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Abstract—Forecasting stock prices in the market its known to
be an extremely difficult task, where even the predictability of
the series itself is a controversial matter. The present study in-
vestigates the existence of periods within the series more suitable
for prediction, and whether the identification and exploitation of
those periods could be learned from data. In order to do that,
the Predictability Crawler (P-Craw) framework is proposed. The
technique uses optimizations routines such as the Particle Swarm
Optimization (PSO) or Genetic Algorithms (GA) to select subsets
of historical data where statistical learning algorithms can be
more efficiently trained. When tested against simulated data,
The P-Craw is able to reliably identify the optimal subsets in
scenarios ranging from 40% to 100% of predictable samples in
the data. To access if the framework brings any improvement
when used in a real world scenario, it is tested in a dataset
containing intraday data from the Brazilian stocks exchange
(BOVESPA). When benchmarked against training with all the
samples for the series in the BOVESPA dataset the use of the
framework is able to significantly raise the Correct Directional
Changes (CDC) of the trained models while reducing the Mean
Absolute Error (MAE) in up to 19%.

Index Terms—Stock Market, Predictability, Genetic Algo-
rithms, Particle Swarm Optimization, Time Series

I. INTRODUCTION

In the financial market, the prediction of price series means
financial profit, so the matter of how to accurately compute
those forecasts is always on the spotlight. In order to tackle
this challenge, two schools of thought are generally invoked:
Technical and Fundamentalist [1]–[3]. To the Fundamental
school of analysis, the intrinsic value of a stock paper is the
crucial factor, therefore this school pays attention to indicators
that go from the financial health of the company to government
regulation policies on the sector and macroeconomic data. The
Technical branch, on the other hand, looks only at previous
movements in price charts and graphics to guide their beliefs
concerning future behavior.

In modern prediction models, both Technical and Fun-
damentalist indicators are used in machine learning setups
for prediction [4]–[7]. Even with the use of sophisticated
techniques, there is no clear winner in this task, and the most
difficult benchmark to beat remains the random walk model.
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A possible explanation for the inherent difficulty of the area
lies in the Efficient Market Hypothesis [8]. The hypothesis
states that all the information regarding an asset is already
incorporated in it’s price at any given time, therefore it is
impossible to consistently beat the market. Not all literature
agrees with this hypothesis though, and a more recent con-
jecture, the Adaptive Market Hypothesis (AMH), speculates
a dynamic evolution of efficiency [9]. With this evolution it
is possible that a specific strategy or model work at some
periods but perceives only noise at others. This reality can
be a problem for the regular supervised learning procedures
used in machine learning [10]. Namely, the use of all available
data in training can incorporate noisy samples that don’t
offer any structure to be learned. Those samples can worsen
the final performance instead of helping. Noisy observations
can degrade not only the training stage, but also mask the
performance when used in out-of-sample evaluation. To study
this issue, different proxies for market efficiency have been
proposed [11]–[14] and enhancement has been uncovered
when training and evaluation happen in respect to a selected
”predictable” sub-set of data [11], [13].

This work proposes a general framework to address the
selection of predictable periods. This framework is called the
Predictability Crawler (P-Craw). The P-Craw is meant to be
an additional step to be performed when training a statistical
learning model. This step filters which data points to be used
in the training and evaluation of the model, removing noisy
observations that can degrade performance. In the present
study, a predictable series is one where a model can be trained
on past data to decrease uncertainty about future movements.
This definition describes predictability of a series in regard
to a specific statistical model. It can be the case that the
series is considered predictable in respect to one model but
unpredictable to another one.

The rest of this paper is organized as follows. Section II dis-
cusses how the concept of predictability and multiple regimes
evolved in the price series literature. Section III presents the
proposed framework. Section IV describes the experiments
using simulations to test the framework’s accuracy in finding
predictable intervals. Tests with real world data are presented
in Section V. Finally, the paper is concluded in Section VI.
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II. BACKGROUND

In his seminal paper [8] Fama introduced the Efficient Mar-
ket Hypothesis (EMH). In the argument, the fierce competition
for profits assures that any new knowledge is immediately
incorporated. With the information already reflected in price,
is impossible for a trader to create a strategy that consistently
beats the market. An efficient market is an unpredictable one.

