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Abstract—Data replication is the core of distributed systems to 

enhance their fault tolerance and make services highly available 

to the end-users. Data replication masks run-time failures and 

hence, makes the system more reliable. There are many 

contemporary data replication strategies for this purpose, but the 

decision to choose an appropriate strategy for a certain 

environment and a specific scenario is a challenge and full of 

compromises. There exists a potentially indefinite number of 

scenarios that cannot be covered entirely by contemporary 

strategies. It demands designing new data replication strategies 

optimized for the given scenarios. The constraints of such 

scenarios are often conflicting in a sense that an increase in one 

objective could be sacrificial to the others, which implies there is 

no best solution to the problem but what serves the purpose. In 

this regard, this research provides a genetic programming-based 

multi-objective optimization approach that endeavors to not only 

identify, but also design new data replication strategies and 

optimize their conflicting objectives as a single-valued metric. The 

research provides an intelligent, automatic mechanism to generate 

new replication strategies as well as easing up the decision making 

so that relevant strategies with satisfactory trade-offs of 

constraints can easily be picked and used from the generated 

solutions at run-time. Moreover, it makes the notion of hybrid 

strategies easier to accomplish which otherwise would have been 

very cumbersome to achieve, therefore, to optimize.  

Keywords— Distributed Systems, Fault Tolerance, Data 

Replication, Quorum Protocols, Operation Availability, Operation 

Cost, Voting Structures, Optimization, Pareto Front, Machine 

Learning, Genetic Programming. 

I. INTRODUCTION 

Data replication is replicating the copies of the same data 
over several nodes in anticipation of achieving high availability 
of the services, but accomplishing high availability is not a 
straightforward task. Having replicated the data, it has to be 
managed to avoid inconsistencies, which affect the correctness 
of the data. Inconsistency means discrepancy in the data among 
created replicas. Furthermore, the data needs to be exclusively 
locked for the write operations to avoid conflicts, so that, 
availability is achieved without destroying the correctness of the 
data. There exist strategies known as data replication strategies 
(DRSs), i.e., [12] to control such replicated behavior of a system. 
These DRSs manage those created replicas, but to choose a 
certain strategy for a certain scenario is a trade-off between 
different quality metrics, i.e., load, capacity, availability [1], 
scalability, and cost [2]. These metrics are often conflicting with 

each other in a way that one cannot be optimized without 
deteriorating the others. This could easily fall into the realm of 
a multi-objective optimization problem [3]. This includes 
mathematical optimization problems involving more than one 
objective function to be optimized simultaneously. Multi-
objective optimization has its applicability in many domains of 
science where optimal decisions have to be taken between the 
trade-offs of two or more conflicting objectives. Since the best 
solution for one scenario could be the worst for another one, 
therefore, the goal is to find optimal solutions and quantify the 
trade-offs in satisfying the specified scenario. In this regard, our 
work is an interesting overlap between the concepts of 
replication in distributed systems and machine learning. 

The paper is structured as follows: Section 2 states the 
problem. Section 3 sheds light on related work and the 
innovation of our research. Section 4 describes the 
methodology. Section 5 discusses the implementation aspects of 
our approach. Section 6 presents the results and contributions. 
Section 7 concludes the paper by summarizing the key points. 

II. PROBLEM STATEMENT 

Figure 1 depicts numerous scenarios between the 
availability of the access operations (read or write) and their 
costs whereas in our case, consistency is static and adheres to 
1SR [4] all the time. 1SR allows a replicated system to behave 
as a non-replicated system. 
 

