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Abstract—Association mining is a famous data mining tech-
nology because its form is explainable by human beings. In-
novating fuzzy set theory to associations mining provides a
solution to quantitative database, where membership function
plays an important role in mining fuzzy associations. Genetic
algorithm (GA) has been successfully applied to the optimization
of membership functions. Based on the spirit of divide-and-
conquer, GA optimizes the membership functions for each
item separately. Nevertheless, the cooperation among differ-
ent items in the course of evolution was never considered.
Evolutionary multitasking optimization (EMO) is an emerging
searching paradigm which dedicates to solving multiple tasks
simultaneously for improving the search efficiency. This study
introduces the EMO into genetic fuzzy data mining to address
the above issue. Specifically, this study incorporates a state-of-
the-art genetic fuzzy data mining method, the structure-based
representation genetic algorithm, with the well-known multi-
factorial evolutionary algorithm (MFEA). A series of experiments
is conducted to validate the effectiveness and efficiency of the
proposed method. The results indicate that the proposed method
improves the structure-based representation genetic algorithm in
terms of convergence speed and solution quality on all sizes of
datasets. The results also show that the proposed method is about
20 times faster than the structure-based representation genetic
algorithm with respect to the exploited number of evaluations.

Index Terms—Evolutionary Multitasking, Multi-factorial, Ge-
netic Fuzzy Data Mining, Structure-based Representation, Mem-
bership Function

I. INTRODUCTION

The importance of data mining keeps increasing in recent
decades [7], [8], [20]. Aiming at different targets, a variety of
data mining technologies, for example, classification [4], clus-
tering [25], and associations [13] have been proposed. Unlike
black-box models such as neural networks, the associations
extracted from database can be easily understood by persons
due to their representation. One famous and successful appli-
cation of associations is the analysis of customers’ behavior
in Walmart.

The most well-known algorithm for mining associations
is the Apriori algorithm [1]. The basic idea of Apriori al-
gorithm is to find the frequent itemsets from database. The
limitation of the Apriori algorithm is that it only considers
Boolean variables. By discretizing quantitative values Srikant
and Agrawal [22] proposed a more general method based on

Apriori algorithm. The other approach to tackle the problem
of quantitative values in mining associations is the innovation
of fuzzy set theory [3], [16], [17]. Specifically, the fuzzy
transaction data mining algorithms (FTDAs) transform the
quantitative values to fuzzy values by exploiting the concept
of fuzzy sets and fuzzy logic [13], [14], [15]. The quantitative
values are transformed into fuzzy values, which represent the
degree of membership for a fuzzy set. This transformation
fully relies on the membership functions, and the results form
the fuzzy associations.

Membership function plays an important role in mining
fuzzy associations. Each membership function depicts the
degree of membership for a linguistic term, and it is used
to map a quantitative value into a degrees value which is
called fuzzy value. A mathematical formula of a membership
function MF has the following form:

MF : U → [0, 1] , (1)

where U is the universal set, and the pair (MF, U) forms a
fuzzy set. So far genetic algorithm (GA) has been successfully
applied to the optimization of membership functions. Current
GAs separate the optimization of membership functions by
divide-and-conquer method such that each GA is responsible
for an item. Nevertheless, these methods did not consider the
cooperation among different items in the course of evolution.

In recent years, evolutionary multitasking optimization
(EMO) becomes an emerging technique which intents on
simultaneously tackling multiple tasks to leverage the simi-
larity among tasks for improving the search efficiency [11],
[26]. This study introduces the evolutionary multitasking into
genetic fuzzy data mining to deal with above issue. Fig-
ure. 1 illustrates the difference between the traditional divide-
and-conquer paradigm (1a) and the evolutionary multitask-
ing paradigm (1b) for mining fuzzy associations. The EAs
with divide-and-conquer paradigm optimize the membership
functions of each item separately. Nonetheless, the evolution-
ary multitasking search paradigm optimizes the membership
functions for all items concurrently. Specifically, this study
integrates the structure-based representation genetic algorithm,
a state-of-the-art genetic fuzzy data mining method, with the
famous multi-factorial evolutionary algorithm (MFEA). This
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Figure 1: Two search paradigms for mining fuzzy associations: single-tasking with EAs and multitasking with evolutionary
multitasking optimization (EMO)

study validates the effective and efficiency of the proposed
structure representation based MFEA by conducting a series
of experiments. Different sizes of datasets are considered to
test the scalability from 10 thousand (10k) to 90 thousand
(90k) transactions.