Not all studies agree with this statement though. According
to [15] there are costs inherent to information gathering and
arbitrage, and if there was no excess return to be made
in exchange for this cost there would be little reason for
traders to trade, causing the market to eventually collapse.
The payoff of information gathering would be directly linked
to the predictability of the market, and an equilibrium would
arise from players paying less attention to saturated markets,
lowering those markets efficiency levels, and focusing on new
assets, raising those assets efficiency.

More Recently, Lo [9] proposed a new paradigm, the
Adaptive Market Hypothesis (AMH). In the AMH each agent
has constrained knowledge acquired through past experiences.
Those agents would then find the best solution constrained to
their current beliefs, fighting for resources (economic gains),
learning and shifting their preferences towards different fi-
nancial assets and arbitrage strategies. This evolution entails
different predictability in different markets at different times
in respect to different strategies, and thus allows for profitable
opportunities to exist in certain periods. The theory has gained
force in light of evidence such as changing correlation coef-
ficients over time in price series and trading techniques that
showed vanishing performance once they were published in
academic studies [16].

The modelling of the market as a constant switching be-
tween different regimes is not new, and import studies are
mentioned next to contextualize how the idea evolved into the
formulation presented in the current work.

A. Regime Switching for Trend Identification

A milestone of the regime-switching paradigm is in the
work of Hamilton and Engel [17], whose objective was to
correctly identify regimes of price trends. A simple Markov
Chain model was proposed to address the identification of
those trends in the dollar exchange rate series. In their proposal
is postulated the existence of a latent variable S which can take
the values 1 or 2. The conditional distribution of returns is
then N(µ1, σ1) or N(µ2, σ2) depending on the current value
of S, which follows a first-order Markov process. Although
the study incorporates the idea of regime switching, it assumes
one ever-functioning strategy and constant predictability of the
series.

B. Regime Switching for Strategy Identification

In [18] the price change at the dollar exchange rate series
et after the reveal of new information at instant τ is studied.
One of the goals of the study is to develop a estimator to
detect whether this new data will influence the equilibrium
in the market or not. The authors arrive at a biased yet

consistent estimator to be used after the event has occurred,
which depends of two interval sizes ρ1 and ρ2, with ρ2 > ρ1.

E[∆et+1] > 0, if
1

ρ1

ρ1∑
j=0

et−j >
1

ρ2

ρ2∑
j=0

et−j (1)

Equation (1) is the moving average indicator of the Techni-
cal Analysis, and the derivation is only valid for periods where
new information is incorporated. According to the study, those
moments would be better predicted by the indicator in (1),
while Fundamental Analysis would be preferred otherwise.
To identify when to use each strategy, the authors use the
variance of the time series, with the regimes detected by the
same modelling proposed in II-A.

In their experimental setup, it is found that the technical
indicator influence is statistically significant in the assigned
regimes. In this approach the market is modelled as passing
by different dynamics, where one given strategy can only work
if coupled with the right timing.

C. Regime Switching for Predictability Identification

In [11] the nature of regime switching in the market receives
a different interpretation. The predictability of the prices series
itself is postulated to evolve, and the Hurst Exponent is used
as a proxy for it. Periods with Hurst Exponent equal to 0.5 are
labelled as random, while values above 0.65 are considered to
exhibit a trend-reinforcing pattern which can be exploited for
prediction.

In this study, the Hurst Exponent is computed for the whole
dataset. The data is split into two groups, one classified as
predictable and the other one as unpredictable. Both groups
are split into training and test sets. In each group a Neural
Network is trained in the training set and evaluated in the test
set, and the Mean Absolute Scaled Error (MASE) is used as an
error metric of the process. The group considered predictable
by the Hurst Exponent proxy achieved statistically significant
lower MASE than the one considered to be random.