 
 

Fig 1. Data replication scenarios 
 

Availability, here, is the probability by which a user 
successfully performs an access operation and the cost is the 
average minimal number of replicas, a user needs to access to 
get the expected result. The availabilities of read and write 
operations are optimally point-symmetric to each other [5], 
which implies both cannot be optimized independently. Also, 
an increase in the cost of a read operation often compromises 
the write operation’s cost. Moreover, the relationship between 
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the costs and availability of the access operations is not linear 
either. Numerous scenarios exist between their different trade-
offs, including the total number of replicas and their individual 
availabilities. These scenarios cannot be fulfilled by the current 
contemporary strategies entirely. There is a need of developing 
new DRSs [6] to satisfy these scenarios. For this, the paper 
endeavors to exploit heterogeneity among the existing solutions 
to develop new hybrid replication strategies (i.e., 
heterogeneous DRSs combined together). In this regard, the 
challenges are 1) resolving the multi-objective problem, 2) 
eliminating the diversity between the DRSs in the form of 
logical and topological differences which may hinder the design 
of hybrid solutions, 3) finally, but most importantly, developing 
a machine learning approach to automatically, but intelligently 
design, as well as optimizing DRSs for specified scenarios. 

III. RELATED WORK 

There are various contemporary solutions in the form of 
DRSs, i.e., Read-One Write-All [7], the Majority Consensus 
Strategy (MCS) [8], the Tree Quorum Protocol [9], the 
Weighted Voting Strategy [10], Hierarchical Quorum 
Consensus [11], the Grid Protocol [12], the Triangular Lattice 
Protocol (TLP) [13], etc. These strategies have different 
semantics and properties for fulfilling different thresholds of 
objectives, i.e., availabilities, costs, total replicas, etc. Since, 
there are many trade-offs between these objectives forming 
different scenarios, there is no single best solution. And as 
discussed, the solution DRSs are insufficient to cover the 
scenarios entirely. This brings us to the question of designing 
new strategies and optimizing them [6]. For this, the paper uses 
a genetic programming-based approach that enables the system 
to design holistic hybrid DRSs at run-time and optimize them 
over several generations of evolution. An optimized strategy 
can be picked at run-time depending upon the scenario and 
preferences of certain objectives.  

 
This paper aims to design new hybrid DRSs automatically. 

In this regard, only a few attempts are found in literature, i.e., 
[14] and [15], which primarily combine Tree Quorum Protocols 
with Grid Protocols. It is mainly because the strategies are 
diverse and exhibit different topologies as well as semantics by 
which to access replicas, thereby making it very cumbersome 
to accommodate them into hybrid solutions. For this, we use a 
unified representation of DRSs known as voting structures to 
eliminate such differences so that any quorum-based strategy 
can freely be merged with any other quorum-based strategy. 
Moreover, expert-based manual designs of optimized DRSs 
using the concept of voting structures have been presented in 
[16] and [17], but lack automation which limits the efficiency 
of the approach, since the search space is huge. Therefore, our 
approach endeavors to automatically design new solutions and 
optimize them through machine learning to satisfy the specified 
scenarios, hence, assisting multi-criteria decision making.  

 
The next section discusses the adopted methodology to 

address the research problems. 

IV. METHODOLOGY 

Figure 2 shows an abstract representation of our approach. 
Simplistically, having defined a scenario, it starts from a set of 
replication strategies being converted into a unified 
representation of voting structures (representing each a 
computer program) and stored in a scalable database repository. 
Machine learning, mainly genetic programming, is then applied 
to the repository to search or design appropriate solutions and 
optimize them accordingly.  

 

 
 

Fig 2. Methodology 
 

The system plots newly designed innovative solutions via 
genetic programming and an appropriate solution (possibly of 
higher fitness) satisfying the specified criteria is picked at run-
time. The chosen solution is stored back in the repository for 
future use in the genetic process to improve the solutions or in 
case, the same scenario comes up again. We explain these 
aspects in detail in this section. 

A. Voting structures 

The research uses General Structured Voting [18] to 
eliminate any possibilities of topological and logical impositions 
in accessing replicas. This acts as a unified representation of all 
DRSs and makes them flexible and convenient enough for the 
machine learning framework to work on them for designing and 
optimizing new solutions. Figure 3 shows the adopted directed 
acyclic graph (DAG) representation known as a voting structure 
to embody the quorum mechanism for distributed systems. 

