

A Genetic Programming-Based Multi-Objective

Optimization Approach to Data Replication

Strategies for Distributed Systems

Syed Mohtashim Abbas Bokhari
Department of Computer Science

University of Oldenburg
Germany

syed.mohtashim.abbas.bokhari@uni-oldenburg.de

Oliver Theel
Department of Computer Science

University of Oldenburg

Germany
oliver.theel@uni-oldenburg.de

Abstract—Data replication is the core of distributed systems to

enhance their fault tolerance and make services highly available

to the end-users. Data replication masks run-time failures and

hence, makes the system more reliable. There are many

contemporary data replication strategies for this purpose, but the

decision to choose an appropriate strategy for a certain

environment and a specific scenario is a challenge and full of

compromises. There exists a potentially indefinite number of

scenarios that cannot be covered entirely by contemporary

strategies. It demands designing new data replication strategies

optimized for the given scenarios. The constraints of such

scenarios are often conflicting in a sense that an increase in one

objective could be sacrificial to the others, which implies there is

no best solution to the problem but what serves the purpose. In

this regard, this research provides a genetic programming-based

multi-objective optimization approach that endeavors to not only

identify, but also design new data replication strategies and

optimize their conflicting objectives as a single-valued metric. The

research provides an intelligent, automatic mechanism to generate

new replication strategies as well as easing up the decision making

so that relevant strategies with satisfactory trade-offs of

constraints can easily be picked and used from the generated

solutions at run-time. Moreover, it makes the notion of hybrid

strategies easier to accomplish which otherwise would have been

very cumbersome to achieve, therefore, to optimize.

Keywords— Distributed Systems, Fault Tolerance, Data

Replication, Quorum Protocols, Operation Availability, Operation

Cost, Voting Structures, Optimization, Pareto Front, Machine

Learning, Genetic Programming.

I. INTRODUCTION

Data replication is replicating the copies of the same data
over several nodes in anticipation of achieving high availability
of the services, but accomplishing high availability is not a
straightforward task. Having replicated the data, it has to be
managed to avoid inconsistencies, which affect the correctness
of the data. Inconsistency means discrepancy in the data among
created replicas. Furthermore, the data needs to be exclusively
locked for the write operations to avoid conflicts, so that,
availability is achieved without destroying the correctness of the
data. There exist strategies known as data replication strategies
(DRSs), i.e., [12] to control such replicated behavior of a system.
These DRSs manage those created replicas, but to choose a
certain strategy for a certain scenario is a trade-off between
different quality metrics, i.e., load, capacity, availability [1],
scalability, and cost [2]. These metrics are often conflicting with

each other in a way that one cannot be optimized without
deteriorating the others. This could easily fall into the realm of
a multi-objective optimization problem [3]. This includes
mathematical optimization problems involving more than one
objective function to be optimized simultaneously. Multi-
objective optimization has its applicability in many domains of
science where optimal decisions have to be taken between the
trade-offs of two or more conflicting objectives. Since the best
solution for one scenario could be the worst for another one,
therefore, the goal is to find optimal solutions and quantify the
trade-offs in satisfying the specified scenario. In this regard, our
work is an interesting overlap between the concepts of
replication in distributed systems and machine learning.

The paper is structured as follows: Section 2 states the
problem. Section 3 sheds light on related work and the
innovation of our research. Section 4 describes the
methodology. Section 5 discusses the implementation aspects of
our approach. Section 6 presents the results and contributions.
Section 7 concludes the paper by summarizing the key points.

II. PROBLEM STATEMENT

Figure 1 depicts numerous scenarios between the
availability of the access operations (read or write) and their
costs whereas in our case, consistency is static and adheres to
1SR [4] all the time. 1SR allows a replicated system to behave
as a non-replicated system.

