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Abstract—Fitness landscapes are a useful concept to study the
dynamics of meta-heuristics. In the last two decades, they have
been applied with success to estimate the optimization power
of several types of evolutionary algorithms, including genetic
algorithms and genetic programming. However, so far they have
never been used to study the performance of machine learning
algorithms on unseen data, and they have never been applied
to neuroevolution. This paper aims at filling both these gaps,
applying for the first time fitness landscapes to neuroevolution
and using them to infer useful information about the predictive
ability of the method. More specifically, we use a grammar-based
approach to generate convolutional neural networks, and we
study the dynamics of three different mutations to evolve them.
To characterize fitness landscapes, we study autocorrelation and
entropic measure of ruggedness. The results show that these mea-
sures are appropriate for estimating both the optimization power
and the generalization ability of the considered neuroevolution
configurations.

Index Terms—Fitness Landscapes, Neuroevolution, Convolu-
tional Neural Networks, Autocorrelation, Entropic Measure of
Ruggedness.

I. INTRODUCTION

Fitness landscapes (FLs) [1], [2] have been studied for
many years to characterize the dynamics of meta-heuristics
in optimization. In particular, several measures have been
introduced to capture some important characteristics of FLs,
that can give useful information about the difficulty of opti-
mization problems. Among those measures, autocorrelation [3]
and entropic measure of ruggedness (EMR) [4]–[6] have been
intensively studied, and they revealed useful indicators of the
ruggedness of the FLs induced by several variants of local
search meta-heuristics and evolutionary algorithms (EAs) [7].
However, to the best of our knowledge, despite existing few
works on Fls applied to standard neural networks [8], [9],
no measure related to FLs has ever been applied so far to
study the performance of machine learning (ML) algorithms
on unseen data, and none of those measures has ever been
used to characterize the functioning of neuroevolution. In this
work, for the first time, we adapt the well-known definitions of
autocorrelation and EMR to neuroevolution, and we use those
measures not only to study the optimization effectiveness of
various configurations of the method, but also to characterize
their performance on unseen data.

Neuroevolution is a branch of evolutionary computation
that has been used for almost three decades, with application
in multiple areas such as supervised classification tasks [10]
and agent building [11]. In neuroevolution, an EA is used
to evolve, for instance, weights, topologies and/or hyper-
parameters of artificial neural networks. In this study, we focus
on the evolution of convolutional neural networks (CNNs), not
only because they are arguably one of the most popular deep
neural network architectures, but also because they have a vast
amount of tunable parameters, which makes CNNs appropriate
to test the capabilities of neuroevolution. We use our own
grammar-based neuroevolution approach, inspired by existing
systems, also introduced here.

This work is aimed at testing the reliability of autocorrela-
tion and EMR in predicting the performance of neuroevolution
of CNNs on training and unseen data. For achieving this
task, we consider three different types of mutations and
four different multiclass classification problems, with different
degrees of difficulty. For each type of mutation, and for each
one of the studied problems, we calculate the value of these
measures and we compare them to the results obtained by
actual simulations of our neuroevolution system, to test the
reliability of the measures. We consider this work as the first
proof of concept in a wider study, aimed at establishing the use
of FL measures as indicators to characterize neuroevolution
of CNNs. If successful, this study will be extremely impactful.
In fact, CNNs usually have a slow learning phase, which
makes neuroevolution a very intensive computational process,
since it requires the evaluation of several CNNs in each
generation. For this reason, the task of executing simulations
to choose among different types of genetic operators, and/or
among several possible parameter settings, is generally pro-
hibitively expensive. On the other hand, the calculation of
measures such as the autocorrelation and the EMR is much
faster. So, these measures could help us find appropriate
neuroevolution configurations much more efficiently.