III. PREDICTABILITY CRAWLER

The Predictability Crawler (P-Craw) is defined to adapt the
training of a statistical model to a situation where some data
points might not be beneficial to the process. In the context of
stock market prediction, it searches for predictable moments
in the series and can be compared to the approach of II-C.
In contrast, it allows for greater flexibility in choosing how to
search for the predictable periods. The P-Craw is composed
of a series of building blocks.

First, the selector S chooses a subset of the available data
composed of predictable periods. Once the best subset P is
defined, it is used in two different training tasks. The first is to
fit a prediction model M using only the samples in the selected
subset. The second is to train a classifier C, responsible
for labeling out-of-sample observations into predictable or
unpredictable ones. The latter uses all the available samples,
with the target to be learned being whether they are present
in the selected subset or not. By training to reproduce the



Fig. 1. Proposed Architecture

classification of the selected samples, the classifier learns to
differentiate predictable samples from the rest.

To test the performance of the method, the P-Craw turns the
out-of-sample observations into features and feed them to the
classifier. The vector is then selected as predictable or not. In
the positive case, the trained forecaster M is used to perform
the actual prediction. If the classification returns negative, the
process discards that samples, moving to analyze the next one.
Fig. 1 depicts the process, and the following sections describe
each building block in details.

A. Selector

The selector’s task is to find the subset P? in the set of all
possible subsets S of D that represents the ”most predictable”
periods available. Implicit in this task is the necessity to
compare two possible subsets and be able to say which one
better represents predictable periods. This calls for a function
F : S ∈ D 7→ R, used to rank possible sets. With this function
defined, the problem now becomes the optimization procedure
described in (2).

P? = arg max
S∈D

F (S) (2)

This function needs to score subsets in respect to their
ability to ”be explained” by a statistical model. In order to
carry that, the time series is represented as feature and target
matrices. The scoring process must be paired with a specific
statistical model to be trained on, and the trained model is
used to compute F . Once this scoring mechanism is settled,
an optimizer search amongst the space of possible subsets to
find the solution of (2). Fig. 2 illustrates the process, which is
composed of three main entities. The statistical model chosen,
the fitness function F , and the optimization algorithm. The
statistical model can be any machine learning procedure suited
to the forecasting task. The other two parts are described next.

B. The Fitness Function

With the statistical model trained at a specific subset, an
error metric is used to access how much the model could
adjust to the trained data. The MASE error metric is selected
and computed using a 3-fold cross-validation scheme [10],
with the resulting metric being referred to as MASECV .
Using the MASECV directly as a fitness score might lead
the optimization to search a period where the model can learn

Fig. 2. Optimization Procedure

correctly, but it does not provides incentive to explore further
and find all the possible predictable moments. To incorporate
this search, a measure of subset size is added. The chosen
measure is the proportion of the size of subset P in respect to
the whole dataset D, |P||D| . This choice not only has the same
order of magnitude as the MASECV , but also ensures a metric
unrelated to the dataset size. The constant multiplying this new
term influences a lot on the performance of the framework, and
was calibrated by experiments with different values between
0.1 and 1. Equation (3) displays the proposed function.

F (P,D) = (1−MASECV ) + 0.3 ∗ |P|
|D|

(3)

Besides the mathematical representation, the definition of
the fitness function also needs a minimum number of samples
n in the chosen subset. If a model trained with less than n
samples is evaluated, it is assigned the smallest value possible,
so that any interval with a number of samples greater than n
is preferred over it.

C. Optimization Algorithm

Gathering what was exposed, it is possible to assign fitness
scores to each possible candidate subset. The selector then
proceeds to choose which new subsets to evaluate, using
what it learned from the previous choices. The optimization
procedure is the algorithm responsible to make this choice.
The P-Craw admits a number of different optimization pro-
cedures, such as Genetic Algorithms (GA) [19], Ant Colony
Optimization (ACO) [20], Intelligent Water-Drops Algorithm
(IWD) [21] and others. In the present study the Particle Swarm
Optimization (PSO) [22] is used in two versions, which are
compared against each other.