Fig 1. Data replication scenarios

Availability, here, is the probability by which a user
successfully performs an access operation and the cost is the
average minimal number of replicas, a user needs to access to
get the expected result. The availabilities of read and write
operations are optimally point-symmetric to each other [5],
which implies both cannot be optimized independently. Also,
an increase in the cost of a read operation often compromises
the write operation’s cost. Moreover, the relationship between

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

the costs and availability of the access operations is not linear
either. Numerous scenarios exist between their different trade-
offs, including the total number of replicas and their individual
availabilities. These scenarios cannot be fulfilled by the current
contemporary strategies entirely. There is a need of developing
new DRSs [6] to satisfy these scenarios. For this, the paper
endeavors to exploit heterogeneity among the existing solutions
to develop new hybrid replication strategies (i.e.,
heterogeneous DRSs combined together). In this regard, the
challenges are 1) resolving the multi-objective problem, 2)
eliminating the diversity between the DRSs in the form of
logical and topological differences which may hinder the design
of hybrid solutions, 3) finally, but most importantly, developing
a machine learning approach to automatically, but intelligently
design, as well as optimizing DRSs for specified scenarios.

III. RELATED WORK

There are various contemporary solutions in the form of
DRSs, i.e., Read-One Write-All [7], the Majority Consensus
Strategy (MCS) [8], the Tree Quorum Protocol [9], the
Weighted Voting Strategy [10], Hierarchical Quorum
Consensus [11], the Grid Protocol [12], the Triangular Lattice
Protocol (TLP) [13], etc. These strategies have different
semantics and properties for fulfilling different thresholds of
objectives, i.e., availabilities, costs, total replicas, etc. Since,
there are many trade-offs between these objectives forming
different scenarios, there is no single best solution. And as
discussed, the solution DRSs are insufficient to cover the
scenarios entirely. This brings us to the question of designing
new strategies and optimizing them [6]. For this, the paper uses
a genetic programming-based approach that enables the system
to design holistic hybrid DRSs at run-time and optimize them
over several generations of evolution. An optimized strategy
can be picked at run-time depending upon the scenario and
preferences of certain objectives.

This paper aims to design new hybrid DRSs automatically.

In this regard, only a few attempts are found in literature, i.e.,
[14] and [15], which primarily combine Tree Quorum Protocols
with Grid Protocols. It is mainly because the strategies are
diverse and exhibit different topologies as well as semantics by
which to access replicas, thereby making it very cumbersome
to accommodate them into hybrid solutions. For this, we use a
unified representation of DRSs known as voting structures to
eliminate such differences so that any quorum-based strategy
can freely be merged with any other quorum-based strategy.
Moreover, expert-based manual designs of optimized DRSs
using the concept of voting structures have been presented in
[16] and [17], but lack automation which limits the efficiency
of the approach, since the search space is huge. Therefore, our
approach endeavors to automatically design new solutions and
optimize them through machine learning to satisfy the specified
scenarios, hence, assisting multi-criteria decision making.

The next section discusses the adopted methodology to

address the research problems.

IV. METHODOLOGY

Figure 2 shows an abstract representation of our approach.
Simplistically, having defined a scenario, it starts from a set of
replication strategies being converted into a unified
representation of voting structures (representing each a
computer program) and stored in a scalable database repository.
Machine learning, mainly genetic programming, is then applied
to the repository to search or design appropriate solutions and
optimize them accordingly.

Fig 2. Methodology

The system plots newly designed innovative solutions via
genetic programming and an appropriate solution (possibly of
higher fitness) satisfying the specified criteria is picked at run-
time. The chosen solution is stored back in the repository for
future use in the genetic process to improve the solutions or in
case, the same scenario comes up again. We explain these
aspects in detail in this section.

A. Voting structures

The research uses General Structured Voting [18] to
eliminate any possibilities of topological and logical impositions
in accessing replicas. This acts as a unified representation of all
DRSs and makes them flexible and convenient enough for the
machine learning framework to work on them for designing and
optimizing new solutions. Figure 3 shows the adopted directed
acyclic graph (DAG) representation known as a voting structure
to embody the quorum mechanism for distributed systems.

