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Abstract—Preserving diversity in decision space plays an im-
portant role in Multimodal Multi-objective Optimization prob-
lems (MMOPs). Due to the lack of mechanisms to keep different
solutions with the same fitness value, most of the available Multi-
objective Evolutionary Algorithms (MOEAs) perform poorly
when applied to MMOPs. To deal with these problems, this
paper proposes a novel method for diversity preserving in the
decision space. To this end, the concept of grid-based crowding
distance for decision space is introduced. Furthermore, to keep a
good diversity of solutions in both decision and objective spaces,
we propose different frameworks by combining this method
with crowding distance in decision space, crowding distance in
objective space, and the weighted sum of both crowding distances.
In order to evaluate the performance of these frameworks, we
integrate them into the diversity preserving part of the NSGA-II
algorithm, and compare them with the NSGA-II (as the baseline
algorithm) and the state-of-the-art multimodal multi-objective
optimization algorithms on ten different MMOPs with different
levels of complexity.

Index Terms—Grid-based Crowding distance, Multi modality,
Evolutionary Algorithms, Non-dominated Sorting Genetic Algo-
rithm, Multi-objective Optimization.

I. Introduction

There are many real-world multi-objective optimization
problems (MOPs) with conflicting objectives which are sup-
posed to be optimized at the same time. In these problems, the
improvement of one objective may lead to the deterioration
of the other objectives. Therefore, it is required to find an
optimal set of solutions to make a trade-off between these
conflicting objectives. A solution that is not dominated by
any other solution in objective space is called Pareto optimal
solution. The set of these optimal solutions in decision space
is known as Pareto-Set (PS). The image of these solutions in
objective space is called Pareto Front (PF).

In some of the practical multi objective optimization prob-
lems, there may exist multiple equivalent PSs in decision
space corresponding to the same PF in the objective space.
These problems are defined as Multimodal Multi-objective
Optimization Problems (MMOPs) [1].

If the decision-makers are informed about these dissimilar
optimal solutions with the same quality, they could choose the
final optimal solution according to their preferences. These
solutions can be located by keeping a high diversity of
solutions in the decision space.

Over the last decades, several Multi-objective Evolutionary
Algorithms (MOEAs) have been designed to solve MOPs,
mainly focused on providing a better approximation of the PF
in terms of convergence and diversity (in objective space) [2].
However, the distribution of solutions in decision space has
not received much attention. In order to discover as many
equivalent PSs as possible in MMOPs, it is necessary to
provide a proper distribution of solutions in decision space.
Since most available MOEAs are mainly focused on increasing
the diversity of solutions in objective space (e.g., the classical
crowding distance in NSGA-II algorithm), they could approx-
imate the PF by locating one of these equivalent PSs. To fill
this gap, it is important to modify the available MOEAs to
improve the distribution of solutions in decision space while
not deteriorating the approximation of PF.
To deal with this challenge, we modify the original concept

of crowding distance (i.e. the secondary selection criteria)
used in Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [2], by proposing a novel NSGA-II-Grid-based crowding
distance algorithm (NSGA-II-Gr). With the implementation
of this method, the solutions selected to be transferred to
the next generation are located in the neighborhood of sparse
areas in decision space, leading to an improved distribution of
solutions in the decision space. The proposed method enables
the algorithm to keep the solutions that are far from each
other in the decision space, while they may remain near
to each other in objective space. To assess the performance
of the proposed algorithm, we compared it with some of
the available Multimodal Multi-Objective Evolutionary Algo-
rithms (MMOEAs) on a number of MMOPs. Furthermore, we
present three additional algorithms with the combination of
Grid-based method and crowding distance in decision space
(NSGA-II-Gr-CDdec), objective space (NSGA-II-Gr-CDobj),
and weighted sum of both values (NSGA-II-Gr-CDws).
The proposed NSGA-II-Gr-CDdec is designed to augment

the distribution of solutions in decision space, while NSGA-
II-Gr-CDobj is proposed to avoid neglecting the diversify of
solutions in objective space. To make a trade-off between the
diversity of both spaces, we introduced NSGA-II-Gr-CDws.
This paper is structured as follows. Section 2 gives a

brief summary of related works. In Section 3, the proposed
algorithms are introduced. The experimental settings and the
analysis of the results are covered in Sections 4 and 5,
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respectively. In the final section, conclusions of this work and
future research goals are presented.