The contributions of this study are summarized as follows:

1) Introducing evolutionary multitasking into genetic fuzzy
data mining to facilitate the cooperation among items

2) Incorporating the structure-based representation genetic
algorithm with the well-known multi-factorial evolution-
ary algorithm

3) Examining the effectiveness and efficiency in terms
of solution quality, convergence speed, and speedup
through experiments

The remaining sections are organized as follows. Section II
presents the acquaintance with fuzzy associations mining.
Section III introduces the proposed method, and Section IV
shows the experimental results. The concluding remarks are
drawn in Section V.

II. RELATED WORK

The most famous algorithm for mining the binary associa-
tions is the Apriori algorithm [1]. The Apriori algorithm finds
large itemsets L = {L1, . . . , Lm} by iteratively constructing
candidate itemsets C = {C1 . . . , Cm} and filtering out every
candidate of which support is lower than the predefined
minimum support θsupp.

However, the associations depending upon binary trans-
actional data concern the coexistence of items, but haven
not taken the quantity of each item into account. Hong et
al. [14], [15] proposed the utilization of fuzzy set theory for
handling the issue of mining data with quantitative values.
Introducing the fuzziness to the original associations forms the
fuzzy associations. The counterparts of support in the fuzzy
associations mining is the fuzzy support. Suppose there is a
quantitative database D which has n transactions and m items.
The fuzzy value of the jth item Ij in the ith transaction Ti,

denoting as f (i)j,k, depends on the fuzzy region Rj,k, represented
by the kth membership function of item Ij .

Definition 1. Given a fuzzy region Rj,k, its fuzzy support is
defined as the following equation:

Fuzzy Support (Rj,k) =
1

n

n∑
i=1

f
(i)
j,k. (2)

Similar to the Apriori algorithm, every fuzzy region Rj,k of
which fuzzy support is greater than or equal to the minimum
support, i.e. Fuzzy Support (Rj,k) ≥ θsupp, is joined to the
large 1-itemset L1.

Generalizing from one region to multiple regions, the fuzzy
value of a set of regions R = {R1, . . . , Rp} to the ith

transaction is defined by the intersection operator:

f
(i)
R =

p⋂
k=1

f
(i)
Rk
, (3)

where a common intersection operator in fuzzy system is the
minimum, and thus we have:

f
(i)
R = min

1≤k≤p
f
(i)
Rk
. (4)

By taking the minimum as the intersection operator, it guar-
antees that the degree of membership for the joint region
R = {R1, . . . , Rp} will never exceed the marginal degree of
membership for all regions R1, . . . , Rp in R.

Consequently, we can derive the fuzzy support for a fuzzy
regions R as follows.

Definition 2 (Fuzzy Support). Given a set of fuzzy regions
R, its fuzzy support is defined by following equation:

Fuzzy Support (R) =
1

n

n∑
i=1

f
(i)
R . (5)

If the fuzzy support of the set of fuzzy regions R is greater
than or equal to the minimum support θsupp, it becomes an
elements of the large p-itemset Lp with p = |R|.