The paper is organized as follows: in Section II, we intro-
duce the concept of FL and the used measures. Section III
introduces neuroevolution and presents our grammar-based
approach to evolve CNNs. In Section IV, we present our
experimental study, first discussing the used test problems and
the experimental settings, and then presenting the obtained
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results. Finally, Section V concludes the paper and suggests
ideas for future research.

II. FITNESS LANDSCAPES

Using a landscape metaphor to gain insight about the
workings of a complex system originates with the work
of Wright on genetics [1]. Probably, the simplest definition
of FL is the following one: a FL is a plot where the points
in the horizontal direction represent the different individual
genotypes in a search space and the points in the vertical
direction represent the fitness of each one of these individu-
als [12]. If genotypes can be visualized in two dimensions,
the plot can be seen as a three-dimensional “map”, which
may contain peaks and valleys. The task of finding the best
solution to the problem is equivalent to finding the highest
peak (for maximization problems) or the lowest valley (for
minimization). The problem solver is seen as a short-sighted
explorer searching for those optimal spots. Crucial to the
concept of FL is that solutions should be arranged in a way
that is consistent with a given neighborhood relationship.
Indeed, a FL is completely identified by the triple (S, f,N),
where S is the set of all admissible solutions (the search
space), f is the fitness function, and N is the neighborhood.
Generally, the neighborhood N should have a relationship
with the transformation (mutation) operator used to explore the
search space. A typical example is to consider as neighbors
two solutions a and b if and only if b can be obtained by
applying mutation to a.

The FL metaphor can be helpful to understand the difficulty
of a problem, i.e., the ability of a searcher to find the optimal
solution for that problem. However, in practical situations, FLs
are impossible to visualize, both because of the vast size of the
search space S and because of the multi-dimensionality of the
neighborhood N . For this reason, researchers have introduced
a set of mathematical measures, able to capture some charac-
teristics of FLs and express them with a single number [13].
Although none of these measures is capable of expressing
completely the vast amount of information that characterize
a FL, some of them revealed to be reliable indicators of
the difficulty of problems, for instance: autocorrelation [3],
entropic measure of ruggedness (EMR) [4]–[6], density of
states [14], fitness-distance correlation [13], [15], length of
adaptive walks [2], basins of attraction size [16], plus various
measures based of the concepts of fitness clouds [13] and
local optima networks [17]. In this paper, we have decided
to investigate autocorrelation and EMR because, among the
previously mentioned measures, they are probably the most
simple ones, and also the ones that can be calculated more
efficiently. For this reason, they seem appropriate for studying
a computationally intensive method such as neuroevolution
of CNNs. Autocorrelation and EMR are presented next.

A. Autocorrelation

The autocorrelation coefficient is used to measure the
ruggedness of a FL [3]. It is applied over a series of fitness
values, determined by a walk on the landscape. A walk on

a FL is a sequence of solutions (s0, s1, ..., sn), such that for
each t = 1, 2, ..., n, st is a neighbor of st−1 or, in other words,
st is obtained by applying mutation to st−1. For walks of a
finite length n, autocorrelation with a step k is defined as:

ρ̂(k) =

∑n−k
t=1 (f(st)− f̄)(f(st+k)− f̄)√∑n

t=1(f(st)− f̄)2
√∑n

t=1(f(st+k)− f̄)2
,

where f̄ = 1
n

∑n
t=1 f(st).

Given the huge size of the neuroevolution search space,
and in the attempt to generate walks that are, as much as
possible, representatives of the portions of the search space
actually explored by the evolutionary algorithm, in this work
we have decided to calculate autocorrelation using selective
walks [13]. In selective walks, for each t = 1, 2, ..., n, st is
a selected solution from the neighborhood of st−1. To apply
selection pressure to the neighbors, tournament selection is
used; in other words, st is the best solution (i.e., the one with
the best fitness on the training set) in a sample of m randomly
generated neighbors of st−1. We study the autocorrelation both
on the training and on the test set, by using the same selective
walk. In both cases selection acts using only training data, but
in the former case the individuals are evaluated on the training
set, while in the latter case they are evaluated on the test set.

