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Abstract—This paper addresses the problem of including the
choice of the High-Lift Devices (HLDs) configuration as a decision
variable of an automatic optimisation tool. This task requires the
coupling of an estimation routine and an optimisation algorithm.
For the former, SU2 flow solver has been used. The Structured-
Chromosome Genetic Algorithm (SCGA) optimiser has been
employed to search for the optimal HLD. SCGA can overcome
the limitations dictated by standard fixed-size continuous op-
timisation algorithms. Indeed, using hierarchical formulations,
it can manage configurational decisions that are conventionally
the responsibility of expert designers. The search algorithm
bases its strategy on revised genetic operators conceived for
handling hierarchical search spaces. The presented research
not only shows the practicability of delegating to a specialised
optimisation algorithm the complete HLD design but is intended
to be a proof of concept for the whole field of multidisciplinary
design optimisation. Indeed, the aerospace sector as a whole
would benefit by reducing human intervention from the decision
process.

Index Terms—Aerospace engineering, High-lift devices, Opti-
misation, Genetic Algorithm, Mixed-variable, Variable-size

I. INTRODUCTION

Recently, in the field of commercial aircraft design, the
interest regarding the optimal design of High-Lift Devices
has increased [1], [2]. HLDs are components located on the
aircraft’s wing that aim to increase the lift force produced
by the wing during slow flight phases, mainly take-off and
landing. A wide variety of HLD types exists, but, the most
common, and studied in this paper, are slats and flaps. The
slat is located at the airfoil leading edge and has the effect of
delaying stall by increasing the angle of attack at which the
maximum lift is attained. Whereas, the flap is a trailing edge
device that increases the lift coefficient even at low angles of
attack [3], [4].

As discussed in [5], the HLD design is an arduous task
because it is as a multidisciplinary (aerodynamics, structures,
systems integration disciplines are involved), multi-objective
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(generally in conflict) [6], and multi-point (designed for take-
off, climbing, approach, landing flight phases) [7] design
problem. Thus, HLD design is very demanding from a com-
putational point of view. One critical point is the proper con-
vergence of the Computational Fluid Dynamic (CFD) solver
because configurations at high angles of attack, close to stall
conditions, must be simulated. Generally, these configurations
lead to separate flows that make the accurate prediction of the
aerodynamic performance very challenging. As a consequence,
experimental results to validate the CFD are necessary.

Classically, the design of HLDs is a two-stage procedure,
first a promising configuration type (number of airfoil ele-
ments) is selected, and second, the position and shape of the
elements are obtained through optimisation, often employing
heuristic algorithms [5]. Furthermore, because most of them
are limited to continuous numeric variables and fixed-length
search spaces, optimisation algorithms are assigned to solve a
circumscribed part of the original design problem exclusively.
It is a tough task to know beforehand which configuration is
optimal in terms of performance, weight, and cost. As a result,
this approach is likely to lead to sub-optimal solutions. This
work aims to demonstrate the feasibility of including the HLDs
configuration as a design variable of the optimisation phase.
In particular, the optimiser explores the HLD search space
changing the number of elements (or configuration) and their
position and rotation. In the sake of simplicity, the objective
of the optimisation is limited to maximise the lift generated
by the HLD at a given angle of attack regardless of its drag,
weight, costs and practical construction feasibility. Because of
this, the problem falls under the area mixed-variable single
objective global optimisation.

Dealing with these kinds of problems implies tackling many
challenges. Indeed, even a proper definition of the design
problem may be very difficult, as well as finding an efficient
mapping and encoding of the design variables to facilitate the
optimiser efficiency. This problem is even more critical when
variables of a different type, like continuous (numerical) and
categorical (nominal), are used to simultaneously encoding
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topological and dimensional features. Among the different
algorithms, one of the most suited to face this particular kind
of problems are Genetic Algorithms (GAs) [8].

A variety of strategies for facing variable-size global op-
timisation is described in the literature [9], [10]. The hidden
gene adaptation of GA for the optimisation of interplanetary
trajectories is introduced in [10]. Here the maximum number
of genes that can describe a candidate is set. Then, each
candidate is represented using all the possible genes plus a set
of activation genes indicating which genes to consider when
computing the objective function. However, in the cases where
the activation of genes depends on the activation of other ones
or on the values they assume, defining an effective problem
formulation can be very tough or even impossible.