II. Related Work
Research regarding MOEAs have an extensive background

e.g., [3], [4]. The most famous algorithm in this field is
NSGA-II [2], which looks for optimal solutions in two steps:
first, it uses a non-dominated sorting method to divide the
population into fronts of non-dominated solutions, and then
it uses a crowding distance technique to sort the solutions in
these fronts according to the distance between their nearest
neighbors on each dimension. The main focus of the MOEAs
relies on providing a better approximation of the PF in the
objective space. Nevertheless, in order to deal with MMOPs,
we need to consider the approximation of solution in the
decision space.

In recent years, there have been a few papers addressing
MMOPs by specifically developing methods to find and pre-
serve diverse solutions in the decision space. The first detailed
study on MMOPs was performed by Deb et al. [5], proposing
the Omni-optimizer algorithm. They modified the concept of
crowding distance in NSGA-II, in which, for each solution the
crowding distance values in both the objective and the decision
spaces are considered. Then, their mean values on each space
are compared and the larger value of both distances is assigned
to each solution.

In [1] and [6], two other dominance-based MMOEAs, which
are extended versions of NSGA-II, are proposed: Decision-
Based Niching NSGA-II (DN-NSGA-II) and Double Niched
Evolutionary Algorithm (DNEA). In DN-NSGA-II, the crowd-
ing distance value is measured in decision space instead of
in objective space. In DNEA, Omni-optimizer is extended by
adding two sharing functions in both decision and objective
spaces.

One of the state-of-the-art algorithms often cited in research
on MMOEAs, is an extended version of Multi-Objective
Patrice Swarm Optimization algorithm (MOPSO). This algo-
rithm proposed by Yue et al. [7] was called Multi-objective
Particle Swarm Optimization using Ring topology by apply-
ing Special crowding distance (MO-Ring-PSO-SCD). In this
algorithm, an index-based ring topology is used to explore
the search space and a special crowding distance method is
adopted and amended from the Omni-optimizer algorithm to
preserve the obtained diverse solutions in decision space.

Another mechanism called Self-organizing Multi-objective
Particle Swarm Optimization (SMPSO-MM) was proposed by
Liang et al. [8]. Their proposed self-organizing mechanism,
along with an adopted special crowding distance method, helps
the mapping of similar solutions to the same neighborhood,
and moreover, to maintain the distribution of the obtained
solutions in decision space.

Recently, two extensions of NSGA-II have been proposed
for MMOPs: NSGA-II-WSCD-NBM [9], [10], and NSGA-
II-MDCD [11]. The secondary selection criteria in NSGA-
II-WSCD-NBM is based on the weighted sum of crowding
distance values in both decision and objective spaces, leading

them into a trade-off between the distribution of the solutions
in both decision and objective spaces. The weighted factors
for both of the spaces are imposed equally. Furthermore, a
novel Neighborhood polynomial Mutation (NBM) operator
was proposed to explore a wider range of the search space.
These two mechanisms together support a better approximation
of PS in terms of the distribution of optimal obtained solutions.
NSGA-II-MDCD aims to preserve the solutions far from

each other in decision space, even if they are located close
to each other in objective space and avoid getting trapped
into local optima. In these method, the concept of Manhattan
distance was employed in the partitioned decision space, where
the sum of the grid difference between each solution and the
rest of solutions in the related front is computed.

III. Grid-based crowding distance for MMOEAs
In this section, the proposed Grid-based crowding distance

method in decision space (Grdec) is described, followed by a
pseudocode along with a description of the relevant details.
As already mentioned, one of the main concerns of MMOPs

is to provide a relatively good diversity of solutions in the
decision space. In order to deal with this problem, it is impor-
tant to select the solutions that are located in less crowded
neighborhoods. Therefore, it is required to reformulate the
diversity preserving selection criteria (e.g. crowding distance
in population-based algorithms), which is responsible for se-
lecting and transferring a number of so far non-dominated
solutions to the next generation. In this paper, the crowding
distance technique in NSGA-II is modified with the goal to
select the solutions from the sparse areas in the decision space.
The original computation of crowding distance for each

solution in NSGA-II is as follows: the solutions are separately
ordered on each dimension in the objective space. Then, for
each of these dimensions, the distance between the two nearest
neighbors of each solution is calculated and the normalized
sum of the obtained value is assigned as the crowding distance
value for the solution.
Because of the natural capability of grids for representing

the distribution of solutions [12], we modified this crowd-
ing distance method by partitioning the decision space and
introducing a Grid-based mechanism to measure distances
between solutions. The initial idea of this method comes from
the modified Manhattan distance method proposed in [11],
where the decision space is partitioned into grids. The grid-
distance (GD(Si,Sj)) between two solutions Si and Sj are then
measured by counting the number of the grids between them
using Manhattan distances. The final crowding distance value
for each solution is calculated by summing the pairwise grid-
distances between the solution and the other solutions on the
same front.
The crowding distance values help to identify the crowded