1) Particle Swarm Optimization (PSO): In the Particle
Swarm Optimization, each solution is represented by a position
and assigned a velocity vector, and so the solutions ”wander”
through the parametric topology. At each iteration the particles
update their velocities based on the best position they have
already encountered and the best position encountered by their
neighborhood.

In order to use the PSO, the time-series is divided in groups
of size equivalent to 2% the dataset size. Each group is
assigned a probability between 0 and 1. A particle to the PSO
algorithm in the present context is then a vector of probabilities



Fig. 3. PSO Particle Representation

representing each group. Every time the fitness value of a
particle is computed, a sampling occurs where each sample
is considered predictable with a probability equal to the one
assigned to the group it belongs. The particles sampled as
predictable at that sampling form the subset chosen to train
the statistical model and compute the fitness function. This
way, if a interval has a parameter of 0.5, each sample in that
group has a 50% probability if being included in the subset.
Every time that solution is evaluated, this sampling occurs
to every group. This way, evaluating a particle different times
will produce different results, as different samplings will arise.
When the final particle is elected as the best solution, every
sample in every group with probability above 0.5 is chosen as
predictable. Fig. 3 illustrates the representation.

2) Perturbed PSO: In the classical PSO, the optimization
occurs in a parameter space that represents a possible solution
in a deterministic fashion. In the present context, due to the
categorical nature of the problem (groups being only allowed
to be either present or not), the parameters optimized are used
to define probability functions from which the true parameters
are sampled. The parameter in this case is the probability of
choosing an individual sample as predictable within a group.
This approach is used to propose a modification to the PSO
algorithm. In this version, the optimization is not performed on
the problem parameters. Instead, those parameters are repre-
sented by probability functions, and the parameters describing
those functions are optimized instead.

In the context of the proposed PSO, the sampling happens
every time a particle position is evaluated. When that happens,
a particle with a value of 0.35 for a given group may,
for example, choose half the samples of the group to be
included in the subset. In the Perturbed PSO variation, the
position of the particle is altered to match the percentage of
predictable samples chosen in each group at the last sampling.
For example, in the previous case with half the samples in the

Fig. 4. Perturbed PSO Steps

group chosen, the value of that group would be altered from
0.35 to 0.5 after the sampling. This way, the particle suffers a
random perturbation in it’s position every time it has it’s value
computed. The general approach is represented in Fig. 4. The
perturbation on the probability and particle position on step 2
is what differentiates the Perturbed and Regular PSO in the
present context.

D. Forecaster

With the chosen subset at hand, the samples are used to train
the forecasting module in a supervised learning setup. The task
is to train a statistical model only in the set proposed by the
selector. This model doesn’t necessarily has to be the same
as the one used in the selector’s optimization procedure. The
predictability identification and series forecasting are totally
separated tasks in the P-Craw methodology. Not only the
model can be different, but even the feature representation
can change.

E. Classifier

Once the best subset has been identified, a label is assigned
to each row of the feature matrix representing whether it is
present in it or not (in other words, if it is considered as
predictable or not). This label is used as a target for a new
task. This time, supervised learning is used to train a model
capable of identifying new samples on the test phase which
posses the same dynamic as the ones in the selected subset.
As in the forecaster, the features used don’t need to be the
same used in any other building block of the framework. Fig.
5 displays the training process.

IV. SIMULATION BENCHMARK

A simulated series is created to help investigate the accuracy
of the proposed framework in identifying predictable periods.
In this simulation, three different regimes are concatenated
together. The first one follows an ARIMA(1, 1, 0) process
when transformed by the logarithm function, with coefficient
φ = .7 and σ = 2. The process is displayed in (4), where yt
are the values of the time series.

∆ log yt = φ∆ log yt−1 + εt

εt ∼ N(0, σ)
(4)

The other two regimes are random walks when transformed
by the logarithm function. The innovations of those regimes

Fig. 5. Training of the Classifier



have mean µ = 0 and variances σ1 = 2 and σ2 = 6
respectively, as summarized in (5).