A more complex, but efficient and flexible adaptation of GA
is proposed in [9]. In this case, a hierarchical multi-level chro-
mosome structure is adopted in place of the standard string
one. Unlike the standard GA formulation, both vicinity and
hierarchy relationships link the genes of each chromosome.
However, the operators implemented act regardless of the type
of variables and can result ineffective or even destructive, as
presented in [11].

In the current paper, a mixed-variable with dynamically
varying search space global optimiser based on a genetic al-
gorithm, the Structured-Chromosome Genetic Algorithm [11]–
[14] will be used. This approach consists of an adaptation of
GA that allows structured-chromosomes definitions. The al-
gorithm takes advantage of hierarchical problem formulations
and makes use of revised operators that behave considering the
type of variables and the history of the optimisation [11], [13],
[14]. Moreover, this offers the possibility to define dynamic
bounds and dynamic variables dependencies, and this makes
it suitable for a wide variety of problem formulations and
applications.

The ambition of this work is to show that an appropri-
ately crafted optimisation algorithm can handle configurational
decisions that are usually the responsibility of experienced
designers. Indeed, this achievement can represent a turning
point not only in the field of design optimisation but also in
multidisciplinary design optimisation, structural optimisation
and many other design disciplines.

The structure of the paper is the following. Sec-
tion II describes the autonomous aerodynamic computational
chain. Section III goes through the details of the algorithm
employed, SCGA. A validation of the optimiser on a ”toy”
problem is presented in Section IV to demonstrate the ade-
quacy of SCGA to tackle airfoil optimisation problems where
continuous play a dominant role. Section V focuses on the
HLD optimisation problem and gives details about the formu-
lation, the constraints handling and the algorithm’s settings.
Finally, in Section VI the results of the optimisation run are
shown. To conclude the paper, Section VII resumes the critical
aspects of this research and presents future works.

II. AERODYNAMIC COMPUTATIONAL CHAIN

When facing aerodynamic design optimisation problems,
it is essential to have a complete autonomous aerodynamic
computational chain. It takes as input the variables given by the
optimiser, generates the candidate to be evaluated (in this case,
a multi-element airfoil), builds the mesh, and, finally, runs the
aerodynamic solver. Once the performance of the candidate
has been obtained, the computational chain provides these
values to the optimiser. This process is depicted as in Fig. 1
and explained in the following sub-sections.

SCGA Airfoil generation
(wg2aer)

<

Grid generation
(gmsh)

CFD evaluation
(SU2)

Objective value

𝑿

NO

Aerodynamic 
computational chain

YES
Penalized 
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Error?

Fig. 1: Aerodynamic computational chain representation.

Moreover, in Section II-D the CFD solver is validated.
In Section II-E the design of the different multi-element
airfoil used as baseline configurations for the optimisation are
generated.

A. Airfoil generation

During the optimisation, the candidate airfoils are generated
using wg2aer1. It is a program that accepts as input a set
of design variable values and modifies a specified starting
airfoil, accordingly, using a set of modification functions. For
obtaining the baseline airfoil, the design variable values must
be equal to 0. In this paper, the introduced design variables are
the settings of each airfoil element, which are the translation
in the 2-dimensional space (∆X and ∆Y ) and the rotation
(∆θ) with respect to the starting airfoil. The reference point
for rotation is the leading edge of the corresponding element.

B. Grid generation

The grid is automatically built using a self-developed pro-
cedure based on the open-source grid generator Gmsh [15].
It generates an unstructured square grid combining triangular
and rectangular elements. The far-field is located at 40 airfoil
chords. The flat plate theory with the flow parameters is used to
generate a proper set-up for the near-wall area with rectangular
elements to accurately solve the boundary layer. Also, the
presence of the wake is considered by refining that region.
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C. CFD Evaluation
The CFD solver used for the HLD design optimisation is

the open-source fluid-dynamic solver SU2 [16]. The com-
pressible Reynolds-averaged Navier-Stokes (RANS) equations
are solved using SA turbulence model [17]. In addition, JST
central scheme with artificial dissipation coupled with an
implicit Euler method for the pseudo-time stepping is used
for spatial integration.

D. CFD results validation and design point selection
Before performing an optimisation run, the CFD solver

must be validated. This step is essential when designing
HLDs. During their design, configurations at high angles of
attack are studied. These configurations could present highly
separated flows, hence, predicting the airfoil performance is a
challenging task for the solver. Therefore, a comparison with
experimental results is required.