areas. However, it is important to additionally consider the
density of the solutions in the neighborhood of each solution.
In order to address the density in the crowding distance
measurement, a new definition of neighbourhood is proposed
in Grid-Based Evolutionary Algorithm (GrEA) [12], in which



different techniques are used to handle many objective op-
timization problems. A Grid crowding distance (GCD) is
proposed to increase the selection pressure towards the PF, by
increasing the diversity of individuals in the objective space.
This method limits the neighborhood of each solution in the
objective space by a maximum grid difference of M (the
number of objective functions). In this paper, we modify and
adapt this neighborhood from GrEA into the decision space.

For each solution Si , the neighborhood contains the solu-
tions Sj with the grid difference less than D to Si (D denotes
the number of decision variables) as follows:

NB(Si) = {Sj |Si , Sj ∧ GD(Si,Sj) < D} (1)

where S = (S1, ...,SN ) is the current front of solutions and
NB denotes the set of solutions which are in the neighborhood
of solution Si . GD(Si,Sj) is the grid-distance between pairs of
solutions Si and Sj .
In order to favor solutions located in sparse areas, the Grid-

based crowding distance (Grdec) value for each solution is
calculated according to the following equation:

Grdec(Si) =
∑

S j ∈NB(Si )

(D − GD(Si,Sj)) (2)

In this way, a solution located in a crowded area will be
assigned a large Grdec value. In our proposed approach, we
favor the solutions with small Grdec values. The proposed
method for Grid-based crowding distance in decision space
is described in Algorithm 1. First, after the initial setting
of parameters (Lines 1 to 6), the grid-distance between each
pair of solutions on the same front is computed (Lines 7 to
13). Afterwards, for each solution, the Grid-based crowding
distance (Grdec) value is computed based on equations 1 and
2 (Lines 14 to 18).

In order to normalize the Grid-based crowding distance
values (for a subsequent combination with other distance
metrics), a max-min normalization is used to put the results
into the same range (0,1] (Line 19). To avoid obtaining zero
values for the solutions with the minimum value after applying
the normalization method, the min value in the equation is
changed to a very small value (e.g. 0.001) as follows:

norm(Vi) =
Vi − (min(V) − 0.001)

max(V) − (min(V) − 0.001)
(3)

where V = (V1, ...,VN ) is a set of values (the Grdec values
in this work) and norm(Vi) is the ith normalized value.
Based on this method, the solutions with lowest Grdec

values are selected and transferred to the next generation.
These lowest values represent solutions that are located in the
neighbourhood of sparse areas.

In our proposed approach called NSGA-II-Gr, we replace
the crowding distance method in the NSGA-II by the above
Grid-based crowding distance in decision space (Grdec).
Although the proposed method (NSGA-II-Gr) is able to

approximate the density of solutions, there are still some cases

Algorithm 1: Grid-based crowding distance in deci-
sion space (Grdec) approach.
Input: Number of decision variables: D,
List S of solutions of current front (with Grid index
GrInd values for each dimension)
Output: List S with the extra property Grid-based

crowding distance in decision space (Grdec)
for each solution

1 . for i ∈ {1, .., |S | − 1} do
2 S[i].Grdec = 0;
3 for j ∈ {1, .., |S |} do
4 GD(i, j) = 0;
5 end
6 end
7 for i ∈ {1, .., |S | − 1} do
8 for j ∈ {i + 1, .., |S |} do
9 for k ∈ {1, ..,D} do
10 GD(i, j)+ = S[i].GrInd[k] − S[ j].GrInd[k] ;
11 GD( j, i)+ = S[ j].GrInd[k] − S[i].GrInd[k] ;
12 end
13 end
14 end
15 for i ∈ {1, .., |S |} do
16 for j ∈ {1, .., |S |} do
17 S[i].Grdec + = max(D − GD(i, j),0);
18 end
19 end
20 S = normGrdec