∆ log yt = εt

εt ∼ N(0, σi), i = 1, 2
(5)

To create the feature representation, a vector of past returns
is assembled using the logarithm of the last 15 observations.
Every simulation generated has 2015 observations, creating a
feature and target representations of 2000 entries.

Before proceeding to the next discussions, the concept of
purity needs to be introduced. In the current study, the purity
of a dataset will be defined as the percentage of predictable
regimes present in it (AR(1) in the simulation case). If a
simulation has 300 predictable samples and 700 unpredictable
ones, it has a purity of 30%. Subsets of a given simulation can
have a different purity and so it is important to differentiate
between subset and simulation purity. When the simulation
purity is discussed, it will be referred to as total purity to
emphasize its calculation regarding all the samples in the simu-
lation. Simulations with different total purity are generated. In
each new simulation, a reference signal is generated together
with the X and Y feature matrices, with the predictable rows
classified as 1 and the others as 0.

As discussed previously, the fitness function needs to be
associated with a specific statistical model. For the simulation
benchmark a simple linear regression is used together with
a feature selection procedure performed using the LASSO
algorithm [10].

A. Optimization Setup

On a normal evaluation of an optimization procedure, two
quantities are of interest: the best and mean fitness value of
the population for each iteration. In this study, two metrics
will be added. The first is the purity for the best solution at
each generation (again, not to be misinterpreted as the total
purity of the simulation) and the second is the relative size of
the best solution.

The relative size is the ratio between the subset size and
the number of predictable periods present in the simulation,
being different from the quantity |P||D| . If a simulation possesses
2000 observations but only 600 predictable ones and a given
subset has size 300, the relative size is 300

600 = 0.5. This makes
it possible to identify the optimal subset in any situation as
the one with purity 1 and relative size 1, regardless of the
total purity and size of the simulation. The relative size can
be greater than 1 if the subset size is greater than the number
of predictable samples.

The purity and relative size metrics relate with the exploita-
tion and exploration properties of the algorithm. The purity
metric at each generation conveys how effectively the method
was to discover predictable samples, but a high purity might
be found in a relatively small portion of the data. The relative
size is a metric of how extensively the algorithm explored the
possible subsets. For example, if the purity is close to 1 but
the relative size is significantly bellow 1, the procedure was

Fig. 6. PSO Evolution - Perturbed vs Regular

able to achieve a predictable solution, but not to sufficiently
explore the possible subsets.

In the subsequent comparisons, every configuration is run
30 times, and best fitness value, mean fitness value, purity and
relative size are compared.

B. Particle Swarm Optimization

The PSO implementation used is based on [23], using the
update equation described in (6).

vt+1 = wvt + U(0, cp)(pt − xt) + U(0, cg)(lt − xt) (6)

Where vt is the velocity at iteration t, xt is the position at
iteration t, pt is the best know position so far by that specific
particle, U(0, c) is a uniform distribution in the range 0 and c
and lt is the best know position found in the neighborhood
of that particle. The values for w = 0.5, cp = 0.5, and
cg = 1.0 were defined by experimentation. An adaptive
random topology with a neighborhood size of 3 is adopted,
and a synchronous update with 100 particles running for 100
iterations. The position of each dimension in each particle is
initialized by a sampling of a uniform distribution between 0.0
and 0.4, while the velocities are sampled uniformly between
-1 and 1. The minimum number of samples is set to 10% of
the simulation sizes (200 samples).

1) Perturbed PSO vs Regular PSO: The PSO and the
Perturbed PSO are tested separately, and Fig. 6 displays the
comparison of their outcome. The Perturbed PSO was superior
in every metric while showing a smaller spread between the
paths of each run. With better overall results and consistency,
the Perturbed PSO is elected the preferred version, and is the
one used in the following benchmark.

2) Total Purity Variation: The previous benchmark was
computed in respect to only one simulation. To better un-
derstand how the optimization could take place in different
scenarios, simulations with different total purity were gen-
erated, and the Perturbed PSO was again tested in each of
them. Table I summarizes the results for each total purity
configuration, with results for purity and relative size painted
in blue if considered satisfactory and red otherwise.