A series of wind-tunnel experiments were conducted at
NASA Langley Research Center for the three-elements airfoil
McDonnell Douglas (MDA) 30P-30N [18], [19]. Thus, the
30P-30N airfoil (Fig. 2) was selected as the starting configura-
tion for this design optimisation problem. These experimental
data are used to validate the numerical results.
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Fig. 2: 30P-30N airfoil.

The considered working conditions are: free-stream Mach
number M∞ = 0.2 and Reynolds number Re = 5× 106 (based
on the airfoil chord, c) at several angles of attack, namely,
α = [0○,4○,8.12○,16.21○,21.29○,22.5○,24○,25○,26○]. A
mesh with ∼ 200000 cells is used.

To demonstrate the ability of the CFD solver to assess stall,
a comparison of experimental and numerical lift coefficient
(Cl) versus angle of attack (α) curves is shown in Fig. 3a.
It is observed that the computed lift is slightly higher than
the experimental data. In addition, the computed stall angle
(α ≃ 24○) is higher than the experimental (α ≃ 21○).
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Fig. 3: SU2 ( ∎ ) and experimental (●) data comparison.

The drag polar (Fig. 3b) shows that numerical simulations
predict an higher drag coefficient (Cd). This trend is expected
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Fig. 4: Comparison of the pressure coefficient at the body
surface. SU2 results ( ) and experimental data (●).

since a fully turbulent approach was adopted, while the exper-
iments were conducted in free transition. Moreover, computed
pressure distributions (Cp) at the body surface for α = 8.12○

and α = 21.29○ are compared with the experiments in Fig. 4.
A satisfactory match between both is observed.

Summing up, it can be concluded that the CFD solver
is capable of predicting the airfoil performance, although
there are some variations between numerical and experimental
results.

E. Flap typologies generation

Several multi-element airfoil configurations must be consid-
ered as candidates for the HLD optimisation. Therefore, the
30P-30N airfoil was set as the reference baseline to design
four different flap configurations, in particular, three different
types of double slotted flap and one triple slotted flap.
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(a) Double slotted flap type 1
(DS1) configuration ( ).
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(b) Double slotted flap type 2
(DS2) configuration ( ).
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(DS3) configuration ( ).
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(d) Triple slotted flap (TS) con-
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Fig. 5: Illustration of all the configurations considered in the
optimisation.



For splitting the single flap of the baseline airfoil in sev-
eral elements, the multi-element airfoil manipulation program
AIRSET [20] was used. Once the new elements were gener-
ated, XFOIL [21] was employed for smoothing the splitting
surfaces.

Thus, during the HLD optimisation, five different HLD
candidates will be studied: a single flap configuration (SF),
which is the 30P-30N airfoil, three types of double-slotted
flap (DS1, DS2, and DS3), and a triple slotted flap (TS) (see
Fig. 5). Note that, the slat and the main body parts are the
same for all the configurations.

III. SCGA

SCGA [14] is a heuristic algorithm optimisation that aims
at coping with mixed-variable optimisation problems with
dynamically varying search space. This algorithm aims at
dealing with a class of problems as broad as possible. Notably,
it can effectively manage variable-size problem formulations
containing continuous, integers and nominal categorical vari-
ables.

SCGA is a general-purpose optimiser, able to deal with
problems from different fields and which may present dif-
ferent specific characteristics. For this reason, it consists of
a revised version of the popular GA [22]. In this work, the
flexibility of the SCGA is leveraged to incorporate the decision
about the HLDs topology in the optimisation loop. Contrary
to standard GAs where the chromosomes are encoded as
strings, so the variables are independent, SCGA encodes the
chromosome as trees allowing the definition of dependencies
between variables. This creates a hierarchy between variables.
For instance, the value of one variable can determine the
presence or absence of other variables, or even their per-
missible values. This fact is particularly useful in the cases
where the optimiser is controlling a configurational decision
where each possibility requires the specification of different
additional parameters. In the presented HLD optimisation, the
variable selecting the type of flap impacts on the number of
variables needed to specify the position and rotation of all the
elements of the flap. In light of these considerations, it is clear
that standard genetic operators cannot be adopted. SCGA,
makes use of genetic operators revised to handle hierarchical
problem definitions. The customised crossover and mutation
operators not only permit meaningful transformations that
respect the interdependence between variables, but permit
to take advantage of insights the user can have about the
problem [11], [13], [14]. The crossover operation consists of
swapping genes between two different chromosomes (parents)
to produce two new candidates (children). This operation
aims at merging the information contained in the parents into
the children. In this way, hopefully, the children inherit the
characteristics that originated the performance of their parents
and, combining them, they can reach even better performances.
The crossover implementation in SCGA takes advantage of the
hierarchy operating not only on the selected variables but also
on all the dependent variables. This operation is necessary
for creating meaningful solutions and helps to preserve the