The transformation from quantitative value to fuzzy value
and the basic elements of fuzzy associations are both depen-
dent upon the membership functions. Therefore, the member-
ship functions play a key role in the mining of fuzzy asso-
ciations. The membership functions, serving as the mapping
functions, have several shapes such as triangular, trapezoidal,
and bell functions which are controlled by the parameters.
The parameters of the membership functions also decide the
fuzziness among membership functions. One of the most
commonly adopted types is the triangular function with three
points underdetermined. Optimizing the membership functions
is essential in the mining of fuzzy associations. Many studies
exploit evolutionary algorithms to optimize the membership
functions due to their effectiveness. Hong et al. [14], [15]
designed GAs and showed their ability to obtain proper
membership functions. Hong et al. [13] further improved the
efficiency of genetic fuzzy data mining algorithm through
a divide-and-conquer paradigm. Chen et al. [6] imitated the
fuzzy support of offspring by centers of clusters in population
to reduce the calculation of fuzzy support. In addition, Chen
et al. [5] proposed a method to mine the fuzzy coherent
rules without the setting of minimum support. Rather than
evolving the membership functions by the divide-and-conquer
manner, Lee et al. [18], [19] devised a GA which encodes
fuzzy association rule as its chromosome. In [24], Ting et
al. proposed a genetic fuzzy data mining algorithm based on
structure representation for ensuring the legality and suitability
of membership functions.

Recently, a new class of evolutionary algorithm based on
the multitasking paradigm, the multi-factorial evolutionary
algorithm (MFEA), has been proposed for tackling different
tasks at the same time [11], [12], [23]. Based on the ranking
for each task, the individuals take the scalar fitness as their
fitness value, which is the inversion of the minimum ranking
over all tasks. On the aspect of fitness landscapes, the moving
direction, which is benefit to one task, from a given point
in the design space may also improve the fitness of the
other task. Such phenomenon brings MFEA effectiveness and
efficiency. In [10], the analysis of the synergy of fitness
landscapes has been investigated through some numerical
benchmark functions. Several variants of MFEA have been
proposed for different applications. Gupta et al. [9] combined
MFEA with a nested bi-level evolutionary algorithm to solve
bi-level optimization problems in a multitasking paradigm.
Sagarna and Ong [21] adopted MFEA to tackle the branch
testing problem, which is one of the software testing problems.
Chandra et al. [2] proposed an MFEA for optimizing several
feed forward neural networks with different numbers of hidden
layers at a time. Zhou et al. [26] adopted the MFEA on the
capacitated vehicle routing problems. The MFEA has also
been adopted on multi-objective optimization problem with
2 tasks [12]. Two performance metrics for multi-objective op-
timization problem, i.e., the nondominated front and crowding
distance, are treated as different tasks. These studies show the
possibility of evolutionary multitasking for handling multiple
tasks at one time, which is also applicable to genetic fuzzy

data mining.

Algorithm 1 The main procedure of MFEA

1: P ← Initialize()
2: for i← 1 to m do
3: Evaluate (P, τi)
4: end for
5: ϕ(P )← Scalar Fitness(P )
6: τ(P )← Skill Factor(P )
7: while Not terminated do
8: P

′ ← AssotativeMating (P )

9: Evaluate
(
P

′
, τ(P

′
)
)

10: S ← P ∪ P ′

11: ϕ(S)← Scalar Fitness(S)
12: τ(S)← Skill Factor(S)
13: P ← Survive (S)
14: end while

III. METHOD

This study introduces the idea of evolutionary multitask-
ing to genetic fuzzy data mining fuzzy for improving the
effectiveness and efficiency. Specifically, this study incorpo-
rates the structure-based representation genetic algorithm [24]
with MFEA [11], forming the structure-based representation
MFEA. There are two features in the structure-based represen-
tation MFEA: 1) Evolutionary multitasking search paradigm
based on MFEA, and 2) structure-based representation for
balancing the fuzzy support and suitability. The pseudocode
of MFEA can be found in algorithm 1. The MFEA optimizes
multiple tasks concurrently for efficiency. By treating the
optimization of membership functions for each item as a single
task, the MFEA can optimize membership functions for all
items in one run. In addition, the MFEA considers a single
representation to solve problems with different design vari-
ables such as satisfiability problem (SAT), traveling salesman
problem (TSP) and numerical optimization problem, of which
design variables are Boolean values, permutation, and floating
points, respectively. This unified representation can be mapped
to different design variables by variant mapping functions.
In this study, we replace the unified representation in the
original MFEA by the structure-based representation due to
its effectiveness and efficiency in genetic fuzzy data mining.
Therefore, the proposed structure-based representation MFEA
does not need a mapping function for each task. More details
about the proposed method are described below.