(S) ; // normalization of Grdec
21 return S

where this method fails to highlight the solutions that are
located in crowded areas. Since the Grdec value of solutions
is highly dependent on the grid resolution, in some cases
the Grdec values of some solutions can be the same, even
if these solutions are not located in equally crowded areas. To
compensate such shortcoming, the proposed method NSGA-
II-Gr is furthermore improved by dividing the Grdec with
the crowding distance technique applied to decision space
(CDdec) proposed in Omni-optimizer algorithm [5]. We call
this variation NSGA-II-Gr-CDdec approach.
The crowding distance value in decision space [5], [7] is

calculated as follows: first, the solutions are ranked based on
each of the decision variables. Then, for each solution, the
final crowding distance value is computed based on the sum-
mation of the normalized distance between the two adjacent
neighbours on each dimension. For boundary points in any
dimension, the distance between the solution and its nearest
neighbor is multiplied by 2.
In order to demonstrate the importance of this combination,

an example is provided in Figure 1. As shown in this example,
the Grdec values of the solutions represent if they are located
sparse areas. In this example, solutions D and E have the
same Grdec values, but different values of CDdec . By dividing
the obtained Grdec values with the crowding distance CDdec



values, solution E gets a smaller Grdec value than D. This
combination reveals that solution E is located in a less crowded
area than D.
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Fig. 1: An instance to demonstrate the importance of com-
bining the Grid-based crowding distance method with the
crowding distance in decision space.

In the following, we propose two more variations. In
NSGA-II-Gr-CDobj, the proposed Grdec method is combined
with the usual crowding distance approach used in NSGA-II
(CDobj) [2]. In this way, we aim to keep the diversity in the
objective space.

In NSGA-II-Gr-CDws, we aim to take the advantages of us-
ing crowding distance approach in both decision and objective
spaces. Therefore, we combine the presented Grdec approach
with the weighted sum Crowding Distance (CDws) [9], which
leads to the increase of the diversification in the decision space
while not deteriorating the distribution of the obtained optimal
solutions in objective space.

In addition, we examine the following. Since lower Grdec
values and higher CDdec , CDobj , and CDws values are
preferable, these combined algorithms are proposed as pre-
viously pointed out by dividing the obtained Grdec values
with the respective crowding distance. Then, this final distance
values are sorted in ascending order, and the lowest values
(representing the solutions located in the neighborhood of
sparser areas) are transferred to the next generation.

All these proposed methods are focused on the preservation
of solutions by increasing the selection pressure towards more
diverse solutions in decision space. On the other hand, it is
important to enhance the exploration of the search space so
as to locate more diverse solutions as well as to get rid of
getting trapped into local optima. To achieve this goal, the
NBM operator proposed by [9], [10] was used in all of the
proposed methods. This operator is a modified version of
polynomial mutation, one of the most well-known operators
for MOEAs [13]. NBM operator works as follows: at first,
the Euclidean distance between each solution and the rest of

solutions is calculated. For each solution, the solution itself
and its K nearest neighbors (where K is the neighborhood size)
locate into a cluster, and then the polynomial mutation operator
is applied to each of the clusters. This operator increases the
probability of mutation for those solutions that are located in
denser areas, helping to explore a higher range of the search
space and escape the trap of local optima.

IV. Experimental Preliminaries

In this study, the subsequent parameter settings are consid-
ered by all of the proposed algorithms as well as by the state-
of-the-art algorithms used for comparison (NSGA-II, MO-
Ring-PSO-SCD, NSGA-II-CDdec and NSGA-II-WSCD).
Except for MO-Ring-PSO-SCD, Simulated Binary

Crossover (SBX) and Neighborhood Polynomial Mutation
(NBM) [10] were used as recombination and mutation
operators, respectively. However, for NSGA-II, the common
polynomial mutation operator is considered. The probability
of doing crossover and mutation are respectively set to pc = 1
and pm = 1/D, being D the number of decision variables.
The distribution indexes for these operators are ηc = 20 and
ηm = 20. The neighborhood size for the NBM operator is
set to 20. For all the competitors, the population size was
set to 100, and the termination criterion consisted on 10000
evaluations.
The weight factor in NSGA-II-WDCD follows the original

literature, so it has the same value for both the decision and
the objective spaces. The parameter settings for MO-Ring-
PSO-SCD is taken from the original publication [7], that are
respectively set to C1 = C2 = 2.05 and W = 0.7298.
Furthermore, to set the proper grid size, some experiments

were performed for all of the proposed algorithms on every test
problem with different grid sizes considering 1, 5, 10, 15, 20,
25, 30, 35 or 40 grids on each dimension. The obtained results
showed that increasing the grid size from 1 to 20 improves the
performance of all the proposed algorithms. After grid size
20, the curve of improvement keeps its steady state with a
bit of fluctuation, due to the stochastic nature of evolutionary
algorithms. Therefore, we considered a grid size of 20 for all
the experiments.
We used the Matlab-based platform PlatEMO [14] to imple-

ment our proposed algorithms and state-of-the-art algorithms.
The test problems used in these experimental studies

are taken from the CEC2019 competition on Multimodal
Multi-objective optimization (denoted as MMF1z, MMF1-
MMF9) [15], [16]. The considered test problems are bi-
dimensional, both in terms of decision variables and objective
functions. The different characteristics of these test problems
are presented in Table I.
To challenge the functionality of the proposed algorithms,

the difficulty level of the test problems varies based on the
number of PSs, the shape of the optimal solutions (e.g.,
symmetry), and the overlap of the PSs on each dimension.
For example, MMF1z is considered a complex test problem
with two non-symmetric PSs, so the complexity for searching



each of these PS is different (MMF1z could be similar to a
real-world problem).