overall information encapsulated by the selected variables
and the associated ones [11]. The mutation operator aims
at avoiding premature convergence and increase the diversity
in the population. The variables that undergo mutation are
perturbed from their current state. The strength of the per-
turbation determines the quantity of randomness introduced
and it should be varied during the optimisation considering
a variety of factors, i.e., the diversity in the population and
the type of variable [23], [24]. However, this is strongly
problem dependent and difficult to foresee without an in-depth
knowledge of the problem. The mutation operator employed
in SCGA implements a self-adaptive step size that aims to
adjust the strength of the perturbations autonomously [14].
The operation differs significantly depending on the type of
the variable undergoing the mutation. In case of continuous
or integer variables, the operator perturbs the value to change
with a small perturbation. A normal distribution generates the
perturbation for the continuous variables, while the difference
of two geometrical distributions is used for the integer ones
[25]. In the case of nominal categorical variables, since all the
possibilities are equally likely, the mutation operator simply
substitutes the current value with another one. Particularly,
this is re-sampled (uniform randomly) from the set of possible
values deprived of the current assumed (for details, please refer
to [25]).

IV. SCGA VALIDATION

The algorithm has been tested on a preliminary ‘toy’ prob-
lem to validate SCGA capabilities when solving airfoil opti-
misation problems. Indeed, although the potential of SCGA
was shown in [11], [13], [14], it has never been applied
to problems with characteristics similar to those of HLD
design. In particular, the purpose of this validation is to
check the capacity of finely tuning continuous variables. This
prerequisite is inescapable for the problem object of this study,
where the continuous variables are predominant.

Another goal of this preliminary study is to test the robust-
ness of the optimiser to different settings. Due to computa-
tional budget limitations, only one run of SCGA for the mixed-
variable optimisation is possible. Consequently, an accurate
algorithm parameter tuning is out of the reach of this study.
Nevertheless, some assessment work on a similar problem is
necessary to check the real performance of the algorithm.

A. Problem description

The ‘toy’ problem is the deterministic aerodynamic design
optimisation problem of an airfoil in incompressible flow con-
ditions and subject to geometric and aerodynamic constraints.
The objective is the improvement of airfoil performance,
minimise drag in this case, by modifying its shape. The
baseline airfoil is the NACA 2412 and the working conditions
are Mach = 0 and Reynolds = 5×105 at a fixed lift coefficient
Cl = 0.5. To obtain a fixed Cl, the angle of attack is adjusted.

The airfoil parametrisation is made by a linear combination
of an initial geometry (x0(s), y0(s)), and modification func-
tions yi(s). The airfoil shape is given by Eq. (1). The shape



is controlled by the design parameters wi and the scale factor
k used to scale the airfoil to the required thickness.

x(s) = x0(s), y(s) = k (y0(s) +
n

∑
t=1
wiyi) (1)

In this optimisation problem the number of design param-
eters is n = 20 in the range wi ∈ [−5,5]. Moreover, the
maximum thickness (t) of the airfoil is fixed to 12% of the
chord (c).

The quantity of interest J to be optimised is the drag
coefficient, Cd. The airfoil optimisation is subjected to some
geometrical and aerodynamic constraints. Specifically, the
constraints are: trailing edge angle (TEA) greater than or equal
to 13○, leading edge radius (LER) greater than or equal to
0.7% of the chord, and the boundary layer transition point on
the lower surface (XTRLOW ) of the airfoil cannot take place
at x/c greater than 0.95. Furthermore, an Error flag, if equal
to 1, will indicate the no convergence of the solver. Bearing
this in mind, the objective function is given by

J =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cd if Error = 0 & fulfilled constraints
p Cd if Error = 0 & no fulfilled constraints
p if Error = 1,

(2)

with p = 1000. Thus, the deterministic problem reads:

minJ . (3)

The drag coefficient is computed using XFOIL aerodynamic
analysis code [21]. It couples, in a fully interactive way, a high-
order panel method with an integral boundary layer code.

