movement ∅t is
presented at each generation. A set of ω consecutive values
is checked with a pre-specified threshold parameter ε for
terminating an EMO run. IGD values are computed using two
consecutive ND sets and, therefore, no knowledge about the
true PO frontier is required.

In Figure 6, IGD values with a normalization achieved with
the final generation at τ = 300 are shown. The variation of
IGD is more smooth compared to that in Figure 5c. Although a
more stable and more reliable termination is possible using the

∅τt metric, but clearly it is a computationally demanding, as all
300 ND sets (one at each generation) must be normalized using
the final population extreme values at generation τ = 300.
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Fig. 6: The running IGD metric ∅τt with τ = 300 on ZDT6.

B. Visualization of Running IGD Metric

The above four figures provided a clear picture of the
CE completion and CD completion for terminating an EMO
run on ZDT6 using NSGA-II. We now demonstrate how the
running metric can be used to visualize the performance of
NSGA-II on ZDT6 as the optimization proceeds. Figure 7
shows the proceedings with ω = 5. The first IGD plot (with
τ = 5) on the top figure appears after five generations are
elapsed showing a monotonic decrease in IGD values. Then,
after five more generations, the next IGD plot (with τ = 10)
is shown. Since all 11 ND sets (including the initial set) are
re-normalized with 10-th generation ideal and nadir points,
the IGD values in the first five generations are now different
from that of the previous IGD plot. The IGD at τ = 10
indicates that NSGA-II is able to produce better ND solutions
compared to those at 5-th generation. At generation 15, a new
IGD plot appears indicating that during generation 11-14, ND
sets have not improved much due to almost horizontal nature
of the IGD plot. But, at generation 15, a drastic improvement
occurred. It is also interesting that for this specific NSGA-II
run, at generation 18 a fast drop of IGD has also occurred,
as shown in the generation-20 plot, indicating that NSGA-II
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Fig. 7: Convergence of NSGA-II on ZDT6 during an early
and a latter phase of the algorithm.

is able to find a much-improved set of extreme points within
16-20 generations. Such dynamics of evolution of ND points
gets clear by observing the changes in the running IGD plots.
IGD plots at t = 35 and 40 indicate that IGD values get
worse at around generation 30. This may have happened due
to change of ideal or nadir points. For comparison, the true
IGD values computed using the true PO points are shown by
a black line (marked ‘IGD’). The proceedings of the latter
generations are shown in bottom part of Figure 7. The true
IGD variation is also shown in this figure. The IGD computed
without the knowledge of the true PO points is consistent with
that calculated with PO points.

C. Termination of NSGA-II Runs

Next, we demonstrate how the proposed CE and CD
completion procedures can be used to terminate an EMO
run. We consider all six ZDT problems and set the sliding
window size to ω = 30. Thus, the earliest an EMO run can
be terminated is at generation 30. According to the procedure
described in Subsection III-C, termination criteria are checked
at every generation thereafter. To reduce the computational
burden, here, we check the termination criteria at every 5-
th generation after the first 30 generations by using the past
30 ND sets. We also set the threshold value for termination
to ε = 0.0025. This implies that an algorithm is considered
to be terminated if in the last ω generational transitions, no
average difference in the objective space regarding ∆t−1,t z

∗,

∆t−1,t znad and ∅t is above 0.25%. Table I presents the
results of NSGA-II with a population size of 100 on the ZDT
test problem suite.

TABLE I: Generations at which termination criteria are met
on six bi-objective ZDT test problems using NSGA-II based
on 51 runs.

Problem µgen σgen µIGD σIGD

ZDT1 170.98 23.9378 0.006 0.0007
ZDT2 176.57 15.2804 0.006 0.0008
ZDT3 165.59 18.9907 0.007 0.0078
ZDT4 244.51 28.6401 0.006 0.0013
ZDT5 91.27 59.0834 1.482 1.0608
ZDT6 248.33 10.8474 0.004 0.0002

The table presents (i) µGen, which is the average number of
generations until termination occurred, (ii) σGen which is the
standard deviation of terminated generations over 51 runs, (iii)
µIGD, which is the average IGD value of the final population
at the terminated generation computed using true PO points as
reference points, and (iv) σIGD which is the standard deviation
of IGD values over 51 runs. It can be observed that for ZDT1-
4 and ZDT6, the final IGD values are small, indicating that an
excellent performance is achieved by NSGA-II over 51 runs.
Interestingly, the termination criteria based on an IGD metric
which does not use the true PO points is able to produce
similar true IGD values dictated by the true PO points. Such
an outcome is possible with a threshold of ε = 0.0025 on ∅t
over ω = 30 generations and is a remarkable achievement.
Also, σGen in each run is rather small, which indicates that
NSGA-II was terminated reliably over multiple runs. A relative
comparison of µgen reveals that ZDT4 and ZDT6 problems
require more generations to achieve the desired convergence
and diversity compared to ZDT1-3 problems. This was also
established earlier [5].