 

Fig 3. Example of a voting structure 



 

Every individual voting structure is a computer program that 
is interpreted by our general algorithm at run-time to derive read 
and write quorum sets. These quorum sets are used to manage 
replicated objects. A voting structure, hence, is comprised of 
physical and virtual replicas. Physical are actual replicas, which 
in the given instance, is four in total while the virtual replicas 
serve to form groupings of physical and logical replicas. Every 
node is endowed with a threshold of a minimal number of 
replicas as quorum rq (wq) for read and write operations, 
respectively, whereas votes act as a weightage of that node in 
the collection of a quorum. This voting structure is probed from 
the top recursively and the quorum for each node to gather per 
operation has to be less than or equal to the sum of the votes of 
its children. In some cases, an ordering in the form of an edge 
priority could also be set (1 being the highest and ∞ being the 
lowest) to access replicas in a specified order as to reduce the 
cost. On each level, in general, the quorum has to obey the 
following rules for a total number of votes V to meet the 
consistency criterion: 

 rq + wq > V  (to avoid read-write conflicts)          (1) 

 wq > V/2       (to avoid write-write conflicts)           (2) 

For example, the voting structure given in Figure 3 
constructs the following read (RQ) and write quorum sets (WQ) 
to perform the data access operations: 

RQ = {{p1}, {p2, p3}, {p2, p4}, {p3, p4}}  

WQ = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}} 

Figure 4 represents a relatively complex example of a TLP 
comprised of six replicas being modeled as a voting structure. 
Next, we explain the constraints of a scenario. 

 

Fig 4. TLP as a voting structure 

B. Constraints-based scenario  

The scenarios constitute different parameters and thresholds 
for the replication strategies to adhere to. The scenario 
parameters could be dependent on the application, its 
requirements, and resources. Scenarios reflect objectives which 
are supposed to be optimized for the input values. The semantics 
of a scenario is discussed next. 

 

1) Consistency of operations 

In our research, the consistency is 1SR which provides high 
consistency being maintained by the intersection property 
between every read (write) and write (write) operations of a 
DRS. This property must be maintained throughout the genetic 
process otherwise solution becomes invalid. 
 

2) Number of replicas 

The number of replicas n must be restricted to a threshold 
of ε depending on the resources, but in such a way that 
availability is not compromised much. In general, an increase 
in the number of replicas often increases the availability of the 
access operations. 

n, ε ∈ ℕ⁺       

       ∧ n ≤ ε            (3) 
 

3) Availability of access operations 

This availability is a probability by which an access 
operation can be successfully performed by a DRS. For the 
given instance (Figure 3), the read quorum set (RQS) and write 
quorum set (WQS) are super-sets of all the RQs wrt. to the full 
set of replicas (RQ ∪ {{p1, p2, p3, p4}}) and WQs (WQ ∪ 
{{p1, p2, p3, p4}}).  

For instance, the closed read quorum set RQS of RQ is:  

RQS = {{p1}, {p2,p3}, {p2,p4}, {p3,p4}, {p1,p2}, {p1,p3}, 
{p1, p4}, {p1,p2,p3}, {p1,p2,p4}, {p1,p3,p4}, {p1,p2,p3,p4}} 

(See [5] for details) The availability of the access operations 
for a DRS, generally, is calculated by summing up the 
probabilities of all the elements existing in RQS (WQS) on a 
given value of p. 
 

Ar(p, n) = Σ∀q∈ RQS p|q|(1− p)n−|q|                (4) 
 

Aw(p, n) = Σ∀q∈ WQS p|q|(1− p)n−|q|             (5) 
 
The availabilities of read and write operations must be 

within a threshold α and β, respectively. 
 