TABLE I: Properties of the test problems from CEC2019
competition on Multimodal Multi-objective Optimization

Test
Problem

Number
of PSs PS Geometry PF Geometry

MMF1 2 non-linear & symmetric concave
MMF1z 2 non-linear & non-symmetric concave
MMF3 2 non-linear & symmetric concave
MMF3 2 non-linear & symmetric concave
MMF4 4 non-linear & symmetric concave
MMF5 4 non-linear & symmetric convex
MMF6 4 non-linear & symmetric convex
MMF7 2 non-linear & symmetric convex
MMF8 4 non-linear & symmetric convex
MMF9 2 linear & symmetric convex

To assess the performance of the competitive algorithms
over multiple runs, we use three different performance in-
dicators: Inverted Generational Distance in decision space
(IGDx), Pareto Set Proximity (PSP), and Inverted Generational
Distance in objective space (IGD). The first two are adopted
to measure the effectiveness of the proposed algorithms over
the rest based on the diversity and convergence of solutions in
decision space. Whereas IGD indicator is employed to reflect
the quality of the obtained optimal solutions according to the
diversity and convergence in objective space.

IGDx is computed as the average Euclidean distance be-
tween the obtained solutions and the PS. This metric provides
a comprehensive quantification of both diversity and conver-
gence of the obtained optimal solutions in decision space. Let
P∗ be a sample of the PS of the problem, and R the set
of solutions (their values in decision space) obtained by an
algorithm, then the IGDx indicator can be defined as:

IGDx(P∗,R) =
∑

v∈P∗ ‖R − v‖2
|P∗ |

(4)

where ‖R − v‖2 is the minimum Euclidean distance between
the sampled point v and any point in R. Lower IGDx values
are preferable.

PSP measures the convergence and the degree of similarity
between the obtained optimal solutions and the PS. This
indicator is formulated as:

PSP = CR/IGDx (5)

where CR is the maximum spread of the obtained solutions
in decision space. Higher PSP values are preferred to lower
ones.

IGD is calculated with the same formula as IGDx but
in objective space. This metric indicator measures both the
diversity and convergence of the obtained optimal PF. All of
these performance indicators require a reference sample of
solutions in decision and objective space, which is uniformly
distributed over the PS and the PF.

V. Results and Discussions

In this section, we compared our proposed algorithms:
NSGA-II-Gr, NSGA-II-Gr-CDdec, NSGA-II-Gr-CDobj and
NSGA-II-Gr-CDws, with other MMOEAs: NSGA-II-WSCD,
MO-Ring-PSO-SCD and NSGA-II-CDdec algorithms, as well
as NSGA-II (as the baseline algorithm).
The Mann-Whitney-U statistical test is employed to de-

termine whether there is a statistical significance difference
between the best-performed algorithm from the others on each
test problem, that is, h = 1 demonstrates a rejection of the null
hypothesis, and h = 0 demonstrates a failure to reject the null
hypothesis at the 5% significance level.
The experimental results for each algorithm on each test

problem were obtained out of 31 independent runs. The me-
dian value and interquartile range (IQR) for the corresponding
IGDx, IGD, and PSP performance indicators are provided in
Table II. For each test problem, the outperforming results are
shown in bold. An asterisk is used to represent if the algorithm
with the best performance is significantly better than the other
competitors.
As can be seen from the analysis of the results in Table II,

in all the cases the combination of the Grid-based approach
with crowding distance in both decision (NSGA-II-Gr-CDdec)
and objective (NSGA-II-Gr-CDobj) spaces leads to an im-
provement in the quality of the obtained optimal solutions in
decision space. According to these results, there is no statistical
difference between these two algorithms. It is interesting to
observe how both of the proposed algorithms performed the
best in every test problem over the rest of MMOEAs. As can
be seen from the pairwise comparison between NSGA-II-Gr-
CDdec and NSGA-II-CDdec, the first one preformed better
than the second one in all of the test problems in terms of
IGDx and PSP, demonstrating the role of Grdec approach to
improve the distribution of solutions in decision space.
Furthermore, the obtained IGDx and PSP value of NSGA-

