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Abstract—Autonomous vehicles in the pursuit-evasion game,
subject to the effects of mass and drag, are controlled using an
evolutionary multiobjective neuromodulated controller with un-
supervised learning. Multiobjective evolution of network weights
and topologies (NEAT-MODS) is extended with Lamarckian-
inherited neuromodulated learning. NEAT-MODS is an NSGA-II
augmented multiobjective neurocontroller that uses two conflict-
ing objectives. By evolving pursuit agents optimized with the
separate and conflicting objectives of ‘capturing evaders’ and
‘minimizing energy consumption’, efficient neurocontrollers can
be evolved. NEAT-MODS uses a selection process that aims to
ensure Pareto-optimal genotypic diversity and elitism. Neuromod-
ulation is a biologically-inspired technique that can adapt the
per-connection learning rates of synaptic plasticity. Lamarckian
inheritance allows behaviours learned during parent generations
to be passed on to their offspring. The capability of the design is
demonstrated in a series of experiments with a simulated evolved
vehicle pursuing a basic evader vehicle. It is shown that compact
and efficient neurocontrollers for pursuer agents with nonzero
mass and drag, capable of capturing an optimal evader while
simultaneously minimizing energy consumption, are evolved.

Index Terms—Artificial Neural Network, Autonomous Vehi-
cle, Hebbian Learning, Lamarckian Inheritance, Multiobjective,
NEAT-MODS, Neuromodulation, Pursuit-Evasion, Unsupervised
Learning.

I. INTRODUCTION

Pursuit and evasion contests are some of the most im-
portant, challenging, and common problems that ambulatory
animals encounter [1]. Similarly, pursuit-evasion games can
be used to simulate many challenges that mobile agents
face. The pursuit–evasion differential game can be consid-
ered a generalized exercise for many other robotic problems
such as autonomous vehicle navigation, platooning, obstacle
avoidance, leader following, homing, docking, path planning
and wall following. Additionally, it models many real-world
applications, including surveillance and tracking, search and
rescue, location and capture of hostile forces, and localizing
and neutralizing environmental threats [2].

Agents in pursuit-evasion games are typically modelled
as mass-less. Classical optimal solutions generally do not
consider agents with mass, inertia or drag or other forces that
may act upon the vehicle. Real-world vehicles are subject
to the effects of mass and drag. In [3], simple coevolved

predatory and prey neurocontrollers using two Khepera robots
(both simulated and real) are demonstrated. Mass is not
simulated, and is unlikely to be a factor on 5.5cm diameter
robots operating in a 47cm square arena, as maximum speed
could not be great considering that each robot occupies more
than 10% of the distance from each wall to that opposite.

Many real-world problems involve multiple competing ob-
jectives. In pursuit-evasion games, the primary objective of a
pursuer is to capture or facilitate the capture of evaders. How-
ever, as real-world resources are finite and costly, a secondary
objective of minimizing energy consumption exists. Using
multiobjective optimization, it is possible to maximize the
capture of evaders while simultaneously minimizing energy
usage.

In [4] we proposed a novel architecture where Lamarck-
ian inheritance is applied to neuromodulated multiobjective
evolutionary neural controllers that are trained in real time
during each evaluation tournament. The neural controllers
are assembled based on NEAT-MODS [5], and augmented
with neuromodulation and Lamarckian inheritance. Each can-
didate neurocontroller’s fitness is determined by tournament,
where each candidate neurocontroller is judged based on its
performance controlling a pursuer or evader agent vehicle.
The candidate neurocontroller’s weights are modified during
each tournament using neuromodulated Hebbian learning. This
architecture alternatively tests the learning space with a genetic
operator, and then attempts to improve upon these results
using neuromodulated learning to adapt the network between
each time step during operation. This approach also allows
exploration of the entire learning space, and fine tuning to
find each local error minimum, until a solution with the global
minimum error is found. Using NEAT-MODS alone, fine-
grain adjustment of the connection weights requires mutation,
which only occurs between generations, when offspring are
produced. By including neuromodulation, the weights can be
adjusted continuously during the lifetime of each generation
[6]. Implementing Lamarckian inheritance by re-encoding the
neuromodulated adjusted weights back into the parents’ genes
allows these adjustments to be passed on to the offspring
generations, so that they are effectively pretrained with their
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parent’s learned behaviour.
Here, these Lamarckian-inherited neuromodulated evolu-