Ar, Aw, α, β ∈ [0, 1]     

∧ Ar ≥ α 

∧ Aw ≥ β            (6) 

4) Cost of access operations 

As a cost notion, we use the average minimal cost for a read 
or a write operation. It is calculated by summing up the minimal 
operation cost minRQ (minWQ) to build the quorums for every 
replica set present in RQS (WQS), with the probability of the 
replica set appearing. Finally, the resulting values are divided 
by the respective operation’s availability. In the context of the 
given example (Figure 3), i.e., minRQ ({p1,p2,p3}) is |{p1}| = 
1, minRQ ({p2,p4}) is |{p2,p4}| = 2, and minWQ 
({p1,p2,p3,p4}) is |{p1,p2,p3}| = 3. 
 

 Cr(p,n) = Σ∀q∈ RQS p|q|(1− p)n−|q| * minRQ(q)             (7) 
Ar(p, n) 

 
Cw(p,n) = Σ∀q∈ WQS p|q|(1− p)n−|q| * minWQ(q)          (8) 

Aw(p, n) 



 
The cost of read and write operations has to be within a 

threshold γ and δ, respectively. 
 

Cr, Cw, γ, δ ∈ ℝ⁺  

     ∧ Cr ≤ γ  

     ∧ Cw ≤ δ            (9) 
 

5) Fitness weightage 

It is a weightage (fw) given to any of the concerned 
objectives to set its importance in the identification or designing 
of a prospective solution. It is a value between [0,1] for tilting 
the fitness value towards certain objectives, which by default 
would remain neutral. 
 

fw ∈ [0,1]           (10) 
 

6) Probability of individual replicas 

The probability p is the availability of a node hosting a 
replica and (1-p) indicates the probability by which a replica 
may fail at any point in time. In a scenario, p is restricted to be 
in the interval between pmin ≤ p ≤ pmax. 
 

pmin, p, pmax ∈ [0,1]             

  ∧ pmin ≤ p ≤ pmax        (11) 
 

C. Genetic programming-based multi-objective optimization 

We use genetic programming to evolve the generations of 
replication strategies and optimize their constraints. The criteria 
are manifested in computable functions known as objective 
functions (mentioned above) which conflict with each other in 
the real world. The problem is to find a solution that satisfies 
the given constraints and to optimize a vector function (i.e., a 
fitness function, described later in the paper) whose elements 
represent objective functions. 

  
The term “optimization” means designing such a solution 

DRSs which gives the values of all objective functions 
acceptable to the decision-maker. There are three possibilities: 
1) minimizing all the objectives 2) maximizing all the 
objectives 3) minimizing some objectives while maximizing 
others. In our case, it lies in the realm of the third option where, 
for instance, the cost and number of replicas need to be 
minimized while the availabilities need to be maximized. The 
availabilities of read and write operations are point-symmetric 
(for optimized strategies) to each other [5], which means that 
an increase in one results in a decrease in the other operation’s 
availability. The cost of read and write operations are also 
conflicting. Likewise, the relation between the total availability 
(sum of access operations availability) and total cost (sum of 
access operations cost) is not that straight either. Furthermore, 
some objectives, i.e., availabilities are values between [0,1] 
while some objectives could be very large in value, i.e., cost of 
operations. In certain cases, some objectives are more important 
than others. Keeping in mind all these aspects, the goal is to 
increase the total availability of the access operations and 
decrease the total cost simultaneously, while, at the same time, 
restricting total replicas to a minimum number. 

 
For this, we use genetic programming (GP) [19] and [20], 

which is a subset of machine learning mainly used to optimize 
computer programs. It constitutes of an encoding scheme, 
random crossover, mutation, a fitness function, and multiple 
generations of evolution to meet the specified goal. The 
encoding scheme in our case are DAG-based voting structures. 
The crossover [21] is mixing up of genetic material of two 
existing DRSs to create a new child solution. The mutation is 
the slightly changing of a newly created child DRS. The fitness 
function is to evaluate a DRS with respect to all the concerned 
objectives to meet the desired criteria. The DRSs are designed 
and optimized over several generations of evolution and 
presented at run-time, overtly displaying their trade-offs to 
choose the most suitable non-dominated strategies meeting the 
demands, with acceptable constraints. 