II-Gr outperformed the ones obtained by MO-Ring-PSO-SCD
(as an state-of-the-art algorithm) on approximating the PS for
all of the test problems. The results of PSP values also prove
the superiority of the two proposed NSGA-II-Gr-CDdec and
NSGA-II-Gr-CDws in every test problem on representing both
the diversity and convergence of the obtained optimal solutions
in the decision space.
It is known for multimodal algorithms that manipulating

the diversity of solutions in decision space may leads to
deteriorating the diversity in objective space. The goal of
our proposed method is to made a trade-off between these
two conflicting objectives in two spaces. As can be seen in
Table II, in general, the improvement of the IGDX value is
much higher than the deterioration of the IGD value for the
proposed methods. As an example, the improvement of IGDX
value for the MMF5 and MMF8 test problems on NSGA-II-Gr-
CDws over NSGA-II-CDws (as an state-of-the-art algorithm)
is about 1.2e-02 and 1.05e-02. On the other hand, the IGD
value is worsened by 8.36e-04 and 2.97e-04. These results
proved that the proposed algorithms were successful in making



TABLE II: Median and IQR for the IGDX, PSP and IGD values of the compared algorithms in different test problems. An
asterisk (*) indicates statistical significance compared to the respective best performing algorithm

NSGA-II-Gr NSGA-II-Gr-CDDec NSGA-II-Gr-CDobj NSGAII-Gr-CDws NSGA-II-CDDec NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1
IGDx 0.067124(0.008875)* 0.061202(0.003417) 0.062595(0.002853)* 0.060603(0.003125) 0.061958(0.002577)* 0.062318(0.002726)* 0.073865(0.005652)* 0.11003(0.02105)*
PSP 14.8073(1.9046)* 16.2504(0.87617) 15.8527(0.72453)* 16.4489(0.78003) 15.9796(0.68082)* 15.9255(0.73988)* 13.2792(0.98137)* 8.8227(1.6945)*
IGD 0.007599(0.00073)* 0.006187(0.000424)* 0.005055(0.000386) 0.00584(0.000639)* 0.005754(0.000336)* 0.005418(0.00055)* 0.006533(0.000504)* 0.005331(0.000233)*

MMF1z
IGDx 0.052395(0.003493)* 0.044782(0.00213) 0.047838(0.002698)* 0.045687(0.002583) 0.045896(0.001208)* 0.046543(0.002298)* 0.055018(0.004518)* 0.12034(0.025452)*
PSP 19.0266(1.2466)* 22.2021(1.1178) 20.8208(1.3242)* 21.8624(1.3449) 21.6625(0.5915)* 21.3178(1.1579)* 17.9275(1.5125)* 8.0487(1.837)*
IGD 0.007038(0.000836)* 0.005919(0.000341)* 0.004838(0.000185) 0.005703(0.000548)* 0.005782(0.000281)* 0.005298(0.000462)* 0.006554(0.00057)* 0.005145(0.000222)*

MMF2
IGDx 0.018418(0.004607) 0.018879(0.003991) 0.018996(0.004189) 0.017765(0.003369) 0.019397(0.004749) 0.018523(0.003559) 0.031923(0.012669)* 0.10784(0.087009)*
PSP 54.1538(14.3124) 52.9243(13.3026) 52.6005(10.6054) 55.1813(9.7281) 51.541(12.4749) 53.9273(9.5183) 29.1782(10.7133)* 7.9555(6.7582)*
IGD 0.014274(0.003097) 0.015225(0.00409) 0.015057(0.003806) 0.015032(0.002328) 0.014505(0.002001) 0.014852(0.002164) 0.019609(0.006034)* 0.020704(0.019092)*

MMF3
IGDx 0.015085(0.002805) 0.014636(0.001038) 0.016876(0.00313)* 0.014908(0.002532) 0.015515(0.00159)* 0.015936(0.002998)* 0.024832(0.008584)* 0.066651(0.031745)*
PSP 66.0964(11.5562) 67.9741(4.8889) 59.2371(11.6847)* 66.7617(10.7485) 64.4272(6.5669)* 62.7239(11.1474)* 38.3825(12.4391)* 14.5135(7.267)*
IGD 0.011869(0.002062) 0.011685(0.002171) 0.011666(0.002669) 0.012051(0.002231) 0.011566(0.001405) 0.012024(0.002053) 0.015091(0.003205)* 0.014244(0.006389)*