Fig 3. Example of a voting structure

Every individual voting structure is a computer program that
is interpreted by our general algorithm at run-time to derive read
and write quorum sets. These quorum sets are used to manage
replicated objects. A voting structure, hence, is comprised of
physical and virtual replicas. Physical are actual replicas, which
in the given instance, is four in total while the virtual replicas
serve to form groupings of physical and logical replicas. Every
node is endowed with a threshold of a minimal number of
replicas as quorum rq (wq) for read and write operations,
respectively, whereas votes act as a weightage of that node in
the collection of a quorum. This voting structure is probed from
the top recursively and the quorum for each node to gather per
operation has to be less than or equal to the sum of the votes of
its children. In some cases, an ordering in the form of an edge
priority could also be set (1 being the highest and ∞ being the
lowest) to access replicas in a specified order as to reduce the
cost. On each level, in general, the quorum has to obey the
following rules for a total number of votes V to meet the
consistency criterion:

 rq + wq > V (to avoid read-write conflicts) (1)

 wq > V/2 (to avoid write-write conflicts) (2)

For example, the voting structure given in Figure 3
constructs the following read (RQ) and write quorum sets (WQ)
to perform the data access operations:

RQ = {{p1}, {p2, p3}, {p2, p4}, {p3, p4}}

WQ = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}}

Figure 4 represents a relatively complex example of a TLP
comprised of six replicas being modeled as a voting structure.
Next, we explain the constraints of a scenario.

Fig 4. TLP as a voting structure

B. Constraints-based scenario

The scenarios constitute different parameters and thresholds
for the replication strategies to adhere to. The scenario
parameters could be dependent on the application, its
requirements, and resources. Scenarios reflect objectives which
are supposed to be optimized for the input values. The semantics
of a scenario is discussed next.

1) Consistency of operations

In our research, the consistency is 1SR which provides high
consistency being maintained by the intersection property
between every read (write) and write (write) operations of a
DRS. This property must be maintained throughout the genetic
process otherwise solution becomes invalid.

2) Number of replicas

The number of replicas n must be restricted to a threshold
of ε depending on the resources, but in such a way that
availability is not compromised much. In general, an increase
in the number of replicas often increases the availability of the
access operations.

n, ε ∈ ℕ⁺

 ∧ n ≤ ε (3)

3) Availability of access operations

This availability is a probability by which an access
operation can be successfully performed by a DRS. For the
given instance (Figure 3), the read quorum set (RQS) and write
quorum set (WQS) are super-sets of all the RQs wrt. to the full
set of replicas (RQ ∪ {{p1, p2, p3, p4}}) and WQs (WQ ∪
{{p1, p2, p3, p4}}).

For instance, the closed read quorum set RQS of RQ is:

RQS = {{p1}, {p2,p3}, {p2,p4}, {p3,p4}, {p1,p2}, {p1,p3},
{p1, p4}, {p1,p2,p3}, {p1,p2,p4}, {p1,p3,p4}, {p1,p2,p3,p4}}

(See [5] for details) The availability of the access operations
for a DRS, generally, is calculated by summing up the
probabilities of all the elements existing in RQS (WQS) on a
given value of p.

Ar(p, n) = Σ∀q∈ RQS p|q|(1− p)n−|q| (4)

Aw(p, n) = Σ∀q∈ WQS p|q|(1− p)n−|q| (5)

The availabilities of read and write operations must be

within a threshold α and β, respectively.

Ar, Aw, α, β ∈ [0, 1]

∧ Ar ≥ α

∧ Aw ≥ β (6)

4) Cost of access operations

As a cost notion, we use the average minimal cost for a read
or a write operation. It is calculated by summing up the minimal
operation cost minRQ (minWQ) to build the quorums for every
replica set present in RQS (WQS), with the probability of the
replica set appearing. Finally, the resulting values are divided
by the respective operation’s availability. In the context of the
given example (Figure 3), i.e., minRQ ({p1,p2,p3}) is |{p1}| =
1, minRQ ({p2,p4}) is |{p2,p4}| = 2, and minWQ
({p1,p2,p3,p4}) is |{p1,p2,p3}| = 3.

 Cr(p,n) = Σ∀q∈ RQS p|q|(1− p)n−|q| * minRQ(q) (7)
Ar(p, n)

Cw(p,n) = Σ∀q∈ WQS p|q|(1− p)n−|q| * minWQ(q) (8)

Aw(p, n)

The cost of read and write operations has to be within a

threshold γ and δ, respectively.