V. IMPLEMENTATION 

The section discusses the implementation aspects of our 
approach. Our system is implemented in JAVA, which is 
feasible for large applications and has better cross-platform 
support. This section examines the algorithm for GP, the fitness 
function, the respective crossover and mutation operators. 

A. Fitness function 

As described, the objectives in the scenario are 1) 
conflicting in nature, 2) imbalanced in a way that values for 
some objectives are probability ranges while others are very 
large, 3) some of them must be maximized and some of them 
must be minimized. This section addresses these problems by 
developing a fitness function to transform this multi-objective 
problem into a single-objective problem for determining the 
quality of a solution through this single-valued metric. The 
algorithm takes the availability, cost, number of replicas, and 
the fitness-weightage specified in the scenario as parameters. 
These values are calculated by our objective functions (see Eqs. 
4, 5, 7, and 8) and then passed on here. The weightage, as 
mentioned earlier, determines the importance of certain 
objectives over others in a desired solution. This weightage is 
multiplied to the respective availability and the cost values, but 
in the case of cost, it is multiplied by the number of replicas n 
of the desired strategy divided by its expected cost in order to 
normalize the imbalance between the availability and cost 
values, as well as resolving the minimization (maximization) 
problem of these objectives. The calculation of the fitness 
function is shown in Algo. 1. At line 4, the sum of both the 
values is returned as a single-valued fitness to examine the 
DRSs on this standard criterion. Now, a higher fitness value 
determines the appropriateness of a solution to the specified 
constraints. 
 

Algorithm 1 

 
1 calculateFitness (availValue, costValue, n, fw) { 

 
2 availFitness  = (fw) * (availValue); 
3         costFitness   = (1.0 - fw) * (n / costValue);         
 



4         return (availFitness + costFitness); 
   } 
 

B. μ and λ 

μ represents the number of parent DRSs of a current 
generation while λ represents the number of offspring DRSs for 
the next generation. A higher number of these values may 
provide an opportunity to explore more possibilities, but it also 
depends on the initial population. 

C. Crossover 

There are many ways in which the DRSs can be “glued 
together” and the resulting strategy certainly exhibits different 
properties than its parents. The crossover randomly picks two 
existing DRSs, as well as their crossover points within the two 
selected strategies, to subsequently swap their nodes on chosen 
crossover points and create hybrid offspring DRSs thereby 
inheriting properties from both the parent solutions. The 
crossover point in our case must be valid so that it does not 
affect the 1SR consistency of offspring DRSs. For this, every 
node has a Boolean variable indicating valid points for 
crossovers thereby maintaining the DRSs’ 1SR property 
throughout the genetic process. In addition, during the process, 
the algorithm limits the number of replicas not to grow beyond 
the specified threshold of ε. It also discards solutions not 
adhering to these properties. 

D. Mutation 

Crossover is performed every time while mutation is 
performed only with a certain probability. Mutation does 
slightly change the quorum size and the weightage of nodes 
(votes), but carefully enough to not destroy the 1SR 
consistency. The weightage is changed to make certain replicas 
more important than others. Once the weightage is changed, the 
quorums must also be altered accordingly, under the conditions 
(1) and (2) to adhere to 1SR. Beside randomness, the mutation 
points have to be picked carefully by the algorithm in order not 
to annihilate, again, the 1SR property of a solution and thus, 
rendering it invalid. 