EMO studies have mostly avoided ZDT5, which is defined
over a Boolean search space with many deceptive optima.
The table indicates that NSGA-II optimizing ZDT5 terminates
rather quickly (on an average 91.27 generations), but with a
significantly large true IGD value. This indicates that NSGA-
II has got stuck in deceptive fronts (which are far away from
the global PO front in the objective space) early on and could
not recover from it before termination.

D. Many-objective Test Problems

Next, we investigate if our proposed running performance
metric can be applied suitably to indicate the performance
of evolutionary many-objective optimization algorithms on
problems having more than two objectives. To investigate this
aspect, we apply NSGA-III [9] on the DTLZ test problem
suite [10]. For our experiments, we have considered DTLZ1
to DTLZ4 with M = 3, M = 5 and M = 8 objectives.
Analogously to the bi-objective experiments, Table II shows
the effect of automatic termination using the proposed criteria.



TABLE II: Generations at which termination criteria are met
on four many-objective DTLZ test problems using NSGA-III
based on 51 runs. N is the population size.

Problem M N µgen σgen µIGD σIGD

DTLZ1
3 92 305.2 62.20 0.004 0.0026
5 212 410.39 70.31 0.003 0.0015
8 156 689.31 174.36 0.003 0.0017

DTLZ2
3 92 191.67 54.72 0.003 0.0016
5 212 395.98 128.53 0.005 0.0031
8 156 733.04 164.11 0.004 0.0018

DTLZ3
3 92 549.41 89.02 0.100 0.3393
5 212 672.75 97.31 0.030 0.0261
8 156 1143.53 213.60 0.018 0.0119

DTLZ4
3 92 234.69 88.57 0.003 0.0022
5 212 343.82 102.79 0.006 0.0037
8 156 414.9 117.88 0.003 0.0018

As expected, the required number of generations to satisfy
the strict termination criteria increases with in increase in
the number of objectives M . Moreover, the σgen is also
significantly larger. Interestingly, the chosen value of ω makes
the true IGD values come closer to the chosen threshold ε on
all problems, except in DTLZ3. The variation of IGD values
over 51 runs is also small, indicating a reliable performance
of NSGA-III in solving these problems. For DTLZ3, a similar
behavior than for ZDT5 can be observed due to the multimodal
nature of the problem. NSGA-III gets stuck in a local PO front
in some runs, thereby making the IGD value to be large when
computed using the true PO points. A follow-up study using
ω = 40 reveals a better performance on DTLZ3. Due to space
restrictions, we do not show the results here.

E. Comparison of Multiple EMO Algorithms

Finally, we propose a way to compare two or more EMO
algorithms problems using the proposed running IGD perfor-
mance metric.

Each algorithm is run with a termination criterion (here,
we show results after a pre-defined number of generations
(τ ) for a fixed population size is completed). Then, all final
ND solutions are merged and dominated solutions, if any, are
deleted from the merged set. We refer to this filtered set as Q∗.
Individual ND sets from each algorithm and Q∗ are normalized
using the ideal and nadir points of Q∗ and, then, the running
IGD metric is computed for the normalized ND set P̄ τ (k, t)
for the k-th algorithm at generation t:

∅k,t = IGD(P̄ τ (k, t), Q̄∗). (7)

However, our proposed termination criteria with pre-defined
ω and ε can also be used to terminate each algorithm.

A more detailed comparison of dynamics of algorithms can
be achieved by applying the above procedure after every τ
generations by merging ND sets together, removing dominated
solutions, and normalizing the sets using the merged set. Then,
a visualization of the running IGD metric at generation τ

can be updated with a revised IGD at 2τ generations and so
on, until all algorithms are terminated based on our proposed
termination criteria.

To demonstrate algorithmic comparison, we choose two
real-world problems – Welded Beam design problem (WELD)
[8] with two objectives and Carside Impact design problem
(CAR) [13] with three objectives. We compare the perfor-
mance of two algorithms: NSGA-II with NSGA-III. For
WELD, the final solutions in the objective space are shown in
Figure 8a. It can be observed from ∅k,t variations that NSGA-
II performs significantly better than NSGA-III on WELD.
The results show that NSGA-III is not able to find the
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Fig. 8: Results on WELD problem (4 variables, 4 constraints,
2 objectives).
boundary point that minimizes f1 and was not able to cover the
lower right part in the objective space uniformly. While most
studies in the past have compared the final ND points among
competing algorithms, here we show the use of a running
performance metric to have a more comprehensive evaluation.