Cr, Cw, γ, δ ∈ ℝ⁺

 ∧ Cr ≤ γ

 ∧ Cw ≤ δ (9)

5) Fitness weightage

It is a weightage (fw) given to any of the concerned
objectives to set its importance in the identification or designing
of a prospective solution. It is a value between [0,1] for tilting
the fitness value towards certain objectives, which by default
would remain neutral.

fw ∈ [0,1] (10)

6) Probability of individual replicas

The probability p is the availability of a node hosting a
replica and (1-p) indicates the probability by which a replica
may fail at any point in time. In a scenario, p is restricted to be
in the interval between pmin ≤ p ≤ pmax.

pmin, p, pmax ∈ [0,1]

 ∧ pmin ≤ p ≤ pmax (11)

C. Genetic programming-based multi-objective optimization

We use genetic programming to evolve the generations of
replication strategies and optimize their constraints. The criteria
are manifested in computable functions known as objective
functions (mentioned above) which conflict with each other in
the real world. The problem is to find a solution that satisfies
the given constraints and to optimize a vector function (i.e., a
fitness function, described later in the paper) whose elements
represent objective functions.

The term “optimization” means designing such a solution

DRSs which gives the values of all objective functions
acceptable to the decision-maker. There are three possibilities:
1) minimizing all the objectives 2) maximizing all the
objectives 3) minimizing some objectives while maximizing
others. In our case, it lies in the realm of the third option where,
for instance, the cost and number of replicas need to be
minimized while the availabilities need to be maximized. The
availabilities of read and write operations are point-symmetric
(for optimized strategies) to each other [5], which means that
an increase in one results in a decrease in the other operation’s
availability. The cost of read and write operations are also
conflicting. Likewise, the relation between the total availability
(sum of access operations availability) and total cost (sum of
access operations cost) is not that straight either. Furthermore,
some objectives, i.e., availabilities are values between [0,1]
while some objectives could be very large in value, i.e., cost of
operations. In certain cases, some objectives are more important
than others. Keeping in mind all these aspects, the goal is to
increase the total availability of the access operations and
decrease the total cost simultaneously, while, at the same time,
restricting total replicas to a minimum number.

For this, we use genetic programming (GP) [19] and [20],

which is a subset of machine learning mainly used to optimize
computer programs. It constitutes of an encoding scheme,
random crossover, mutation, a fitness function, and multiple
generations of evolution to meet the specified goal. The
encoding scheme in our case are DAG-based voting structures.
The crossover [21] is mixing up of genetic material of two
existing DRSs to create a new child solution. The mutation is
the slightly changing of a newly created child DRS. The fitness
function is to evaluate a DRS with respect to all the concerned
objectives to meet the desired criteria. The DRSs are designed
and optimized over several generations of evolution and
presented at run-time, overtly displaying their trade-offs to
choose the most suitable non-dominated strategies meeting the
demands, with acceptable constraints.

V. IMPLEMENTATION

The section discusses the implementation aspects of our
approach. Our system is implemented in JAVA, which is
feasible for large applications and has better cross-platform
support. This section examines the algorithm for GP, the fitness
function, the respective crossover and mutation operators.

A. Fitness function

As described, the objectives in the scenario are 1)
conflicting in nature, 2) imbalanced in a way that values for
some objectives are probability ranges while others are very
large, 3) some of them must be maximized and some of them
must be minimized. This section addresses these problems by
developing a fitness function to transform this multi-objective
problem into a single-objective problem for determining the
quality of a solution through this single-valued metric. The
algorithm takes the availability, cost, number of replicas, and
the fitness-weightage specified in the scenario as parameters.
These values are calculated by our objective functions (see Eqs.
4, 5, 7, and 8) and then passed on here. The weightage, as
mentioned earlier, determines the importance of certain
objectives over others in a desired solution. This weightage is
multiplied to the respective availability and the cost values, but
in the case of cost, it is multiplied by the number of replicas n
of the desired strategy divided by its expected cost in order to
normalize the imbalance between the availability and cost
values, as well as resolving the minimization (maximization)
problem of these objectives. The calculation of the fitness
function is shown in Algo. 1. At line 4, the sum of both the
values is returned as a single-valued fitness to examine the
DRSs on this standard criterion. Now, a higher fitness value
determines the appropriateness of a solution to the specified
constraints.

Algorithm 1

1 calculateFitness (availValue, costValue, n, fw) {

2 availFitness = (fw) * (availValue);
3 costFitness = (1.0 - fw) * (n / costValue);

4 return (availFitness + costFitness);
 }

B. μ and λ

μ represents the number of parent DRSs of a current
generation while λ represents the number of offspring DRSs for
the next generation. A higher number of these values may
provide an opportunity to explore more possibilities, but it also
depends on the initial population.