E. GP Algorithm 

The algorithm implements genetic programming where 
initially a scenario is defined based on its objectives. These 
objectives are evaluated by the fitness function to calculate the 
expected single-valued fitness for the DRSs to achieve. The 
initial population of voting structures is generated and stored in 
a database repository. This initial population is retrieved, 
parsed, and evaluated by the fitness function and, accordingly, 
the selection is performed to choose μ individual DRSs of 
higher fitness to a so-called μList for the next generation. The 
algorithm randomly picks a pair of strategies to apply crossover 
and mutation operators to generate a new λ number of solutions. 
This λList carrying λ number of offspring solutions are then 
evaluated to identify an appropriate strategy. If the desired 
fitness is still to be achieved, the selection is performed on the 
elements of the μList and the λList for the next generation to 
repeat the process of crossovers and mutations on the chosen 
DRSs of better fitness. Hence, the DRSs are optimized by every 

generation and better ones are picked. While replication 
strategies are being generated, we also plot these solutions 
revealing their trade-offs overtly. The process becomes cyclic 
until a solution of desired expectation is found with an 
acceptable level of trade-offs between the concerned objectives. 
The chosen solution DRS is saved back to the database 
repository for future use. 

 

Algorithm 2 

 
1 Specify a scenario; 
2 Calculate scenarioFitness; 
3 Specify μ and λ; 
4 Initialize μList;  // carrying parent solutions 
5 Initialize λList; // carrying offspring solutions 
6 Boolean isFit = false; // determines if a solution meets the criteria 
7 Generate initial population of DRSs to the repository   
8 Retrieve, parse & store the generated DRSs to initPopList 
 
9   geneticProgramming(initPopList) { 
10  Loop through initPopList 
11  Calculate fitness; 
12  if (fitness ≥ scenarioFitness) { 
13   isFit = true; 
14    return; 

} 
15  END 
 
16  Choose μ best DRSs to the μList; 
17  Do {  
18  Empty λList;  // empty the list to add new set of 
      offspring solutions 
19  Loop through λ 
20   Select randomly DRS1 from μList;    
21   Select randomly DRS2 from μList;  
22   Perform crossover of DRS1, DRS2; 
23   Generate offspring DRSs; 
24   Perform mutation on the offspring; 
25   Calculate fitness; 
 
26   if (fitness ≥ scenarioFitness) { 
27    isFit = true; 
28               Store offspring DRS into the  
                repository;  

} 
29   Add offspring DRSs to the λList;  
30   END 
 
31 Select μ best DRSs to the μList from  

(μList + λList) for next generation; 
} 

 
32  While (!isFit); 
     } 

VI. EXPERIMENTS & RESULTS 

This section sheds light on the results of the proposed 
techniques and discusses their properties. First, different 
scenarios are defined as examples to demonstrate the 
functioning of our approach and find solutions to the problems, 
accordingly. 



A. Scenario 1 

In the first scenario, the availability of replicas p is set to 0.6 
and the expected read and write availabilities are set to 0.80 and 
0.72, respectively. The expected read and write costs are set to 
seven each. The strategy is expected to accomplish these 
properties inside a threshold of no more than 16 replicas in total. 
However, the scenario specifies the cost for the moment not to 
be important, therefore, full weight is assigned to availability. 
 

p = 0.6;  ε = 16;  α = 0.80;  β = 0.70; 
γ = 7.0;  δ = 7.0;  fw = 1.0; 

 

The algorithm is run, having set μ and λ to six and 15 
respectively, along with a mutation probability of 0.2. Figure 5 
depicts a 2´D representation of generated solutions for the 
specified problem. The x-axis represents the availability while 
the y-axis represents the cost of the access operations. It can be 
understood more easily by dividing it into four equal quadrants; 
quadrant 1 (top right corner) indicates better availabilities at the 
expense of costs, quadrant 2 (top left corner) shows that 
availabilities and costs are both worse, quadrant 3 (bottom left 
corner) represents better costs at the expense of lower 
availabilities, and quadrant 4 (bottom right corner) offers 
solutions which are better in both, availabilities and costs. It can 
be seen that we do not have too many solutions in the fourth 
quadrant in this case. 