A. Representation

Traditionally, a membership function is represented by its
parameters, which are put in genes to evolve in evolutionary
algorithms. Without considering the structure of membership
functions, such representation may generate inappropriate
or even illegal membership functions after recombination.
However, the structure is essential in the mining of fuzzy
associations.
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Figure 2: Example of three membership functions

Algorithm 2 Conversion into membership function

1: procedure CONVERT(x) . x = (x1, . . . , x3`, h)
2: x′ ← Sort(x) . Sort x1, . . . , x3`
3: k ← 1
4: for i← 1 to ` do
5: for j ← 1 to 3 do
6: ci,j ← x′ST (h,k) . ST (h, k): k-th element of
7: k ← k + 1 . h-th structure
8: end for
9: end for

10: end procedure

In [24], Ting et al. proposed a structure based representation
for genetic fuzzy data mining which takes both parameters
and the structure of membership functions into account. That
is, a chromosome consists of parameters and structure type.
This study also considers the most commonly used triangular
membership function as in [24]. There are 3` real-encoded
genes plus one gene for structure type for an item with `
linguistic terms. The structure type is encoded by an integer
value which stands for the index of a structure. Every ap-
propriate deployment of membership functions, recorded as
a permutation, is labeled for indexing. Figure 3 illustrates the
chromosome of the structure based representation. The first 3`
genes encode the parameters of ` membership functions and
the last gene serves as the index of structure type. Algorithm 2
shows the transformation procedure of the structure based
representation in detail, from chromosome to membership
functions. The first 3` real-valued genes are sorted and then
deployed according to the permutation of the structure type
ST (h = 11) = (1, 2, 4, 3, 7, 5, 6, 8, 9). Consequently, the
fourth lowest value is mapped to the third parameter, the fifth
lowest value is mapped to the seventh parameter, and so forth.

Two concerns in the optimization of membership functions,
i.e., the legality and suitability. The legality holds the shape
and order of membership functions whereas the suitability
keeps the expressiveness and interpretability of fuzzy regions.

a) Legality.: Suppose ci,j represents the jth parameter
of ith triangular membership function, the legality is defined
by the following two constraints:

ci,1 ≤ ci,2 ≤ ci,3 , (6)

c1,2 ≤ c2,2 ≤ · · · ≤ cl,2 , (7)

1 2 4 3 7 5 6 8 9 

Type 11 
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1 
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Figure 3: Example of chromosome representation

where inequality 6 and 7 retain the shape of triangle and
the order of membership functions respectively. A proper
setting of parameters which satisfies the two inequalities 6
and 7 can be found in Fig. 2. In traditional representation
the variation operators may violate the above two constraints
and illegal chromosomes should be fixed by rearranging the
genes. Nonetheless, the structure based representation can
avoid the illegality by the transformation procedure described
in Algorithm. 2.

b) Suitability.: As aforementioned, suitability regulates
the expressiveness and interpretability of fuzzy regions. Ac-
cording to the definition proposed by Hong et al. [13], the
expressiveness and the interpretability are quantified by cov-
erage and overlap, respectively. The coverage is defined by
the covered area among all fuzzy regions while the overlap
is evaluated by the overlapping area of two fuzzy regions.
To ensure full coverage with proper overlap, Ting et al. [24]
further proposed two constraints for coverage and overlap:

• Coverage:

ci−1,1 ≤ ci,1 ≤ ci−1,3 (8a)
ci+1,1 ≤ ci,3 ≤ ci+1,3 (8b)

• Overlap:

ci,3 ≤ ci+2,1 (9)

The use of structure representation can reduce the number
of arrangements of membership functions and thereby reduce
the searching space. Consider an item with three triangular
membership functions, only 93 legal structure types over
9!=362880 permutations fulfill the legality constraints. Further
taking the suitability constraints into account, there are 12 over
93 legal structure types, with full coverage and proper overlap.