C. Crossover

There are many ways in which the DRSs can be “glued
together” and the resulting strategy certainly exhibits different
properties than its parents. The crossover randomly picks two
existing DRSs, as well as their crossover points within the two
selected strategies, to subsequently swap their nodes on chosen
crossover points and create hybrid offspring DRSs thereby
inheriting properties from both the parent solutions. The
crossover point in our case must be valid so that it does not
affect the 1SR consistency of offspring DRSs. For this, every
node has a Boolean variable indicating valid points for
crossovers thereby maintaining the DRSs’ 1SR property
throughout the genetic process. In addition, during the process,
the algorithm limits the number of replicas not to grow beyond
the specified threshold of ε. It also discards solutions not
adhering to these properties.

D. Mutation

Crossover is performed every time while mutation is
performed only with a certain probability. Mutation does
slightly change the quorum size and the weightage of nodes
(votes), but carefully enough to not destroy the 1SR
consistency. The weightage is changed to make certain replicas
more important than others. Once the weightage is changed, the
quorums must also be altered accordingly, under the conditions
(1) and (2) to adhere to 1SR. Beside randomness, the mutation
points have to be picked carefully by the algorithm in order not
to annihilate, again, the 1SR property of a solution and thus,
rendering it invalid.

E. GP Algorithm

The algorithm implements genetic programming where
initially a scenario is defined based on its objectives. These
objectives are evaluated by the fitness function to calculate the
expected single-valued fitness for the DRSs to achieve. The
initial population of voting structures is generated and stored in
a database repository. This initial population is retrieved,
parsed, and evaluated by the fitness function and, accordingly,
the selection is performed to choose μ individual DRSs of
higher fitness to a so-called μList for the next generation. The
algorithm randomly picks a pair of strategies to apply crossover
and mutation operators to generate a new λ number of solutions.
This λList carrying λ number of offspring solutions are then
evaluated to identify an appropriate strategy. If the desired
fitness is still to be achieved, the selection is performed on the
elements of the μList and the λList for the next generation to
repeat the process of crossovers and mutations on the chosen
DRSs of better fitness. Hence, the DRSs are optimized by every

generation and better ones are picked. While replication
strategies are being generated, we also plot these solutions
revealing their trade-offs overtly. The process becomes cyclic
until a solution of desired expectation is found with an
acceptable level of trade-offs between the concerned objectives.
The chosen solution DRS is saved back to the database
repository for future use.

Algorithm 2

1 Specify a scenario;
2 Calculate scenarioFitness;
3 Specify μ and λ;
4 Initialize μList; // carrying parent solutions
5 Initialize λList; // carrying offspring solutions
6 Boolean isFit = false; // determines if a solution meets the criteria
7 Generate initial population of DRSs to the repository
8 Retrieve, parse & store the generated DRSs to initPopList

9 geneticProgramming(initPopList) {
10 Loop through initPopList
11 Calculate fitness;
12 if (fitness ≥ scenarioFitness) {
13 isFit = true;
14 return;

}
15 END

16 Choose μ best DRSs to the μList;
17 Do {
18 Empty λList; // empty the list to add new set of
 offspring solutions
19 Loop through λ
20 Select randomly DRS1 from μList;
21 Select randomly DRS2 from μList;
22 Perform crossover of DRS1, DRS2;
23 Generate offspring DRSs;
24 Perform mutation on the offspring;
25 Calculate fitness;

26 if (fitness ≥ scenarioFitness) {
27 isFit = true;
28 Store offspring DRS into the
 repository;

}
29 Add offspring DRSs to the λList;
30 END

31 Select μ best DRSs to the μList from

(μList + λList) for next generation;
}

32 While (!isFit);
 }

VI. EXPERIMENTS & RESULTS

This section sheds light on the results of the proposed
techniques and discusses their properties. First, different
scenarios are defined as examples to demonstrate the
functioning of our approach and find solutions to the problems,
accordingly.