Because of the large complexity of neuroevolution, and
given the relatively short length of the walks that we are able
to generate with the available computational resources1 (n =
30 in our experiments), we have decided to calculate ρ̂(k)
several times (10 in our experiments), using independent
selective walks, and to report boxplots of the results ob-
tained over these different walks. In order to broadly clas-
sify the ruggedness of the landscape, we have adopted the
heuristic threshold suggested by Jones for fitness-distance
correlation [15]: ρ̂(k) > 0.15 will correspond to a smooth
landscape (and thus, in principle, an easy problem), while
ρ̂(k) < 0.15 will correspond to a hard landscape. To visualize
the results, the threshold will be shown as an horizontal line
in the same diagram as the boxplots of the autocorrelation,
and the position of the box compared to the threshold will
allow us to classify problems as easy or hard. The situation in
which the boxplot lays across the threshold (i.e., the case in
which ρ̂(k) ≈ 0.15) will be considered as an uncertain case, in
which predicting the hardness of the problem is difficult. One
of the typical situations in which we have an uncertain case is
when several different neuroevolution runs give significantly
different outcomes (for instance, half of the runs converge
towards good quality solutions and the other half stagnate in
bad quality ones). Finally, several values of the step k are
compared (k = 1, 2, 3, 4 in our experiments).

B. Entropic Measure of Ruggedness

The EMR is an indicator of the relationship between rugged-
ness and neutrality. In the context of Fitness Landscapes, we

1Our experiments were performed on a gtx 970 and on a gtx 2070.



define neutrality, or neutral degree, as the capacity of the
algorithm to generate solutions with different fitness values.
If multiple solutions have different neighbors with the same
fitness, the landscape is deemed to have a high degree of
neutrality. It was introduced by Vassilev [4]–[6] and is defined
as follows: assuming that a walk of length n, performed
on a landscape, generates a time series of fitness values
{ft}nt=0, that time series can be represented as a string S(ε) =
{x1x2...xn}, where, for each i = 1, 2, ..., n, xi ∈ {1̄, 0, 1}. For
each i = 1, 2, ..., n, xi ∈ S(ε) is obtained using the following
function:

xi = Ψft(i, ε) =


1̄, if fi − fi−1 < −ε
0, if |fi − fi−1| ≤ −ε
1, if fi − fi−1 > −ε

where ε is a real number that determines the accuracy of
the calculation of S(ε), and increasing this value results
in increasing the neutrality of the landscape. The smallest
possible ε for which the landscape becomes flat is called the
information stability, and is represented by ε∗. Using S(ε),
the EMR is defined as follows [4]:

H(ε) = −
∑
p 6=q

P[pq] log6 P[pq],

where p and q are elements from the set {1̄, 0, 1}, and
P[pq] =

n[pq]

n , where n[pq] is the number of pq sub-blocks
in S(ε) and n is the total number of sub-blocks. The output
of H(ε) is a value in the [0, 1] range, and it represents an
estimate of the variety of fitness values in the walk, with
a higher value meaning a larger variety and thus a more
rugged landscape. In this definition, for each walk that is
performed, H(ε) is calculated for multiple ε values, usually
{0, ε∗/128, ε∗/64, ε∗/32, ε∗/16, ε∗/8, ε∗/4, ε∗/2, ε∗}, and

then the mean of H(ε) (H̄(ε)) over all performed walks
is calculated for each value of ε. In this work, we employ
the adaptations suggested by Malan [18], aimed at reducing
the characterization of the landscape to a single scalar. To
characterise the ruggedness of a function f , the following
value is proposed:

Rf = max
∀ε∈[0,ε∗]

H(ε)

To approximate the theoretical value of Rf , the maximum of
H̄(ε) is calculated for all ε values.