B. Experiment

Five different settings of SCGA have been tested on the ‘toy’
problem. The parameters varied are the population size and the
tournament size. Increasing the former helps to keep diversity
in the population and preventing from premature convergence.
The latter is the size of the pool of candidates tested during a
selection operation. This size heavily impacts on the diversity
in the mating pool for the crossover operator [22]. The smaller
the tournament size is, the higher the chances for a low-fitness
candidate to bequeath its information to candidates of the
next population. Therefore, the higher the tournament size, the
higher the pressure to select only the high-fitness candidates,
with the possible drawback of letting the population collapse
toward a local optimum. The values tested for the population
size are [5,10,20] and for the tournament size are [2,4].
However, the combination with population size equal to 5
and tournament size equal to 4 cannot be run because of
the implementation of the tournament selection in SCGA. The
number of maximum function evaluations has been set to 7000
to match the ones used in the reference run. The remaining
parameters of SCGA have been left to the default values [12].

The reference run is made using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [26] available in the
Adaptive Genetic algorithm (ADG) optimisation library2. This

2Optimiser developed at Centro Italiano Ricerche Aerospaziali (CIRA).

60.0

62.5

65.0

67.5

70.0

0 2000 4000 6000
Evaluations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
[e

−4
]

Algorithm:
ADG
SCGA−PopSize−5−tournSize−2
SCGA−PopSize−10−tournSize−4
SCGA−PopSize−20−tournSize−2
SCGA−PopSize−20−tournSize−4
SCGA−PopSize−10−tournSize−2
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library has been already tested for a bunch of aerodynamic
design optimisation problems facing multi-element airfoils [5],
[6]. It is a stochastic optimisation algorithm based on self-
adaptation of the covariance matrix of a multivariate normal
distribution. It is mainly used for design optimisation problems
up to a few hundreds of design variables. The parameters
for this optimisation algorithm are the maximum number of
allowed evaluations, equal to 7000, the population size (λ = 4),
and the initial standard deviation (σ = 0.1). For each setting
of SCGA, 50 independent runs have been performed to have
statistically significant results. All the tested instances perform
adequately well as shown in Fig. 6 and are resumed in Table I.
Particularly, the values of the best found solution of each
instance of SCGA are compared in terms of relative difference
between the minimum, the mean and the maximum value
found in the 50 independent runs with respect to the reference
value. Considering the differences between the two classes
of optimisers and that the initial population of the ADG was
built mutating the solution representing the nominal airfoil,
the output of the validation can be considered as positive.

TABLE I: Results of the optimisation runs.

Population Size Tournament Size Min diff [%] Mean diff [%] Max diff [%]

5 2 0,17 1,08 7,44
10 2 0,21 0,66 1,50
10 4 0,33 1,07 3,00
20 2 0,14 0,72 1,68
20 4 0,12 1,84 20,9

V. PROBLEM FORMULATION

One of the many challenges of mixed-discrete variable-size op-
timisation problems is to implement the appropriate mapping
between the design variables of the problem. This mapping
is described in Section V-A. After finding a solution for a
proper connection between the variables, the High-Lift Device
optimisation design problem can be set up (Section V-B).

A. Optimisation design variables

The HLD optimisation degrees of freedom are the type of
flap and the settings of each flap component (position in the
2-dimensional space and rotation). The settings of the slat



are also considered. The optimiser receives this information
encoded as a set of design variables. The SCGA allows the
definition of hierarchical problem formulations. In this prob-
lem, the top of the hierarchy is composed by four independent
variables: one for indicating the flap typology (SF , DS1,
DS2, DS3 and TS) and three variables (∆θS ,∆XS ,∆YS)
indicating the settings of the slat. Specifically, they indicate
the deviance of a proposed position from the nominal one. The
second level of the hierarchy is composed of all the variables
determining the flap’s settings. They are all dependent on the
flap typology variable, and its value determines their presence.
They are three in the case of the single flap, six in the case
of the double-slotted flap (whatever the type), and nine in the
case of the triple slotted flap. A graphical representation of
the variables hierarchy is shown in Fig. 7. The description of
each variable, its number for identifying in the hierarchy, its
type, the possible value that it can assume (as possibility or
bounds), and the dependency of any variables to it are given
in Table II.