MMF4
IGDx 0.045234(0.003421)* 0.038038(0.002652) 0.038727(0.002337) 0.037983(0.002413) 0.039865(0.00547)* 0.041913(0.003713)* 0.04535(0.003056)* 0.10256(0.047135)*
PSP 21.8348(1.7856)* 26.1288(1.9195) 25.6534(1.579) 26.1896(1.6784) 24.941(3.2196)* 23.7223(2.1679)* 21.5821(1.454)* 9.5321(4.0232)*
IGD 0.008182(0.00144)* 0.006185(0.00058)* 0.005068(0.000225) 0.00619(0.000593)* 0.005954(0.000284)* 0.00545(0.00056)* 0.006793(0.000809)* 0.005221(0.000259)*

MMF5
IGDx 0.11035(0.005561)* 0.1034(0.003865) 0.10417(0.006102) 0.10222(0.005236) 0.11292(0.005694)* 0.11425(0.010062)* 0.12693(0.011658)* 0.20553(0.048088)*
PSP 9.0458(0.46834)* 9.6169(0.33912) 9.5596(0.57918) 9.7424(0.51451) 8.8265(0.42334)* 8.7221(0.69202)* 7.7577(0.71897)* 4.7613(1.1202)*
IGD 0.007493(0.000737)* 0.006361(0.000506)* 0.005031(0.000332) 0.006111(0.000515)* 0.005691(0.000347)* 0.005275(0.000651) 0.006285(0.000481)* 0.00537(0.000226)*

MMF6
IGDx 0.095281(0.008412)* 0.089501(0.00341) 0.091343(0.002659) 0.091507(0.003796) 0.098542(0.006039)* 0.09933(0.007392)* 0.10804(0.011067)* 0.1892(0.073865)*
PSP 10.467(0.91076)* 11.0811(0.46192) 10.9065(0.33621) 10.8866(0.48719) 9.9693(0.62399)* 10.0447(0.69786)* 9.1072(1.0346)* 5.1003(2.3573)*
IGD 0.007036(0.001198)* 0.006074(0.000735)* 0.004996(0.000283) 0.005967(0.00066)* 0.005702(0.000356)* 0.005445(0.000493)* 0.006374(0.000755)* 0.005198(0.000334)*

MMF7
IGDx 0.044455(0.003232)* 0.038889(0.002492)* 0.036447(0.002983) 0.03801(0.002741)* 0.03704(0.002444) 0.036946(0.002157) 0.043546(0.003618)* 0.067719(0.021536)*
PSP 22.4605(1.4481)* 25.351(1.9344)* 27.1832(2.1236) 26.1666(1.7906)* 26.7337(1.678) 26.7984(1.5704) 22.674(2.0256)* 14.1855(4.2449)*
IGD 0.008725(0.00095)* 0.007058(0.00083)* 0.005098(0.000304) 0.006122(0.000588)* 0.006702(0.000767)* 0.005271(0.000542)* 0.007676(0.001388)* 0.005016(0.000264)

MMF8
IGDx 0.088645(0.005978)* 0.0791(0.006105) 0.088348(0.007404)* 0.076404(0.004284) 0.083033(0.010748)* 0.086917(0.007588)* 0.10699(0.011313)* 0.8061(0.63768)*
PSP 11.1843(0.69393)* 12.576(0.97508) 11.2055(0.9299)* 12.9898(0.6339) 12.0055(1.6526)* 11.4086(0.88867)* 9.2193(1.0427)* 0.99354(0.51834)*
IGD 0.007482(0.000784)* 0.006989(0.000668)* 0.005144(0.000178) 0.00552(0.000312)* 0.006857(0.00046)* 0.005223(0.000338)* 0.007582(0.000663)* 0.005289(0.000292)*

MMF9
IGDx 0.012333(0.000966)* 0.010691(0.000806) 0.011113(0.001116)* 0.010808(0.000977) 0.011338(0.001384)* 0.013275(0.001564)* 0.013383(0.002343)* 0.24982(0.20045)*
PSP 81.0639(6.131)* 93.4914(6.7324) 89.9869(9.4493) 92.5107(8.4157) 87.9327(10.8428)* 75.2867(9.1232)* 74.2549(12.4973)* 0.71175(19.3066)*
IGD 0.033322(0.005984)* 0.027648(0.002816)* 0.019675(0.00109)* 0.01997(0.001073)* 0.02757(0.003082)* 0.019284(0.000882) 0.028642(0.003486)* 0.020262(0.001267)*

a reasonable trade-off between the diversity of decision and
objective spaces.

A closer inspection of Table II shows that for the most
complex test problem (i.e. MMF1z with the asymmetrical
shape of the PS, that is similar to a real-world problem), the
grid-based approach contributes in the distribution of solutions
in the decision space.