Figure 8b shows that the running IGD metric (∅t) for
NSGA-II is better right from the start and stays better through-
out the generations. It was never the case that NSGA-III
worked better in any intermediate generation during the runs.
Since the cumulative ND sets from both algorithms are used
as the reference set at every generation t and IGD of each
algorithm at generation (t − 1) is computed for the figure, it
is clear that NSGA-II sets populated the reference sets for it
to produce better running IGD values. Moreover, the fact that
the running IGD values gets flattened for NSGA-III in later
generations indicates its lack of improvements. NSGA-II keeps
on improving its ND points and the IGD value approaches
zero. Since the merged set has a few points from NSGA-III
(such as the extreme f2 point) which NSGA-II sets do not
have, the running IGD metric value for NSGA-II does not
reach zero, as they would with the running IGD metric in a
standalone run.

Next, we apply our approach to the CAR problem. It
has seven variables, ten constraints, and three objectives.
Due to the fact that NSGA-III was originally proposed as
an improvement of NSGA-II for handling more than two
objectives, a superior performance of NSGA-III is expected.
Figure 9a shows the solution sets returned by each algorithm
in the objective space. NSGA-III is able to achieve a better
distribution of points. Figure 9 clearly shows that NSGA-III
has outperformed NSGA-II on this problem throughout a run.
The running IGD metric oscillates around an almost fixed IGD



value, except at the last few generations where the performance
gets better suddenly. On the other hand, NSGA-III is able to
exhibit a steady improvement in the IGD value from the start
to the end of the run.
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Fig. 9: Results on CAR problem (7 variables, 10 constraints,
3 objectives).

An implementation of the running performance metric and
the termination criterion are publicly available in our multi-
optimization framework pymoo [1].

V. CONCLUSIONS

In this paper, we have addressed the performance evaluation
of EMO algorithms during an optimization run. The main
advantage of our proposed running metric is that it does not
require the knowledge of the true PO points. By comparing
the ND points of a generation with the ND points of the
next generation as a reference set, a running IGD metric
is proposed. Moreover, by estimating the convergence of
extreme points in consecutive generations and by comparing
the running IGD metric value in a few consecutive generations
with a pre-specified threshold, systematic termination criteria
are proposed. Thus, this paper has suggested a performance
metric that (i) does not require any knowledge of the true PO
front, (ii) provides a generation-wise performance measure,
and (iii) is capable of terminating an EMO algorithm based
on its demonstrated performance thus far. Results on two to
eight-objective problems indicate that the proposed method is
able to produce similar (running) IGD values by approximation
instead of requiring the knowledge of the true PO front. The
paper has also demonstrated a way to compare two or more
EMO algorithms using the proposed running IGD metric by
combining the ND sets from multiple algorithms and using
it as a reference set for running IGD computations. Results
have been shown on two real-world problems in which NSGA-
II performs better on two-objective problem, while NSGA-III
performs better on three-objective problem.

We plan to extend this study by investigating the algorithm
comparison in more detail. The comparison requires to extract
an approximated Pareto front from multiple solutions sets.
We have used a naive approach by merging all solution sets
together and obtaining a set of ND solutions. However, more
accurate predictions regarding performance could be achieved
by considering the diversity of the solution set and optimizing
this subset selection problem more carefully. Also, we plan
to perform a hyper-parameter optimization on the window

size ω used for the termination criterion. Finally, the running
performance metric concept implemented here with the IGD
metric will be extended for other existing metrics, such as
hypervolume and IGD+. Nevertheless, the development of the
running IGD metric without any use of true PO points, its use
as a termination condition, and its use in comparing multiple
algorithms stays as a significant contribution for future EMO
studies.

REFERENCES

[1] J. Blank and K. Deb. pymoo: Multi-objective optimization in python.
IEEE Access, 2020. DOI: 10.1109/ACCESS.2020.2990567.

[2] Julian Blank, Kalyanmoy Deb, and Proteek Chandan Roy. Investigating
the normalization procedure of NSGA-III. In Evolutionary Multi-
Criterion Optimization - 10th International Conference, EMO-2019,
Proceedings, pages 229–240, 2019.

[3] Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman
Słowiundefinedski, editors. Multiobjective Optimization: Interactive and
Evolutionary Approaches. Springer-Verlag, Berlin, Heidelberg, 2008.

[4] Carlos A. Coello Coello and Margarita Reyes Sierra. A study of
the parallelization of a coevolutionary multi-objective evolutionary al-
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