FΔ𝑋𝑆
′ Δ𝑌𝑆

′ Δ𝜃𝑆
′Level 1

Δ𝑋1
′ Δ𝑌1

′ Δ𝜃1
′

Δ𝑋2
′ Δ𝑌2

′ Δ𝜃2
′

Δ𝑋3
′ Δ𝑌3

′ Δ𝜃3
′

Level 2

Fig. 7: Variables hierarchy. Level 1 is constituted by the
independent variables (referring to Table II, variables 1-4).
Level 2 is made by all the remaining variables dependent by
variable 1. Solid lines indicate variables that are present in all
the candidates. Whereas, dashed lines indicate variables that
can also not be present.

Concerning the encoding of the variables indicating the
settings of the flap elements, the most straightforward and

TABLE II: Problem formulation.

Description N Variable type Possibilities Dep

Flap type 1 Nominal discrete [SF,DS1,DS2 ,
DS3, TS]

[5 − 13]

Description N Variable type Lower Bound Upper Bound Dep
∆θ

′

S 2 Continuous −15 15 –
∆X

′

S 3 Continuous −0.1 0.1 –
∆Y

′

S 4 Continuous −0.025 0.025 –
∆θ

′

1 5 Continuous −15 15 –
∆X

′

1 6 Continuous −0.2 0.2 –
∆Y

′

1 7 Continuous −0.05 0.05 –
∆θ

′

2 8 Continuous −15 15 –
∆X

′

2 9 Continuous −0.1 0.1 –
∆Y

′

2 10 Continuous −0.025 0.025 –
∆θ

′

3 11 Continuous −15 15 –
∆X

′

3 12 Continuous −0.1 0.1 –
∆Y

′

3 13 Continuous −0.025 0.025 –
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Fig. 8: Examples of the mutation operator adopting the naive
( ) and the proposed ( ) formulations.

naive problem formulation would be to use the same approach
used for encoding the settings of the slat. However, this would
imply significant difficulties from the optimisation perspective.
For example, let us suppose that one candidate undergoes the
mutation operator and only the variable defining the type of
the flap is mutated. A desirable outcome would be an HLD
with different elements but similar overall topology. However,
the example of this transformation is given in Fig. 8a. Here,
two possible outcomes of the mutation operating on the flap
type of a solution adopting a double slotted DS2 flap are
shown. As one can see, by using naive problem formulation,
the mutation of one single variable would result in an un-
wanted considerable change in the HLD overall topology. The
resulting topology would even be unfeasible. Another example
is depicted in Fig. 8b. In this case, the variable determining
the x-coordinate of the first flap element is mutated. If the
naive problem formulation is used, the second component
of the resulting flap completely loses its alignment with the
first component. Therefore, the naive problem formulation
may lead very often to undesirable outcomes because a small
variable perturbation can induce considerable topology trans-
formations.

In light of these considerations, another problem formu-
lation has been proposed. Its backbone is to make the flap
elements be logically connected to the preceding elements.
The absolute difference between the proposed solutions and
the nominal solutions is described as follows:

∆X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆XS = ∆X
′

S

∆YS = ∆Y
′

S

∆θS = ∆θ
′

S⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆Xi = ∆X
′

i

∆Yi = ∆Y
′

i

∆θi = ∆θ
′

i

if i = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆Xi = ∆X
′

i +∆X
′

i−1

+RXi−1 −XLE
i

∆Yi = ∆Y
′

i +∆Y
′

i−1

+RYi−1 − Y LE
i

∆θi = ∆θ
′

i−1 +∆θ
′

i

if i ≠ 1.