III. NEUROEVOLUTION

Neuroevolution is usually employed to evolve the topology,
weights, parameters and/or learning strategies of artificial
neural networks. Some of the most well known neuroevolution
systems include EPNet [19], NEAT [11], EANT [20], and
hyperNEAT [21]. Most recently, works have appeared that
apply neuroevolution to other types of neural networks, such as
CNNs [22]–[24]. In this section we describe how we represent
networks using a grammar-based approach, and we discuss the
employed genetic operations.

A. Grammar-Based Neuroevolution

We have decided to use a grammar-based approach because
of its modularity and flexibility. The employed grammar is
reported in Fig. 1. It contains all the possible values for
the parameters of each available layer. This way, adding
and removing layers or changing their parameters is simple
and requires minimal changes. Using this grammar, we are

Conv :: filters |32,64,128,256|
kernel size |2,3,4,5|
stride |1,2,3|
activation |relu, elu, sigmoid|
use bias |true, false|

Pool :: type |Max, Avg|
pool size |2,3,4,5|
stride |1,2,3|

Dense :: units |8,16,32,64,128,256,512|
activation |relu, elu, sigmoid|
use bias |true, false|

Dropout :: rate [0.0 → 0.7]
Optimizer :: learning rate |0.01, 0.001, 0.0001, 0.00001|

decay |0.01, 0.001, 0.0001, 0.00001|
momentum |0.99, 0.9, 0.5, 0.1|
nesterov |true, false|

Fig. 1: Grammar used to evolve the CNNs.

discretizing the range of the possible values that each param-
eter can take. This greatly reduces the search space, while
keeping the quality of the solutions under control, as in most
cases, intermediate values can have little to no significant
influence on the effectiveness of the solutions, as reported
in [10]. In our representation, genotypes are composed by
two different sections, S1 and S2, that are connected using
the so called Flatten gene. The Flatten gene implements the
conversion (i.e., the “flattening”) of multidimensional features
matrixes from the convolutional layers into a one dimensional
array that is fed to the following fully connected layer. On S1

we have genes that encode the layers that deal with feature
extraction from the images, convolutional and pooling layers,
and on S2 we have genes that encode the classification
and pruning parts of the network, dense and dropout layers.
Separating the network into these two segments helps make
the implementation more modular and expandable, provided
that when adding or removing new layers will only affect
interactions within their segment. Besides the flatten layer, the
only other layer that is the same for all possible individuals
is the output layer, which is a fully connected (i.e., dense)
layer with softmax activation and a number of units equal to
the number of classes to be predicted. The genetic operators
cannot modify this layer, except for the bias parameter.

Before evaluation, a genotype is mapped into a phenotype,
that is a neural network itself. Evaluation involves training the
network and calculating its performance on the given data.
During the evolutionary process, we use the loss value on
the training set as a fitness function to evaluate the networks.
Regarding the optimizer used for training the networks, we
have chosen Stochastic Gradient Descent (SGD) [25]. Also,
since we are working with multiclass classification problems



that are not one-hot encoded, we used Sparse Categorical
Cross-Entropy as a loss function, which motivates the need
to have the fixed number of neurons and activation function
in the output layer. We also measure the accuracy and loss in
a separate test set in order to study the generalization ability.

Due to the difficulty of defining a crossover-based neigh-
borhood for studying FLs [26], we consider only mutation.
Having in mind the vast amount of possible mutation choices,
we have decided to restrict our study to three different types
of operators:
• Topology mutations. Mutations that add or delete a gene,

except for the flatten gene, changing the topology of the
genotype and, consequently, the one of the phenotype.

• Parameter mutations. Mutations that change the parame-
ters encoded in a gene. They cover all parameters of all
gene types, excluding the flatten gene.

• Learning mutations. Mutations that change the parameters
related to the learning process, which are encoded in the
Optimizer gene.