 

 

Fig 5. Generated DRSs for scenario 1 
 

An appropriate solution (circled in red) satisfying the 
criteria, is picked at run-time. Figure 6 presents the selected 
DRS constituting 16 replicas in total with certain nodes in the 
voting structure being more important than others in the 
collection of quorums. The heterogeneous nature of this 
structure along with variable votes and quorums together, serve 
to meet the specified constraints of availabilities and the 
number of replicas while at the same time being not too 
expensive in cost either. As for availabilities of the access 
operations, it fairly competes the MCS which is considered to 
be the best wrt. availability, particularly, for the critical write 
operation’s availability.  
 

 
 

Fig 6. An optimized DRS for scenario 1 

 
Figure 7 represents a comparison between MCS and the 

discovered hybrid DRS. Red and pink lines represent the 
availabilities of read and write operations, respectively, for 
MCS. Blue and green lines depict the availabilities of read and 
write operations, respectively, for the hybrid strategy. It is 
evident from the figure that our approach fairly competes with 
MCS and operation availabilities are better on p values being 
0.5 or less while extremely close for all the remaining p values. 
It can be noticed that operation availabilities converge onto 
almost the same values for later values of p, which is a very 
good operation availability considering the strong hardware 
nowadays. However, the discovered hybrid strategy is far more 
economical. 

 

 
Figure 7: Availability, MCS vs. hybrid DRS (16 replicas) 

 
Figure 8 shows the cost comparison between the two 

mentioned strategies. Blue and green lines indicate the costs of 
read and write operations, respectively, for the hybrid DRS. It 
can be noticed that despite fairly competing with MCS in 
availabilities, the hybrid replication strategy is very cheap in its 
cost. It could perform an operation by merely accessing five 
replicas each, however, MCS of the same size takes 17 replicas 
in total to perform both access operations. Hence, we have 
significantly decreased the operation costs while not much 
compromising on availabilities.  
 



 
Figure 8: Cost, MCS vs. hybrid DRS (16 replicas) 

 
Next, we specify a more challenging scenario. This 

example, subsequently, shows the importance of crossover 
points thereby impacting the trade-offs of quality metrics. 

B. Scenario 2 

In this example the availability of the replicas is set to 0.7 
while read and write availabilities are set to 0.9 for each 
operation, inside a total cost of eight for the access operations. 
The availability is more important than the cost in this scenario, 
therefore, a weightage of 70% is given to availability and the 
rest to the cost. These objectives have to be achieved by no 
more than 16 replicas.  
 

p = 0.7;  ε = 16;  α = 0.90;  β = 0.90; 
γ = 4.0;  δ = 4.0;  fw = 0.7; 

 

Having kept the system parameters μ and λ to the same 
values of six and 15, respectively, on a mutation probability of 
0.2, the system is run. Figure 9 illustrates the Pareto front 
comprised of non-dominated solutions for the given scenario. It 
can easily be analyzed and the solutions of the choice can be 
picked among their trade-offs between availabilities and costs. 
Here, each strategy is assigned a unique color to further ease up 
the decision-making. We have some DRSs in the fourth 
quadrant (bottom right corner) indicating significantly good 
solutions concerning both the objectives. 
 

 
 

Fig 9. A Pareto front view for scenario 2 
 

The Pareto front for scenario 2 shows some of the solution 
DRSs getting closer to an availability of 1.8 of both the access 

operations. Moreover, it can also be noticed that some of the 
strategies are quite economical in terms of their cost, even 
better than the expected one. For the specified scenario, the 
system takes three generations to come up with an optimized 
solution. Considering the trade-offs, Figure 10 represents the 
chosen hybrid DRS comprising 14 replicas in total which is 
better than the specified threshold of 16 replicas. The chosen 
strategy (circled red in the Pareto front) constitutes several 
atomic substructures of the Triangular Lattice Protocol and has 
a fitness of 1.934 which is better than the desired value of 1.86. 