(4)



Where RXi−1 and RYi−1 are the translation due to the
rotation of the previous element:

[RXi−1

RYi−1
] = [X

LE
i−1

Y LE
i−1

]+
⎡⎢⎢⎢⎢⎣

cos(∆θ′i−1) − sin(∆θ′i−1)
sin(∆θ′i−1) cos(∆θ′i−1)

⎤⎥⎥⎥⎥⎦
[dX
dY

] (5)

and dX and dY are the distance between the leading edges of
the i-th and i − 1-th elements along the two axes:

dX =XLE
i−1 −XLE

i

dY = Y LE
i−1 − Y LE

i .
(6)

From Fig. 8 the impact of this new problem formulation on
the mutation operations can be appreciated. In the example
shown in Fig. 8a, if the proposed formulation is used, the
resulting airfoil presents a fairly similar overall settings to
the original one. Therefore, the changes are only due to the
different type of flap adopted. In the example shown in Fig. 8b,
the relative alignment between the flap’s elements is preserved.
The change in the topology is accompanied by a translation
along the x-axis of the HLD as a whole.

B. High-Lift Device optimisation problem
A deterministic mixed variable-size aerodynamic design

optimisation problem of a multi-element airfoil is solved. The
baseline configurations are those shown in Section II-E and the
working conditions are Mach = 0.2 and Reynolds = 5×106 at a
fixed angle of attack α = 21.29○. The goal of the optimisation
is the improvement of the multi-element airfoil performance,
maximise lift coefficient, by selecting the most suitable flap
typology and the settings (position and rotation) for the flap
elements, as for the slat.

The quantity of interest to be optimised is the lift coefficient,
Cl. However, the failure of the grid generation or the non-
convergence of the CFD solver have to be treated. This latter
is considered to happen when the difference between the
up-to-date Cl and the mean lift coefficient in the last 1000
iterations of the CFD solver (ClAV G

) is lower or equal to
0.005 (∣Cl −ClAV G

∣ ≤ 0.005). CFD analysis of configurations
close to stall or even post-stall is notoriously a complex task,
and the results present a high margin of uncertainty even
in the case of fully converged solutions. Consequently, it
is not wise and appropriate to use CFD results that have
not reached full convergence because they would introduce
an unacceptable margin of uncertainty and imprecision. The
aerodynamic computational chain returns an indication of the
occurrence of one of these errors as an error flag. This flag
is 1 in case of error, 0 in case of a successful evaluation.
Only successful candidates can return a correct prediction
of Cl. Therefore, the objective function is reformulated by
introducing a step penalty as follows:

Q(∆X) =
⎧⎪⎪⎨⎪⎪⎩

Cl if Error = 0

p if Error = 1,
(7)

with p = −1000 (to be noted that it is a maximisation problem
and values ∼ 1 are expected). Hence, the optimisation problem
reads:

maxQ(∆X) (8)

Finally, the used optimiser algorithm is SCGA. A list of
the algorithm parameters is given in Table III. In Table III
size is the population size, mutRate is the mutation rate, and
probability is the probability of a design variable to be selected
by the operators. The remaining parameters of SCGA have
been left as default [12]. The optimisation stopped when the
available computational budget was exhausted. In particular,
this happened after 86 iterations.

TABLE III: SCGA parameters

size tournamentSize maxEvaluations elitism mutRate probability
19 3 1550 1 0.05 [3,1,...,1]/16

VI. RESULTS

In this section, the most notable results are analysed. Firstly,
the convergence history of the best solution found is com-
mented. From Fig. 9, it can be seen that, starting from a ran-
domly generated population, only 355 evaluations were needed
to find an HLD topology which performs better than the 30P-
30N airfoil, and 505 to improve DS1 baseline airfoil. The op-
timum airfoil is a double-slotted of type 1 (DS1). Specifically,
the airfoil type DS1 prevailed as the best configuration after a
short initial phase of exploration. The evolution of the presence
of the different flap types in the populations is represented
in Fig. 10. Here, it is shown that all the configurations are fairly
equally represented in the initial population. Later, the good
performance of candidates having the flap type DS1 makes
that a significant part of the candidates assumes this airfoil
type. However, the other configurations never disappear, thus
the effect of the configurational variable is investigated during
all the optimisation. Moreover, it must be specified that 41%
of the evaluations returned Error = 1. The majority of these
cases were due to the no convergence of the CFD analysis.
This behaviour is typical when studying near stall conditions.
Although, the failure rate was high, the optimiser was able
to find a configuration improving the airfoil performance at
the studied working conditions. This evidences the potential
of SCGA.