IV. EXPERIMENTAL STUDY

A. Datasets and Experimental Settings

Table I describes the main characteristics of the datasets
used as test cases in our experiments. The partition into
training and test set is made randomly, and it is different at
each run. For all datasets, a simple image scale adjustment
was done, setting pixel values in the [0, 1] range. No further
data pre-processing or image augmentation was applied to the
datasets. The MNIST dataset consists in a set of gray scale
images of handwritten digits from 0 to 9 [27]. Fashion-MNIST
(FMNIST) is similar to MNIST, but with clothing articles
instead of digits [28]. CIFAR10 contains RGB pictures of
10 different types of real world objects [29]. Finally, SVHN
contains RGB pictures of house numbers, containing digits
from 0 to 9 [30]. For each one of these four datasets and for
each one of the three studied mutation operators, we perform
selective walks (that allow us to have all the needed infor-
mation to calculate the autocorrelation and the EMR) and we
execute the neuroevolution. From now on, we will use the term
configuration to indicate an experiment in which a particular
type of mutation was used on a particular dataset. For each
configuration, we perform 10 independent selective walks and
10 independent neuroevolution runs. All neuroevolution runs
are performed starting with a randomly initialized population
of individuals, and all the selective walks are constructed
starting with a randomly generated individual.

To determine the values of the main parameters (e.g.,
population size and number of generations for neuroevolution,
length of the walk and number of neighbors for selective
walks) we have performed some benchmark tests with multiple
values, and selected ones that allowed us to obtain results in
“reasonable” time2 with our available computational resources.
The employed parameter values are reported in Table II. The
first two columns contain the parameters used to build the

2On average, 5 hours per run.

TABLE I: Number of training and test observations, and
number of classes of each dataset.

Training set Test set Classes
MNIST 60000 10000 10

FMNIST 60000 10000 10
CIFAR10 50000 10000 10

SVHN 73257 26032 10

TABLE II: Parameter values used in our experiments.

Selective walk Neuroevolution Learning
Length 30 Population size 10 Epochs 8
# Neighbors 3 # Generations 20 Batch 64

Tournament size 2
Mutation rate 1
Crossover rate 0
No elitism

selective walks and the parameters of the neuroevolution,
respectively. One should keep in mind that, in order to evaluate
all the neural networks in the population, all the networks
need to go through a learning phase at each generation of
the evolutionary process. So, the third column reports the
values used by each one of those networks for learning.
When decoding the genotype into the phenotype, the weights
of the network are randomly initialized using the Xavier
initialization.

B. Experimental Results

We begin by analyzing the ability of autocorrelation to
characterize training and test performance of neuroevolution
of CNNs. Fig. 2 reports the evolution of the loss and the
autocorrelation for the MNIST problem. The first line of plots
reports the evolution of the loss against generations for the
three studied mutation operators. Each plot in the first line
is partitioned into two halves: the leftmost one reports the
evolution of the training loss of the best individual, while the
rightmost one reports the loss of the same individual, evaluated
on the unseen test set. Each curve in these plots reports the
results of one neuroevolution run. The second line contains
the boxplots of the autocorrelation values, calculated over 10
independent selective walks, both on the training and on the
test set. Each column of plots reports the results for a different
type of mutation, allowing us to easily compare the outcome
of the neuroevolution and the one of the autocorrelation for
the different configurations.

As we can observe from plots (a) and (b) of Fig. 2, when
we employ learning mutation and parameters mutation, the
MNIST problem is easy to solve, both on training and test
set. In fact, except for the outlier runs in plot (a), all the runs
either approximate the ideal value of loss equal to zero, or tend
towards it. Now, looking at plots (d) and (e), it is possible to
observe that the autocorrelation is able to capture the fact that
the problem is easy. In fact, in both cases, practically the whole
autocorrelation box stands above (and the medians never go
below) the 0.15 threshold. When the topology mutation is
used, the situation changes: the number of runs in which the