tionary controllers are applied to agents in a basic pursuit-
evasion game. A population of pursuers is evolved to catch
a simple evader while simultaneously minimizing energy use.
Additionally, the pursuer and evader agents are modelled with
inertia in the form of mass and aerodynamic drag. We believe
that this is the first time agents with explicitly modelled
mass and drag have been applied to the pursuit-evasion game.
It is postulated in [1] that “better understanding of pursuit
and evasion would extend to game theory, animal biology,
evolutionary psychology, and neuroethology.”

II. BACKGROUND

Fully autonomous robotic vehicles are needed to aid hu-
mans in many fields. Robots can go places that biological
lifeforms cannot, and willingly perform tasks that humans
find monotonous. When communication between robots and
human controllers is difficult due to distance or interference,
some degree of autonomy is required. Autonomy requires
robots able to adapt to changing environments. Evolution
and unsupervised learning are both mechanisms that can
provide autonomous adaptation with respect to a changing
environment.

Pursuit-evasion games can simulate multiple robotic vehi-
cles working together and against one another. Pursuit-evasion
games offer a simplified but sufficiently complex problem to
test and demonstrate the effectiveness of experimental fully
autonomous algorithms. The goal of pursuit-evasion games is
to find the best strategy for one or many pursuers to catch one
or many evaders, while concurrently finding the best strategy
for the evader(s) to avoid capture by the pursuer(s).

Lifeforms face competing problems. For example, plants
typically face competing objectives such as finding water and
obtaining sunlight. These objectives compete for the same
resources, yet the plant cannot survive without the resources
provided by both. Similarly, the vehicle designer faces com-
peting objectives such as minimizing energy consumption
by reducing mass, and maximizing vehicle range requiring
energy storage (which increases mass). Autonomous robots
face many different objectives such as completing missions
in the minimum amount of time while simultaneously mini-
mizing power consumption. Multiobjective optimization is an
area of research allowing several objective functions to be
maximized simultaneously without the use of an auxiliary
function. Using an auxiliary function requires that separate
objectives be weighted and combined into a single function.
Auxiliary functions require assumptions about the Pareto front,
whereas multiobjective solutions aim to search for the entire
Pareto front simultaneously. Multiobjective evolutionary neu-
rocontrollers have been shown to successfully adapt neural
network topology and weights [5], incrementally growing from
a basal initial structure, and evolved to a minimal topological
solution [7].

Artificial neural networks (ANN) have been successfully
used to operate robotic systems over the last few decades.

They are an effective tool for robotic control, and promise
many advantages over conventional control, such as the ability
to learn, and to adapt unsupervised to changing environments.
Determining the smallest size network topology is desirable to
minimize computational cost, latency, and power consumption.
Many different techniques have been applied to the training
and topology of ANNs, including gradient descent methods
with grown or pruned topologies [8], evolutionary methods,
and biologically plausible methods such as Hebbian learn-
ing and neuromodulation [9]. NeuroEvolution of Augmented
Topologies (NEAT) was successfully demonstrated for func-
tion approximation and the double pole balancing problem
in the original publication [7], and subsequently for other
problems. NEAT-MODs has adapted NEAT for multiobjective
problems, and demonstrated the evolution of robot neuro-
controllers [5]. Similarly, NEAT has been adapted to evolve
neurocontrollers in a distributed on-line manner in odNEAT
[10]. The odNEAT method has been augmented with Hebbian
neuromodulation to further reduce convergence times [6].