B. Fitness Evaluation

Computing the fuzzy support of largest itemset is costly due
to the exponential time complexity to the number of items in
the dataset. Hong et al. [13] proposed an efficient evaluation
based on the divide-and-conquer paradigm. For efficiency, the
fuzzy support of large 1-itemset L1 are evaluated rather than
the largest itemset. This study also adopts such light evaluation
of fuzzy support for efficiency.

The fitness function following the design in [13] is a
nonlinear combination of fuzzy support and suitability. The
computation of fuzzy support is described in Section II. The
suitability is defined by two factors, to wit, overlap factor and
coverage factor.

Definition 3 (Overlap Factor). Given the membership func-
tions after transformation procedure c, the overlap factor is
calculated by

Overlap (c) =
∑
i<j

(max (ovlratio (Ri, Rj) , 1)− 1) (10)

with

ovlratio (Ri, Rj) =
The area covered by both Ri and Rj

min (ci,3 − ci,2, cj,2 − cj,1)
.

(11)

The ratio of overlap ovlratio (Ri, Rj) computes the ratio of
overlapped area over the smaller area between the right side
of Ri and the left side of Rj with i < j. The ratio of overlap
ovlratio (Ri, Rj) is less than or equal to one for a moderate
overlap, causing the best value of overlap factor being at 0.

Definition 4 (Coverage Factor). Given the membership func-
tions after transformation procedure c, the coverage factor is
calculated by

Coverage (c) =
max (I)

range (R1, . . . , Rl)
. (12)

The coverage factor computes the ratio of range of item I
over the range of all membership functions. A full coverage
of membership functions has best coverage factor at 1.

Summing the overlap and coverage factors get the suitabil-
ity. Then the fitness function of the membership functions c
is defined as follows:

Fitness (c) =

∑
R∈L1

FuzzySupport (R)

Overlap (c) + Coverage (c)
. (13)

The fitness function is the ratio of fuzzy support over suit-
ability, aiming at maximizing the fuzzy support meanwhile
minimizing the overlap and coverage factors. The consider-
ation of large 1-itemset L1 rather than the largest itemset
abates the cost as mentioned above. The suitability forbids
the endless pursuing of fuzzy support but regardless of shape
of membership functions.

C. Scalar Fitness and Skill Factor

The MFEA handles different tasks by scalar fitness and skill
factor. The scalar fitness is a rank based fitness. Given the
ranking rij of individual i on task j, the scalar fitness is defined
as:

ϕ(i) =
1

min{ri1, ..., rim}
,

where m denotes the number of tasks. Through the scalar
fitness individuals for different tasks can be compared by a
single scalar for survival. To know the best suitable tasks for
the individuals, the skill factor of an individual records the
task with best rank:

τ(i) = argmin
j∈{1,...,m}

rij .

The skill factor is the key to the genetic operators in MFEA,
including the assortative mating, and fitness evaluation. The
definitions of both scalar fitness and skill factor follow the
definitions proposed in [11].

Algorithm 3 Assortative mating

1: if (τprt1 = τprt2) or (p < rmp) then
2: ofsp1 ← Crossover(prt1, prt2)
3: ofsp2 ← Crossover(prt1, prt2)
4: τofsp1 ← Rand(τprt1 , τprt2)
5: τofsp2 ← Rand(τprt1 , τprt2)
6: else
7: ofsp1 ← Mutation(prt1)
8: ofsp2 ← Mutation(prt2)
9: τofsp1