0 20
Generations

0.0

0.5

1.0

1.5

2.0
Lo

ss

0 20
Generations

(a) Learning

0 20
Generations

0.0

0.5

1.0

1.5

2.0

Lo
ss

0 20
Generations

(b) Parameters

0 20
Generations

0.0

0.5

1.0

1.5

2.0

Lo
ss

0 20
Generations

(c) Topology

� � � �
���������

�����

�����

�����

�����

����

����

����

����

����


�
��

��
���

�
���

��
�

��
�

����
����
����������	�����

(d) Learning

� � � �
���������

�����

�����

�����

�����

����

����

����

����

����


�
��

��
���

�
���

��
�

��
�

����
����
����������	�����

(e) Parameters

� � � �
���������

�����

�����

�����

�����

����

����

����

����

����


�
��

��
���

�
���

��
�

��
�

����
����
����������	�����

(f) Topology

Fig. 2: MNIST dataset. Plots (a), (b) and (c): neuroevolution results; plots (d), (e) and (f): autocorrelation results. Plots (a), (b) and (c)
report the evolution of the best fitness in the population at each generation (one curve for each performed neuroevolution run). Each plot
is partitioned into two subfigures: training loss on the left and test loss on the right. Plots (d), (e) and (f) report the boxplots of the
autocorrelation, calculated over 10 independent selective walks.

evolution does not have a regular trend is larger. This may
not be obvious by looking at plot (c) because of the scale
of the y axis, but the lines are now much more rugged than
they were for the other two cases. The problem is now harder
than it was, and as we can see in plot (f), the autocorrelation
catches this difficulty. In particular, we can observe that when
the step is equal to 4, the whole autocorrelation boxes are
below the threshold. The partial conclusion that we can draw
for the MNIST dataset is that learning and parameter mutations
are more effective operators than topology mutations, and
this is correctly predicted by the autocorrelation. Furthermore,
we can observe that the neuroevolution results obtained on
the test set are very similar to the ones on the training set,
practically for all the runs we have performed. Also this feature
is captured by the autocorrelation, since the training and test
boxes are very similar to each other for practically all the
configurations.

Now we consider the results obtained for the FMNIST
dataset, reported in Fig. 3. Describing the results for this
dataset is straightforward: observing the neuroevolution re-
sults, we can see that for the three configurations the problems
are easy, both on training and test set. In fact, all the curves
are steadily decreasing and/or close to zero. Observing the
scale on the left part of the plots, we can also observe that
when topology mutation is used (plot (c)), the problem is
slightly harder than when the other mutations are used, since
the achieved values of the loss are generally higher. All this is

correctly predicted by the autocorrelation, given that the boxes
are above the threshold for all the configurations, and, in the
case of the topology mutation (plot (f)), they are slightly lower
than in the other cases. Last but not least, also in this case
training and test evolution of loss are very similar between
each other, and this fact finds a precise correspondence in
the autocorrelation results, given that the training boxes are
generally very similar to the test boxes. All in all, we can
conclude that also for the FMNIST dataset, autocorrelation is
a reliable indicator of problem hardness.

The results for the CIFAR10 dataset are reported in Fig. 4.
Observing the neuroevolution results, we can say that when the
learning mutation is used, the problem is easy (almost all the
loss curves have a smooth decreasing trend, except for some
outliers on the test), when the parameters mutation is used
the problem is uncertain (in some runs the loss curves have
a decreasing trend, while in others they have an increasing
trend), and when the topology mutation is used, the problem
is hard (almost all the loss curves have an increasing trend).
Observing the autocorrelation results, we find a reasonable
correspondence. For the learning mutation all the boxes are
clearly above the threshold, for the parameters mutation the
boxes are not as high as for the learning mutation, beginning
to cross the threshold with steps 3 and 4, and finally for the
topology mutation the boxes are even lower, with the medians
below the threshold for steps 3 and 4, and more than half
the height of the boxes also below the threshold for step 4.
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(f) Topology

Fig. 3: FMNIST dataset. The organization of the plots is analogous to Fig. 2.
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Fig. 4: CIFAR10 dataset. The organization of the plots is analogous to Fig. 2.