Combining evolution and learning can provide a powerful
synergy between complementary search algorithms. Networks
with evolved initial weights can be trained faster and to a
higher degree of accuracy than networks with random initial
weights [11]. According to Hebbian theory, synaptic plasticity
is the mechanism by which, when an axon of cell A repeatedly
excites cell B, a change takes place in one or both cells
such that A’s efficiency in firing B is increased [12]. Hebbian
learning is therefore an unsupervised method of training where
the connection weights (strengths) are updated as a function
of pre- and post- synaptic activity [13]. Neuromodulation is
considered to be a major mechanism producing memory and
learning in biological nervous systems [13]. Specialized neu-
romodulatory neurons control the amount of plasticity of other
neurons in biological organisms by using neurotransmitters
such as dopamine and serotonin [13]. Neuromodulation of
the synaptic plasticity augments the Hebbian learning rule by
providing gating of the plasticity of a synapse between two
other neurons, by updating the synapse after the neuron has
fired [9], [14].

A novel architecture for a neuromodulated multiobjective
topology and weight evolution of artificial neural networks
with Lamarckian inheritance is proposed in [4]. Combining
neuromodulation with evolution provides a powerful tool for
exploring the search space. This combination gives the unique
ability to test the search space with a genetic operator, and then
improve upon these results using neuromodulated learning
to adapt the network during operation. This approach allows
exploration of the entire search space, and fine tuning to find
each local maximum, until a solution with the global (or at
least a more global) maximum is found. Including Lamarckian
inheritance allows the transfer of learned behaviour from
parent to offspring populations, reducing convergence times
and improving performance. The proposed architecture is
demonstrated by simulation of a differential wheeled robot
applied to an autonomous foraging task in a maze. The results
demonstrate that the augmentation of neuromodulated NEAT-



MODS with Lamarckian inheritance gives an effective and
efficient tool for generating neurocontrollers by allowing pre-
training of offspring generations based on parent generations’
unsupervised learning obtained while the neurocontrollers are
evolving.

A. Pursuit-Evasion Differential Games

Pursuit-evasion games are a type of differential game [15]
where the Pursuer group aims to track down and capture
the Evader group in an environment. Figure 1 shows the
mechanics of the pursuit-evasion game when mass and drag
are not modelled.
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Fig. 1. Pursuit-Evasion Mechanics

The equations of motion for the pursuers and the evaders
[16], [17] when mass and drag are not modelled are presented
in Equation 1 .

ẋi = Vi cos (θi)
ẏi = Vi sin (θi)

θ̇i = Vi

Li
tan (ui)

(1)

Here, i is a placeholder for p to represent the pursuer, or e
for the evader, xi, and yi are the Cartesian coordinates of
the robot, Vi the robot velocity, θi the orientation, Li the
wheelbase (distance between front and rear axles), and ui the
steering angle.

B. Dynamic Model Including Mass and Drag

The pursuer and evader agents presented here are modelled
using a simple dynamic model that includes mass and drag.
The dynamic model is presented in Equation 2, where T is
the agent’s thrust, kd is the drag coefficient, m the agent’s
mass, and v and a are the agent’s velocity and acceleration
respectively.

T − kdv = ma (2)

Adding the effects of mass to agents in the pursuit evasion
game used here means that pursuer agents must evolve to
follow the evader closely, as any deviations from their optimal
paths require large energy expenditures to correct. Changing
direction is more costly to agents modelled with mass, as
not only does more ground have to be covered to regain the
optimal path, but energy must also be expended to change
direction.