To further evaluate the performance of the proposed al-
gorithms on the approximation of the PF, IGD values were
studied. These results, as shown in Table II, indicate that
NSGA-II-Gr-CDobj algorithm significantly outperforms the
original NSGA-II algorithm in nine out of ten test cases.
The obvious reason for this observation is that the focus of
this algorithm is on providing better-distributed solutions in
objective space while ignoring the decision space. On the other
hand, the NBM operator enhances the exploration of the search
space, leading to a better locating of Pareto-optimal solutions
during the search process.

As a general notice, it can be seen that the obtained IGDx
and PSP values for both NSGA-II-Gr-CDdec and NSGA-II-
Gr-CDws performed better than the previous algorithms not
considering the Grdec approach, while not deteriorating that
much the obtained IGD values.

The overall reason for the better performance of both of the

proposed NSGA-II-Gr-CDdec and NSGA-II-Gr-CDws over the
rest of compared MMOEAs is that for the early generations
where solutions may be randomly distributed over the search
space, Grid-based crowding distance value in decision space is
equal to zero for some cases, and after applying the normaliza-
tion it is turned into a non-zero value. Afterwards, by diving
the obtained values with the crowing distance in decision
space, or weighted sum of crowding distance in both of the
spaces, the solutions are mostly selected according to their
crowding distance values, that compensates the absence in
the obtained grid-based crowding distance values. In the later
generations, the solutions converge toward the PS. In these
generations, the solutions are closer to each other, therefore,
they have different Grid-based crowding distance values. So
the combination with the crowding distance outperforms this
distance by taking into account a broader neighborhood of so-
lutions compared to the two-nearest-neighborhood considered
by crowding distance. This combination leads to the selection
of more diverse solutions along the PS, as it increases the
selection pressure on decision space compared to NSGA-II-
CDdec.

When Grdec is not considered, as in NSGA-II-CDdec, the
later generations only considering the crowding distance in
decision space tend to have a lower selection pressure on
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Fig. 2: Obtained solutions in both decision and objective spaces for MMF1z test problem

decision space, because it focus on the two nearest neighbors
of the solutions, while Grdec takes into account a broader
neighborhood of solutions. In order to make a better under-
stating of the similarities between the obtained solutions in
both decision and objective space, some results are graphically
represented for the median run of the IGDx performance
indicator in Figure 2. The obtained solutions for all the
competitors are shown in both decision and objective spaces.
The solid blue lines represent the true PS and PF, while the
obtains solutions are represented with red markers. As can
be seen from Figure 2, for instance, the obtained solutions in
both NSGA-II-Gr-CDdec (Figure 2b) and NSGA-II-Gr-CDws
(Figure 2d) are more evenly distributed over the PS and cover
a bigger area for the two PSs of the problem, which are located
in the ranges x1 ∈ [1,2] (left side) and x1 ∈ [2,3] (right
side), respectively. However, in NSGA-II-WSCD (Figure 2g),
as an state-of-the-art algorithm, the solutions are unevenly
distributed over the PS, i.e. the density of the optimal obtained

solutions is higher on the right side rather than on the left side.
Moreover, for NSGA-II (Figure 2h), the optimal solutions

have covered more points on the right side of the PS and
these points are located close to each other. In this specific
problem, because of the more straightforward shape of the
right side, both NSGA-II and NSGA-II-WSCD, could find
more Pareto-optimal solutions mainly in this area. Whereas, as
it is visible, the proposed Grid-based methods can cover more
points in both of the PSs and the solutions are more uniformly
distributed along both of them.

VI. Conclusion and future works
In this work, we introduced a novel Grid-based crowding

distance method for the decision space to solve MMOPs.
By combining this method with different crowding distance
approaches in both decision and objective spaces, we designed
four algorithms: NSGA-II-Gr, NSGA-II-Gr-CDdec, NSGA-II-
Gr-CDobj and NSGA-II-Gr-CDws. We tested our proposed



algorithms on 10 different test problems, and compared them
against several MMOEAs and NSGA-II. Through the experi-
mental assessments, we demonstrated the significant improve-
ment of our proposed algorithms (for the approximation of PS
in terms of diversity and convergence) in comparison with the
other competitors on many of the test problems.

As a future research topic, an analysis of the Grdec method
on test functions of higher dimensions in both decision and
objective spaces, as well as on real world problems, will be
considered. Moreover, our work might be involved with the
further investigation on the adaptive tuning of the grid size
parameter for each generation, which could be applicable for
different dimensions in both decision and objective spaces.
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