← τprt1
10: τofsp2 ← τprt2
11: end if

D. Assortative Mating

Assortative mating generates offspring according to parents’
skill factor. Algorithm 3 is the procedure of assortative mating.
Given two randomly selected parents, the offspring can be
sexual reproduction by both parents or asexual reproduction
by one of the two parents, depending upon the parents’ skill
factor. For parents with the same skill factor or under the
random mating probability (rmp) the sexual reproduction
is taken by performing the crossover operator; otherwise,
the offspring are generated by asexual reproduction, which
mutates parents by mutation operator. The parameter rmp
plays the role to balance the exploration of sexual reproduction
and the exploitation of asexual reproduction. A suggested
setting of rmp is 0.3 [11], which is also used in this study.

The sexual reproduction and asexual reproduction are per-
formed by crossover and mutation operator, respectively. The
crossover operator recombines the chromosome of the parents.
This study adopts the uniform crossover for simplicity. The
mutation operator alters the chromosome slightly. The creep
mutation is adopted for perturbation of the parameters, while
random resetting is used for reforming structure type.



Table I: Parameter setting

Parameter GA93 and GA12 MFEA93 and MFEA12

Representation Parameter (real number) + Structure (integer)
Parent selection 2-tournament Random
Crossover Uniform Uniform
Crossover rate 0.8 -
rmp - 0.3
Mutation Creep (ε = 3) Creep (ε = 3)
Mutation rate 0.01 -
Survival selection µ+ λ µ+ λ
Population size 50 128
#Evaluations 360000 360000

E. Evaluation and Survival Selection

After reproduction each offspring will be evaluated only on
the task indicated by its skill factor. Hence, the number of
evaluations used in each generation is equal to the population
size. The skill factor of offspring is also determined by
parents’ skill factor. For each two offspring generated by
sexual reproduction the skill factors are randomly chosen from
their parents. On the contrary, each offspring obtained by
asexual reproduction imitates the skill factor of its parent.

The survival selection decided the population of individuals
for the next generation. The well-known (µ + λ) survival
selection selects best µ individuals from the union of parents
and offspring according to the fitness. Noteworthily, in MFEA
the survival selection is based on the general scalar fitness
rather than the fitness of each task (each item in this study).

IV. EXPERIMENTAL RESULTS

This study validates the performance of the proposed
structure-based representation MFEA through empirical stud-
ies. A series of experiments is conducted to investigate the
effectiveness and efficiency of the proposed method. Six sizes
of transactional data are experimented, composed of 10k, 30k,
50k, 70k, and 90k transactions, and there are 64 items in
each dataset, forming 64 tasks for MFEA. The experiments
consider four test algorithms: GA93 (GA using the structure-
based representation), GA12 (GA93 refined by the suitability
constraints), MFEA93 and MFEA12 (MFEA with structure-
based representation and refined constraints.) The subscripts
93 and 12 stands for the numbers of structure types used. The
parameter settings for the four algorithms are listed in table I,
and the minimum support is set to 0.04. Most parameters
follow the settings in [24] except the population size of MFEA,
which is set to twice the number of tasks, i.e., 64× 2 = 128.
Every experiment takes 30 trials for significant analysis made
by student’s t-test with significant level α = 0.01.

A. Effectiveness

First we show the effectiveness of the proposed MFEA93

and MFEA12, in comparison to GA93 and GA12 on datasets
of five sizes from 10k to 90k. Figure 4 exhibits the progress
of mean best fitness (MBF) in the course of evolution for the
four test algorithms on datasets of 10k to 90k transactions. It
is apparent that both MFEA93 and MFEA12 achieve better

fitness and converge faster than GA93 and GA12 do. Com-
paring MFEA93 and MFEA12, there is no much difference
between the two methods on datasets of size 10k, 70k and 90k
in terms of MBF and convergence speed. For dataset of size
30k, MFEA12 obtains better MBF than MFEA93. This study
also compares the obtained MBF and examines the statistical
significance by t-test. Table II lists the MBF and p-values of
the four test algorithms on datasets of 10k to 90k transactions.
The MFEA93 significantly excels GA93 on all datasets under
the level of significance α = 0.01. The MFEA12 also
outperforms GA12 on all five datasets. Nonetheless, there is
no significant difference between MFEA93 and MFEA12.
These fascinating outcomes point out the effectiveness of the
proposed MFEA93 and MFEA12.