TABLE I
PERTURBED PSO - TOTAL PURITY VARIATION

The Perturbed PSO showed to be very effective for scenarios
where the predictable regime prevailed. For total purity of 40%
or greater, it was able to correctly classify nearly every sample
on the simulations, specializing the method in high total purity
situations.

In every scenario where the algorithm failed to search the
optimal subset, it diverged toward choosing the whole dataset.
This is convenient because in all cases where the optimization
failed to output the right answer it just outputted what would
have been used if the P-Craw had not been employed. In other
words, the procedure ”cannot hurt”. The rule of thumb is to
use the framework and, should it output the whole dataset,
just proceed without the P-Craw. In all other cases, it seems
reasonable to trust the selected subset.

V. REAL CASE STUDY - BRAZILIAN STOCK MARKET
INTRADAY DATA

In the real case study, the dataset used was from the
Brazilian Stock Market (Bovespa). The data was obtained from
the official FTP site (ftp://ftp.bmf.com.br/MarketData/) with
help from the R package GetHFData [24]. The files consist of
trade information from every transaction in the Limit Order
Book from 2018-07-02 to 2019-03-3, compromising 8 months
of data. The time series of interest is the log return of the price
in the 5-minute window interval, and has approximately 9.300
observations for each stock.

The next step is to define a feature vector capable of
summarizing enough information about each moment in the
stock dynamics. For this purpose, a number of technical
indicators were studied, and Table II compiles all the ones
chosen for the construction of the feature matrix.

TABLE II
FEATURE VECTOR

Unless explicitly written, those metrics were all computed
in reference to the 5-minute interval windows. The target for
each row is the next log return of the price series after 30
minutes in the future in respect to the last value observed.

The 20 most traded papers at the first day of the available
data are chosen to be used in the study. This choice guarantees
series with good amounts of daily transactions. Furthermore,
the chosen stocks represent a diverse collection, with com-
panies from sectors like Food, Oil, Education, Beverage,
Commodities, Banking ... among others.

For each stock, the time period is split in a training
and testing window and the PCrawl is used on the training
windows to probe for predictable samples. The Boosted Trees
implementation of [25] is used as a statistical model. In order
to make the learning of the model fast during the optimization
phase it is restricted to train only up to the first 10 trees.
The parameters of the model are chosen in a grid-search
in the training set, using cross validation to assert the best
combination.

The final series has a total of 9.543 observations, but in
order to mimic the simulation setup, only the first 2000
observations are probed for predictable periods. The Perturbed
PSO is used as the optimization mechanism. Next, labels are
generated from the subset selected subsets and used to train
the classifier as described in the P-Craw section. The same
feature representation is used, and the chosen model is the
Boosted Classification Trees [25]. For this task, the parameters
were chosen in order to maximize the cross-validated accuracy
of the training predictions, with the same grid-search used
formerly.

The outputs of the classifiers are set to be the probability
of the sample being predictable, and so is bounded between 0
and 1. The predictable samples are the ones in the test sets at
which the output of the classifier is above 0.99.

With the samples in the training and test windows identified
for each stock, the efficiency of the PCrawl can be tested. In
order to do that, a forecasting model is selected and evaluated
in each stock in two different ways. First, it is trained on the
whole training set, and the error metrics are computed using
the whole test set. Second, the same model is trained only in
the selected samples in the training set, and only the selected
samples in the test set are used to compute the errors. For
each series, three metrics are evaluated. Those metrics are: the
Mean Absolute Error (MAE), MASE and Mean Directional
Accuracy (MDA). The MDA asserts how often the model was
able to correctly predict if the price would rise or fall, and is
computed as in (7).

MDA =
1

n

n∑
i=1

Dt

Dt = 1 if ŷt ∗ yt > 0, 0 otherwise

(7)

In the first run, the comparison is carried using the same
boosted trees models employed in the optimization phase, the
results are summarized in Table III.



TABLE III
BOOSTED TREES - RESULTS FOR EACH STOCK

The MAE metric is highlighted, with the winning variant
being displayed in blue for every series. As it can be seen
in the Selected Fraction column of Table III, the choices
of predictable samples for each stock yielded very different
results. This points towards different structures being exploited
for each series, instead of a common market dynamic.