As already observed in plot (f) of Fig. 3, longer steps seem
to be better indicators when the autocorrelation is applied
to hard problems. Another observation for CIFAR10 is that
the evolution of the loss curves for the learning mutation

(plot (a)) clearly shows that there is a much larger diversity of
behaviors on the test set than on the training set. This fact also
finds a correspondence in the autocorrelation results (plot (d)),
given that the test boxes are taller than the training boxes, in
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Fig. 5: SVHN dataset. The organization of the plots is analogous to Fig. 2.

particular for step 4.
As a last test case for autocorrelation, we now analyse the

results obtained on the SVHN dataset, reported in Fig. 5.
In this case, the plots of the loss evolution indicate that the
problem is uncertain when learning mutation is used (given
that approximately half of the curves have a decreasing trend,
while the other half have an oscillating trend), easy when
parameters mutation is used (with the majority of the curves
having a decreasing trend) and hard when topology mutation
is used (with most curves exhibiting an oscillatory behaviour,
which indicates poor optimization ability). Also in this case,
autocorrelation is a reasonable indicator of problem difficulty.
For learning mutation the boxes are crossing the threshold
for steps 3 and 4, for parameters mutation they are above
the threshold, and for topology mutation they are almost
completely below the threshold for steps 3 and 4. The medians
are lower and the dispersion of values is larger for step 4,
which reflects well the neuroevolution behavior observed in
plot (c) (unstable and often returning to high values of the
loss). The highest step length is once again the most reliable.

Finally, we study the results of the EMR, reported in Fig. 6.
Each plot reports the results for one mutation type, showing
the values of H(ε) for multiple ε values (see Sect. II-B) on

TABLE III: Rf for each mutation on the studied test problems.

Learning Parameters Topology
MNIST 0.29 0.45 0.43

FMNIST 0.41 0.47 0.43
CIFAR10 0.28 0.46 0.50

SVHN 0.41 0.43 0.44

the four studied datasets. These curves illustrate the trend of
how ruggedness changes with respect to neutrality. The results
show that, overall, the obtained landscapes have a low degree
of neutrality, not maintaining the value of H(ε) as ε increases.
The most neutral landscape is the one produced by topology
mutation on the MNIST dataset (plot (c) of Fig. 6). Its highest
H(ε) happens when ε = ε∗/64, but the value suffers minimal
change from ε = ε∗/128 to ε = ε∗/8.

Table III, which reports the values of Rf for each type of
mutation, and for each studied test problem, corroborates the
previous discussion: the maximum value for learning mutation
is 0.41, while for parameters mutation is 0.47 and for topology
mutation is 0.5. Again, we can see that learning mutations
induce the smoothest landscapes, while topology mutations
induce the most rugged ones. Also in this case, the prediction
of the EMR corresponds to what we can observe from the
actual neuroevolution runs.

V. CONCLUSIONS AND FUTURE WORK

Two different measures of fitness landscapes,
autocorrelation and entropic measure of ruggedness, were
used for the first time to characterize the performance of
neuroevolution of convolutional neural networks. The results
were obtained on four different test problems, and confirm
that these measures are reasonable indicators of problem
hardness, both on the training set and on the test set.
Future work involves the study of other measures of fitness
landscapes, on more test problems, with the objective of
developing well established, theoretically motivated predictive
tools for neuroevolution, that can significantly simplify the
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Fig. 6: Results of the Entropic Measure of Ruggedness H̄(ε) over different values of ε∗ for the the three mutation operators on the four
considered test problems.

configuration and tuning phases of the algorithm. Being able
to use more powerful computational architectures, so that
we are able to calculate the measures on larger and more
significant samples of solutions, is crucial for achieving such
an ambitious goal.
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