A. Scenario 1

In the first scenario, the availability of replicas p is set to 0.6
and the expected read and write availabilities are set to 0.80 and
0.72, respectively. The expected read and write costs are set to
seven each. The strategy is expected to accomplish these
properties inside a threshold of no more than 16 replicas in total.
However, the scenario specifies the cost for the moment not to
be important, therefore, full weight is assigned to availability.

p = 0.6; ε = 16; α = 0.80; β = 0.70;
γ = 7.0; δ = 7.0; fw = 1.0;

The algorithm is run, having set μ and λ to six and 15
respectively, along with a mutation probability of 0.2. Figure 5
depicts a 2´D representation of generated solutions for the
specified problem. The x-axis represents the availability while
the y-axis represents the cost of the access operations. It can be
understood more easily by dividing it into four equal quadrants;
quadrant 1 (top right corner) indicates better availabilities at the
expense of costs, quadrant 2 (top left corner) shows that
availabilities and costs are both worse, quadrant 3 (bottom left
corner) represents better costs at the expense of lower
availabilities, and quadrant 4 (bottom right corner) offers
solutions which are better in both, availabilities and costs. It can
be seen that we do not have too many solutions in the fourth
quadrant in this case.

Fig 5. Generated DRSs for scenario 1

An appropriate solution (circled in red) satisfying the
criteria, is picked at run-time. Figure 6 presents the selected
DRS constituting 16 replicas in total with certain nodes in the
voting structure being more important than others in the
collection of quorums. The heterogeneous nature of this
structure along with variable votes and quorums together, serve
to meet the specified constraints of availabilities and the
number of replicas while at the same time being not too
expensive in cost either. As for availabilities of the access
operations, it fairly competes the MCS which is considered to
be the best wrt. availability, particularly, for the critical write
operation’s availability.

Fig 6. An optimized DRS for scenario 1

Figure 7 represents a comparison between MCS and the

discovered hybrid DRS. Red and pink lines represent the
availabilities of read and write operations, respectively, for
MCS. Blue and green lines depict the availabilities of read and
write operations, respectively, for the hybrid strategy. It is
evident from the figure that our approach fairly competes with
MCS and operation availabilities are better on p values being
0.5 or less while extremely close for all the remaining p values.
It can be noticed that operation availabilities converge onto
almost the same values for later values of p, which is a very
good operation availability considering the strong hardware
nowadays. However, the discovered hybrid strategy is far more
economical.

Figure 7: Availability, MCS vs. hybrid DRS (16 replicas)

Figure 8 shows the cost comparison between the two

mentioned strategies. Blue and green lines indicate the costs of
read and write operations, respectively, for the hybrid DRS. It
can be noticed that despite fairly competing with MCS in
availabilities, the hybrid replication strategy is very cheap in its
cost. It could perform an operation by merely accessing five
replicas each, however, MCS of the same size takes 17 replicas
in total to perform both access operations. Hence, we have
significantly decreased the operation costs while not much
compromising on availabilities.

Figure 8: Cost, MCS vs. hybrid DRS (16 replicas)

Next, we specify a more challenging scenario. This

example, subsequently, shows the importance of crossover
points thereby impacting the trade-offs of quality metrics.

B. Scenario 2

In this example the availability of the replicas is set to 0.7
while read and write availabilities are set to 0.9 for each
operation, inside a total cost of eight for the access operations.
The availability is more important than the cost in this scenario,
therefore, a weightage of 70% is given to availability and the
rest to the cost. These objectives have to be achieved by no
more than 16 replicas.

p = 0.7; ε = 16; α = 0.90; β = 0.90;
γ = 4.0; δ = 4.0; fw = 0.7;

Having kept the system parameters μ and λ to the same
values of six and 15, respectively, on a mutation probability of
0.2, the system is run. Figure 9 illustrates the Pareto front
comprised of non-dominated solutions for the given scenario. It
can easily be analyzed and the solutions of the choice can be
picked among their trade-offs between availabilities and costs.
Here, each strategy is assigned a unique color to further ease up
the decision-making. We have some DRSs in the fourth
quadrant (bottom right corner) indicating significantly good
solutions concerning both the objectives.

Fig 9. A Pareto front view for scenario 2

The Pareto front for scenario 2 shows some of the solution
DRSs getting closer to an availability of 1.8 of both the access

operations. Moreover, it can also be noticed that some of the
strategies are quite economical in terms of their cost, even
better than the expected one. For the specified scenario, the
system takes three generations to come up with an optimized
solution. Considering the trade-offs, Figure 10 represents the
chosen hybrid DRS comprising 14 replicas in total which is
better than the specified threshold of 16 replicas. The chosen
strategy (circled red in the Pareto front) constitutes several
atomic substructures of the Triangular Lattice Protocol and has
a fitness of 1.934 which is better than the desired value of 1.86.