This study further makes comparison to the overlap, cov-
erage, suitability, and fuzzy support for the GA93, GA12,
MFEA93, and MFEA12. As shown in Table III the member-
ship functions obtained from MFEA12 achieve best overlap,
coverage, and suitability on all datasets and acquire best fuzzy
support on dataset of 30k transactions. On the contrary, the
membership functions obtained from MFEA93 get best fuzzy
support on all datasets except the one with 30k transactions.
The MFEA93, and MFEA12 both have better overlap, cover-
age, suitability, fuzzy support and fitness than GA93 and GA12

do aside from the dataset of 50k transactions. On the dataset
having 50k transactions, GA93 performs best on fuzzy support
but has poor performance in terms of suitability than MFEA93,
and MFEA12; consequently, GA93 obtains ill performance of
fitness.

B. Efficiency

This study also validates the efficiency of proposed
MFEA93 and MFEA12. Table IV lists the number of evalua-
tions and corresponding ratio and speedup used for MFEA93

and MFEA12 to exceed the finally obtained fitness of GA93

and GA12 after 360, 000 evaluations respectively on datasets
of 10k to 90k transactions. For MFEA93, only about 5%
of overall evaluations used for GA93 is needed to achieve
comparable fitness. The speedup of MFEA93 over GA93 is
23.16 times in best case, and 13.71 times in worst case. In
comparison to GA12, the MFEA12 also utilizes 4% to 5% of
total number of evaluations except dataset of 50k transactions.
The speedup of MFEA12 over GA12 is 24.78 in best case
and 20.04 in median case. In worst case MFEA12 is still over
three times faster than GA12. These fruitful results express the
efficiency of the proposed MFEA93 and MFEA12.

V. CONCLUSIONS

This study proposes a structure-based representation MFEA
for mining fuzzy associations. The membership function of
each item is treated as a single task, and all tasks are solved
by MFEA at a time. The coalescence of MFEA and structure
representation brings three advantages. First, the structure
representation prevents the chromosome from illegality and
knocks out membership functions with improper overlap and
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Figure 4: Anytime behavior against mean best fitness of the four test algorithms on datasets with 10k (a), 30k (b), 50k (c),
70k (d) and 90k (e) transactions

Table II: Mean best fitness and p-values from t-test statistical analysis for the GA93, GA12,MFEA93 and MFEA12 on datasets
of 10k to 90k transactions. The t-test compares the difference of two test algorithms A and B by p-value, where significant
difference under level of significance α = 0.01 is marked by boldface. The plus (+) and tilde (~) symbols stand for B is
significantly better than or comparable to A, respectively.

MBF p-value

#Tr. GA93 GA12 MFEA93 MFEA12 GA93:MFEA93 GA12:MFEA12 MFEA93:MFEA12

10k 8.3678 8.5501 9.2760 9.3098 9.68E-22 (+) 1.59E-25 (+) 2.31E-01 (~)
30k 8.8152 8.9516 9.2340 9.3143 1.05E-14 (+) 1.17E-16 (+) 2.11E-02 (~)
50k 9.0649 9.1935 9.3216 9.3293 7.40E-11 (+) 1.55E-06 (+) 4.16E-01 (~)
70k 8.7247 8.8656 9.3070 9.2890 5.28E-24 (+) 1.43E-15 (+) 3.12E-01 (~)
90k 8.7935 8.9304 9.3486 9.3183 4.57E-23 (+) 8.35E-15 (+) 2.03E-01 (~)

coverage. Second, the MFEA improves the searching effi-
ciency by evolving all tasks together. On the aspect of fitness
landscapes, the moving direction, which is benefit to one task,
from a given point in the design space may also improve the
fitness of the other task. Third, the MFEA reduces a great
amount of fitness evaluations in one generation since it exploits
a single population; that is, mµGA−µMFEA fitness evaluations
are saved in one generation, where m is the number of items
in the dataset. Considering the parameter setting used in this
study that µGA = 50, µMFEA = 128, and m = 64, the
structure-based MFEA takes only 4% of fitness evaluations
of GA in one generation.