In addition, Fig. 11 shows the history of each variable of
the best element in each population. If variables ∆X

′

3, ∆X
′
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Fig. 9: Best found objective function history. Airfoil types:
DS1 (●), TS (∎), and DS3 (▲). Lift coefficient of the baseline
airfoil of type DS1 ( ) and Cl of the 30P-30N airfoil ( ).
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or ∆θ
′

3 are missing means that the best solution is not a triple
slotted configuration.
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Fig. 11: Best found history. Variables enumeration follow the
one given in Table II.

Moreover, it is appreciated that part of the optimum values
were rapidly identified, others, i.e. ∆X

′

1 and ∆θ
′

2, changed
significantly during the whole optimisation.

The optimal multi-element airfoil is depicted in Fig. 12
and is compared with the baseline double-slotted airfoil, of
type one (DS1), and the starting airfoil, the 30P-30N airfoil.
The optimised airfoil presents an 8.2% increase in Cl com-

x/c

y
/c
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0
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Fig. 12: Airfoil comparison between the 30P-30N ( ), the
baseline airfoil of the double slotted flap of type one (DS1)
( ), and the optimal airfoil ( ).

pared to the first, and a 16.3% to the second, considering
the working conditions of the optimisation design problem.
Moreover, the aerodynamic performance of the optimal airfoil
must be contrasted to the baseline airfoils aforementioned.
Thus, the polars of the three airfoils are given in Fig. 13a
and Fig. 13b. The comparison among the three configurations
shows a clear improvement, in terms of lift coefficient, for
the optimal configuration. Also, the optimised airfoil reaches
the stall condition at a lower angle of attack. Notably, the
optimal airfoil shows an abrupt stall type. This behaviour could
compromise the aircraft performances in landing conditions.
The landing design condition should, therefore, be explicitly
introduced in the optimisation problem to overcome this prob-
lem. Indeed, the present work is mainly about the proposed
optimisation methodology, while this additional condition will
be considered in further developments using a multi-objective
or a multi-point optimisation approach.
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Fig. 13: Comparison of the aerodynamic performance between
the 30P-30N airfoil ( ∎ ), the baseline DS1 airfoil ( ● ),
and the optimal configuration ( ▲ ).

Finally, in Fig. 13b, it is appreciated that the drag coefficient
is penalised. However, this was an expected result because this
performance indicator has not been considered in objective
function.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a novel method to improve classical
design strategies by including configurational decisions in an
automated optimisation tool. The integration of these deci-
sions, usually taken a-priori based on previous knowledge,
could represent a step forward for the multidisciplinary design
optimisation field. The potential of the method has been shown
in an High-Lift Device design problem, an application that



presents many difficulties itself. Among the others, the con-
siderable computational cost and the demanding constraints
of the design problem represented a challenge. Furthermore,
it was quite challenging to obtain an adequately converged
Computational Fluid Dynamic solution for the majority of
population elements due to the near-stall conditions at which
the airfoil had to operate. An automatic estimation routine
consisting of an aerodynamic computational chain based on
the SU2 solver has been adopted to cope with these prob-
lems. This procedure has been coupled with the Structured-
Chromosome Genetic Algorithm for optimising the design of
an HLD equipped with slat and flap devices based on the
McDonnell Douglas 30P-30N airfoil. In particular, the goal of
the optimisation was the identification of the typology, for the
multi-element airfoil, which maximises the lift coefficient. The
results of the optimisation show that, given an appropriated
problem formulation, the optimiser was able to improve the
reference performance by 16.3% in a very limited number
of function evaluations. Nevertheless, the optimiser well per-
formed, although a significant amount of failed evaluations.

As future outlook, many improvements can be made. As
an optimisation standpoint, different more sophisticated con-
straint handling techniques can be adopted. Additionally, better
tuning of CFD analysis stopping and convergence criteria may
lead to an increasing number of successful evaluations. In
terms of problem formulation, also the decision about which
devices (flap and slat) to employ might be delegated to the
optimiser. Moreover, the variables describing the settings of
each element might be gathered as in [13] to take advantage
of the characteristics of the SCGA’s operators. As a further
step, the shape of each element might be part of the de-
sign problem. This would lead to a significant increase in
the number of variables and, consequently, of the problem
complexity. Furthermore, the optimisation could consider a
higher number of performance indicators as the weight or the
structural complexity. Besides, a control on the drag coefficient
can be added to satisfy the constraints during take-off and
climbing phases. Finally, for a more rigorous assessment of
the advantages offered by the presented approach, comparisons
with traditional design strategies and optimisers need to be
done.
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