Fig 10. An optimized DRS for scenario 2

Figure 11 shows the availability graph of the generated new
hybrid DRS on the discretized values of p. The x-axis
represents the availability of replicas while the y-axis represents
the availability of the access operations. The red line (with
squares) shows the availability of the read operation while the
pink line (with circles) indicates the availability of the write
operation. It can be seen that the availabilities are good, too, but
most importantly, the cost of the access operations… noticeably
low.

Fig 11. Availability of the chosen DRS

Figure 12 represents the cost on the discretized values of p.
The access operations for the chosen DRS are very cheap
where, in the best cases, it only takes two replicas each to
perform an operation out of 14 replicas (which is even cheaper
than the TLP). Even in the worst cases, the cost remains closer
to three replicas each, which is very cheap while not sacrificing
too much on the availabilities either.

Fig 12. Cost of the chosen DRS

The crossover points for DRSs do matter and affect the
values of objectives. Another prospective solution from the
Pareto front is shown in Figure 13, where the same building
blocks are combined by the GP, but slightly differently than in
Figure 10. However, it has significantly increased the
availability of the access operations by slightly compromising
on the cost, but not being too heavily either.

Fig 13. Another optimized DRS with a slightly different crossover

point

Figure 14 presents a comparison between the availabilities
of both strategies on the discretized values of p. The symmetry
of the graphs indicates that this slight change in the structure of
the strategy has resulted in a significant increase in both
availabilities of read and write operations of the latter DRS
(Figure 13).

Fig 14. Availability comparison of the two Pareto front solutions

Figure 15 presents a zoom-in view of the operation
availabilities on higher values of p. It can be noticed that the

availability difference is prominent because of this slight
change in the structure of the hybrid strategy. It has resulted in
a different outcome of relatively higher operation availabilities.

Fig 15. Zoom-in view of the comparison

Figure 16 shows the difference between the costs of the two
Pareto solutions on the given discretized values of p. The latter
strategy with higher availabilities of access operations has
compromised on the cost by one (which again indicates that
both cannot be achieved at the same time), where, for the best
case, it generates costs of three replicas for a read as well as for
a write operation.

Fig 16. Cost comparison of the two Pareto front solutions

Hence, our machine learning mechanism efficiently
combines replication strategies as a single voting structure to
achieve the specified objectives through genetic programming.
Similarly, any realistic scenario depending upon the
requirements or nature of an application can be defined and the
system can accordingly generate innovative, formerly unknown
solutions through genetic programming by overtly displaying
their trade-offs, to analyze them, and make decisions
dynamically at run-time. This automatic mechanism is strong
enough to discover new replication strategies that cannot be
easily found manually, considering the very huge search space.

VII. CONCLUSIONS

The paper combines the concepts of replication and genetic
programming and provides a mechanism based on genetic

programming to automatically design and generate innovative
hybrid solutions in the form of unknown DRSs. It addresses a
non-trivial multi-objective optimization problem of DRSs
where, no single solution exists that simultaneously optimizes
each objective. The proposed machine learning framework
gains leverage through the voting structure to generate
application-optimized replication strategies by exploiting their
heterogeneity. It explicitly illustrates the trade-offs of newly
generated DRSs through a Pareto front view, hence, makes the
decision-making process very simple and convenient. In this
process new DRS are generated, optimized over several
generations, and relevant optimized strategies exhibiting
suitable properties are picked at run-time. It tries to reduce the
cost while not comprising on the availability too much. This
automatic approach provides opportunities to discover new
optimized replication strategies which are up-to-now unknown.

As for future work, we intend to introduce multi-crossover
and multi-mutation operators with more complex system
parameter settings, which will give us some more fine-grained
control over the algorithm in anticipation of designing
appropriate solutions, accordingly.

REFERENCES

[1] M. Naor and A. Wool, “The Load, Capacity, and Availability of Quorum
Systems,” SIAM Journal on Computing, vol. 2, issue 2, pp. 423-447,
1998.