 

 
 

Fig 10. An optimized DRS for scenario 2 
 

Figure 11 shows the availability graph of the generated new 
hybrid DRS on the discretized values of p. The x-axis 
represents the availability of replicas while the y-axis represents 
the availability of the access operations. The red line (with 
squares) shows the availability of the read operation while the 
pink line (with circles) indicates the availability of the write 
operation. It can be seen that the availabilities are good, too, but 
most importantly, the cost of the access operations… noticeably 
low. 

 

 
 

Fig 11. Availability of the chosen DRS 

 

Figure 12 represents the cost on the discretized values of p. 
The access operations for the chosen DRS are very cheap 
where, in the best cases, it only takes two replicas each to 
perform an operation out of 14 replicas (which is even cheaper 
than the TLP). Even in the worst cases, the cost remains closer 
to three replicas each, which is very cheap while not sacrificing 
too much on the availabilities either. 
 



 
 

Fig 12. Cost of the chosen DRS 
 

The crossover points for DRSs do matter and affect the 
values of objectives. Another prospective solution from the 
Pareto front is shown in Figure 13, where the same building 
blocks are combined by the GP, but slightly differently than in 
Figure 10. However, it has significantly increased the 
availability of the access operations by slightly compromising 
on the cost, but not being too heavily either. 
 

 
 

Fig 13. Another optimized DRS with a slightly different crossover 

point 
 

Figure 14 presents a comparison between the availabilities 
of both strategies on the discretized values of p. The symmetry 
of the graphs indicates that this slight change in the structure of 
the strategy has resulted in a significant increase in both 
availabilities of read and write operations of the latter DRS 
(Figure 13). 

 
 

Fig 14. Availability comparison of the two Pareto front solutions 
 

Figure 15 presents a zoom-in view of the operation 
availabilities on higher values of p. It can be noticed that the 

availability difference is prominent because of this slight 
change in the structure of the hybrid strategy. It has resulted in 
a different outcome of relatively higher operation availabilities. 
 

 
 

Fig 15. Zoom-in view of the comparison 
 

Figure 16 shows the difference between the costs of the two 
Pareto solutions on the given discretized values of p. The latter 
strategy with higher availabilities of access operations has 
compromised on the cost by one (which again indicates that 
both cannot be achieved at the same time), where, for the best 
case, it generates costs of three replicas for a read as well as for 
a write operation.   
 

 
 

Fig 16. Cost comparison of the two Pareto front solutions 
 

Hence, our machine learning mechanism efficiently 
combines replication strategies as a single voting structure to 
achieve the specified objectives through genetic programming. 
Similarly, any realistic scenario depending upon the 
requirements or nature of an application can be defined and the 
system can accordingly generate innovative, formerly unknown 
solutions through genetic programming by overtly displaying 
their trade-offs, to analyze them, and make decisions 
dynamically at run-time. This automatic mechanism is strong 
enough to discover new replication strategies that cannot be 
easily found manually, considering the very huge search space. 

VII. CONCLUSIONS 

The paper combines the concepts of replication and genetic 
programming and provides a mechanism based on genetic 



programming to automatically design and generate innovative 
hybrid solutions in the form of unknown DRSs. It addresses a 
non-trivial multi-objective optimization problem of DRSs 
where, no single solution exists that simultaneously optimizes 
each objective. The proposed machine learning framework 
gains leverage through the voting structure to generate 
application-optimized replication strategies by exploiting their 
heterogeneity. It explicitly illustrates the trade-offs of newly 
generated DRSs through a Pareto front view, hence, makes the 
decision-making process very simple and convenient. In this 
process new DRS are generated, optimized over several 
generations, and relevant optimized strategies exhibiting 
suitable properties are picked at run-time. It tries to reduce the 
cost while not comprising on the availability too much. This 
automatic approach provides opportunities to discover new 
optimized replication strategies which are up-to-now unknown. 

As for future work, we intend to introduce multi-crossover 
and multi-mutation operators with more complex system 
parameter settings, which will give us some more fine-grained 
control over the algorithm in anticipation of designing 
appropriate solutions, accordingly. 
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