To test whether or not the framework brought significant
improvements a Wilcoxon signed rank paired test is performed
[25]. The non-parametric test pairs the computed metrics
for both cases and take the differences from the numbers
obtained when using the whole dataset and the ones obtained
with the selected samples. The null hypothesis is that those
differences have zero mean, and an one-sided test is performed
to assert if the framework brought significant improvement for
each one of them. Table IV compiles the p-values for each
test. Even though every metric displayed better results when
the framework was employed, the only significant change
confirmed is the enhancement in the MAE. Actually, if the
Bonferroni correction [26] is employed, none of the tests
pass the corrected confidence level (1.6 %). The correction
assumes the worst case scenario of independence between the
tests, which is hardly the case. The procedure can be a little
too conservative in this context, but is used to ensure high
confidence in the conclusions.

The scatter plot between MAEs computed using the whole
dataset and the P-Craw is displayed in Fig. 7. A linear

TABLE IV
PAIRED TESTS P-VALUES FOR THE BOOSTED TREES MODEL

relationship can be inferred, with the metrics evaluated at
the selected intervals being approximately 0.81 times the
ones using the whole dataset. This signifies an reduction of
almost 20% the original value, demonstrating the effect of the
methodology.

In the previous results, the same model was used for both
the optimization stage and the forecasting of select samples,
although with different parameters. A question that arises
then is if this improvement is restrict to this model or if the
selected signal indeed unveils a structure that can be exploited
by other techniques. To answer that question, the signals
computed are tested again with two different models. The
first, the Random Forest (RF), another tree based variant. The
second, a linear regression paired with the LASSO for feature
selection [10], the same used in the simulation benchmark. The
parameters presented in those models are computed separately
for each series as in the previous case. For the RF model this

Fig. 7. Regular and Enhanced MAEs for the Boosted Trees model



TABLE V
MODELS RESULTS

TABLE VI
PAIRED TESTS P-VALUES FOR THE AGGREGATED MODELS RESULTS

computation is done with the aid of cross validation, and for
the LASSO the Bayesian Information Criterion (BIC) is used.
The comparison regarding those models is carried on exactly
as it was with the Boosted Trees, and Table V contemplates
the results.

To increase the power of the conclusions, the combined
60 pairs of the three models are compiled together (20 pairs
for each model) and the paired tests are performed on the
aggregated data. Table VI summarizes the results. The out-
comes reinforce the enhancement in the MDA metric, although
the final p-value for this metric don’t pass the confidence
level if the Bonferroni correction is employed. The aggregated
results show strong evidence of reduction in the MAE metric
even when conservative corrections for multiple comparisons
are employed, and point evidence in the decrease of the
corrected directional changes. The conclusion, overall, favor
the Adaptive Markets Hypothesis, with the results shedding
more light in the efficiency discussion.

VI. CONCLUSION

The present work discussed the efficiency of the market
as well as the studies that inspired the proposed idea. The
simulations performed showed that the P-Craw is capable of
performing well in a large variety of conditions, with the
Perturbed PSO consistently discovering the right patterns in
scenarios ranging from 40% to 100% of predictable samples.

When applied to the brazilian stock market, the 20 most
traded stocks at the beginning of the studied period were used
as a benchmarks and the MAE, MDA and MASE metrics were
evaluated with and without the use of the proposed framework.
The P-Craw significantly increased the performance on the
MAE, and displayed evidence towards an enhancement in
the MDA. The effect was the greatest when the same model
was used for both the probing and forecasting of samples,
achieving a reduction of MAE as high as 19%.

Although the framework was not able to improve the
MASE metric, the decrease in the correct directional changes
showed that the selected intervals had a more predictable price
dynamic. The outcome is favorable to the AMH, aggregating
more evidence in favor a floating efficiency level in the market.

According to the AMH, different markets can have different
efficiency levels, and so a natural direction to future works is

extending the analysis to other markets to understand how the
results behave.
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