[2] R. Jimenez-Peris, M. Patino-Martınez, G. Alonso, and B. Kemme, “How
to Select a Replication Protocol According to Scalability, Availability,
and Communication Overhead,” in Proceedings of the 20th IEEE
Symposium on Reliable Distributed Systems (SRDS), 2001.

[3] K. Miettinen, “Nonlinear Multi-objective Optimization,” Kluwer
Academic, Boston, 1999.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency Control and
Recovery in Database Systems,” ISBN-13 978-0201107159, Addison
Wesley, p. 370, 1987.

[5] O. Theel and H. Pagnia, “Optimal Replica Control Protocols Exhibit
Symmetric Operation Availabilities,” in Proceedings of the 28th
International Symposium on Fault-Tolerant Computing (FTCS-28), pp.
252-261, 1998.

[6] S.M.A. Bokhari and O. Theel, “A Flexible Hybrid Approach to Data
Replication in Distributed Systems,” Computing Conference (SAI),
London, UK, 2020 (to be published).

[7] P. Bernstein and N. Goodman, “An Algorithm for Concurrency Control
and Recovery in Replicated Distributed Databases,” ACM Transactions
on Database Systems (TODS), vol. 9, issue 4, pp. 596–615, 1984.

[8] R. H. Thomas, “A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases,” ACM Transactions on Database Systems,
vol. 4, issue 2, pp. 180–207, 1979.

[9] D. Agrawal and A. Abbadi, “The Tree Quorum Protocol: An Efficient
Approach for Managing Replicated Data,” in Proceedings of the 16th
International Conference on Very Large Data Bases (VLDB), pp. 243–
254, 1990.

[10] D. K. Gifford, “Weighted Voting for Replicated Data,” in Proceedings of
the 7th ACM Symposium on Operating Systems Principles (SOSP), pp.
150-162, 1979.

[11] A. Kumar, “Hierarchical Quorum Consensus: A New Algorithm for
Managing Replicated Data,” IEEE Transactions on Computers, vol. 40,
issue 9, pp. 996-1004, 1991.

[12] S. Y. Cheung, M. Ammar, and M. Ahamad, “The Grid Protocol: A High
Performance Scheme for Maintaining Replicated Data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 4, issue 6, 1992.

[13] C. Wu and G. Belford, “The Triangular Lattice Protocol. A Highly Fault
Tolerant and Highly Efficient Protocol for Replicated Data,” in
Proceedings of the 11th Symposium on Reliable Distributed Systems
(SRDS), IEEE Computer Society Press, 1992.

[14] M. Arai, T. Suzuki, M. Ohara, S. Fukumoto, K. Iwasak, and H. Youn,
“Analysis of Read and Write Availability for Generalized Hybrid Data
Replication Protocol,” in Proceedings of the 10th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pp. 143-
150, 2004.

[15] S. C. Choi and H. Y. Youn, “Dynamic Hybrid Replication Effectively
Combining Tree and Grid Topology,” The Journal of Supercomputing,
vol. 59, issue 3, pp. 1289-1311, 2012.

[16] O. Theel, “Rapid Replication Scheme Design using General Structured
Voting,” in Proceedings of the 17th Annual Computer Science
Conference, Christchurch, New Zealand, pp. 669-677, 1994.

[17] H. Pagnia and O. Theel, “Priority-based Quorum Protocols for Replicated
Objects,” in Proceedings of the 2nd International Conference on Parallel
and Distributed Computing and Networks (PDCN), Brisbane, Australia,
pp. 530-535, 1998.

[18] O. Theel, “General Structured Voting: A Flexible Framework for
Modelling Cooperations,” in Proceedings of the 13th International
Conference on Distributed Computing Systems (ICDCS), pp. 227-236,
1993.

[19] J. Koza, “Genetic Programming: On the Programming of Computers by
Means of Natural Selection,” MIT Press, Cambridge, 1992.

[20] W. Banzhaf, F. Francone, R. Keller, and P. Nordin, “Genetic
Programming: An Introduction: on the Automatic Evolution of Computer
Programs and Its Applications,” Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[21] G. Syswerda, “Simulated Crossover in Genetic Algorithms,” In
Foundations of Genetic Algorithms (FOGA), pp. 239–255, (1992).