We examine the performance of the proposed MFEA in
terms of effectiveness and efficiency through empirical anal-
ysis. The experimental results reveal that the structure-based
representation MFEAs better the structure-based representa-
tion GAs significantly on datasets of five sizes (from 10k to

90k transactions). On the effect of efficiency, the results show
that the structure-based representation MFEAs can exceed the
best fitness obtained by structure-based representation GAs in
about 5% of fitness evaluations, which means the structure-
based representation MFEAs are about 20 times faster than
structure-based representation GAs. These fruitful outcomes
validate the effectiveness, efficiency, and scalability of the
proposed method.

There are some possible future extensions. Memetic al-
gorithms (MAs) have achieved great success in complex
optimization problems. Incorporating local search to MFEA,
forming the MFMA, can be a possible orientation. Moreover,
this study considers MFEA as the evolutionary multitasking
method. Adopting different evolutionary multitasking methods
to genetic fuzzy data mining is another direction.



Table III: Behavior on different performance metrics, including
overlap (Ovlp.), coverage (Cov.), suitability (Suit.), fuzzy
support (Fzs.) and fitness for the four test algorithms on
datasets of 10k to 90k transactions. The best result among
the four algorithms is marked by boldface.

#Tr. Algorithm Ovlp. Cov. Suit. Fzs. Fitness

10k GA93 0.0505 1.0066 1.0571 8.8170 8.3678
GA12 0.0016 1.0056 1.0072 8.6117 8.5501
MFEA93 0.0177 1.0002 1.0179 9.4317 9.2760
MFEA12 0.0000 1.0002 1.0002 9.3113 9.3098

30k GA93 0.0363 1.0062 1.0424 9.1713 8.8152
GA12 0.0010 1.0054 1.0064 9.0088 8.9516
MA93 0.0062 1.0002 1.0064 9.2906 9.2340
MFEA12 0.0000 1.0001 1.0001 9.3155 9.3143

50k GA93 0.0361 1.0066 1.0427 9.4290 9.0649
GA12 0.0016 1.0052 1.0068 9.2561 9.1935
MFEA93 0.0086 1.0002 1.0088 9.3992 9.3216
MFEA12 0.0000 1.0002 1.0002 9.3315 9.3293

70k GA93 0.0385 1.0063 1.0449 9.1008 8.7247
GA12 0.0014 1.0052 1.0067 8.9246 8.8656
MFEA93 0.0102 1.0002 1.0103 9.4008 9.3070
MFEA12 0.0000 1.0002 1.0002 9.2909 9.2890

90k GA93 0.0410 1.0064 1.0475 9.1862 8.7935
GA12 0.0017 1.0054 1.0071 8.9936 8.9304
MFEA93 0.0016 1.0002 1.0018 9.3653 9.3486
MFEA12 0.0001 1.0001 1.0003 9.3207 9.3183

Table IV: The number of evaluations required for MFEA93

and MFEA12 to exceed the fitness of GA93 and GA12 respec-
tively after 360000 evaluations, and the corresponding saving
rates and speedups on datasets of 10k to 90k transactions

MFEA93 MFEA12

#Tr #Eval Rate(%) Speedup #Eval Rate(%) Speedup

10k 15547 4.32 23.16 14527 4.04 24.78
30k 18478 5.13 19.48 19115 5.31 18.83
50k 26251 7.29 13.71 116347 32.32 3.09
70k 17841 4.96 20.18 17076 4.74 21.08
90k 18096 5.03 19.89 17968 4.99 20.04
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