C. Neuroevolution

NEAT is a direct representational method for genetically
encoding and evolving the weights and architecture of ANNs
[7]. NEAT uses a unique innovation number associated with
each gene to track the history of the genetic markers, fa-
cilitating crossover without suffering from the “competing
convention” where computation is wasted when duplicates
of the same or virtually identical structure compete against
each other. NEAT also uses speciation: the total population
of individuals is divided into species to preserve innovation.
Inter-species differences are determined using a compatibility
distance function based on the number of excess and disjoint
genes (those that are not common to both sequences), and
average weight differences. Species are weighted using a
sharing function based on the compatibility distance function,
such that organisms in the same species share their fitness.
Offspring populations are evaluated using a fitness function;
the result is weighted using the sharing function. The next
offspring population is populated based on the weighted fit-
ness. The new population is then randomly mutated by any
of: perturbation of weights, replacement of weights, addition
of a new node, addition of a new connection, disabling a
connection, intraspecies crossover, or interspecies crossover.
NEAT has been applied to many problems, including the pole
balancing problem [7], computer games [18], [19], and robot
control [20].

D. NEAT-MODS

NEAT-MODS is a NEAT-based multiobjective evolutionary
algorithm that aims to maximize two (or more) objectives
without the use of an auxiliary function. In [21] it is argued
that it is more efficient to approach objectives in a simulta-
neous manner than sequentially in the search for the Pareto-
optimal solution, as multiobjective evolutionary algorithms are
more easily parallelizable, and conflicting objectives ensure
good diversity in the search space [22]. In NEAT-MODS,
the basic genotype, species diversification and steps of NEAT
are followed, but with the substitution of the nondominated
sorting of NSGA-II [23] being used, allowing Pareto-optimal
controllers to be evolved simultaneously for problems with
conflicting objectives. For the problem of robot navigation,
the conflicting objectives, as presented in [5], are achieving
goals while avoiding obstacles. NEAT-MODS uses NEAT’s
speciation. The NEAT-MODS process implemented for the
research presented in this paper is described in Algorithm 1.

E. Neuromodulation

According to Hebbian theory, synaptic plasticity is one
of the mechanisms of learning in neural circuits. Synaptic
plasticity, ∆w, is the strengthening or weakening of synapse
strength over time according to increases or decreases in their
activity[12]. As in [9], the updating of synaptic weights is
performed as per Equation 3 where η is the learning rate,
x is the activation level of the pre-synaptic neuron, y that
of the post-synaptic neuron, w the connection weight, and



Algorithm 1 NEAT-MODS
Initialization: A minimal topology network is defined with no
hidden layer nodes. One edge connects each input directly to
each output. An initial offspring population of individuals is
generated with randomly assigned weights. An empty parent
population is also defined.
While gens < gensmax, repeat the following until the
generational count has reached the termination condition.

1) Tournament: The NEAT genes of each offspring indi-
vidual are used to construct an ANN that is then used
to control a simulated robot.

2) Evaluation: The fitness of each offspring individual’s
ANN is calculated for each objective.

3) Combine Populations: The parent and offspring popula-
tions are combined for selection.

4) Ranking: The combined population is ranked using the
nondominated sorting algorithm of NSGA-II.

5) Species: The species affiliation of each individual in the
combined population is calculated as in NEAT.

6) Sorting: Individuals are grouped into their species, and
sorted within the species based on the nondominated
ranking from Step 4.

7) Sorting of Species: The species are sorted based on their
highest nondominated ranking individuals.

8) Selection: From top ranked species to lowest ranked,
the top ranking individual of each species is selected,
followed by the next top ranking individual of each
species. The process continues down the ranking of
each combined population species until the offspring
population is filled.

9) Parent Population: The new offspring population is
saved as the parent population.

10) Reproduction: As in NEAT, the mutation of ANN
weights by uniform perturbation and random replace-
ment, new node addition, new connection addition, con-
nection disabling, crossover and inter-species crossover
are performed on the offspring population in a proba-
bilistic manner.

11) Stopping criteria: Steps 1 through 10 are repeated un-
til the generational count has reached the termination
condition.

A,B,C,D are the correlation term, pre-synaptic term, post-
synaptic term, and constant weight increase or decay rate.
These parameters are tuned to adapt the synaptic plasticity.

∆w = η (Axy +Bx+ Cy +D) (3)

In the brain, some specialized neurons release chemical trans-
mitters to control the rate of learning of the connections
between neurons [24]. This phenomenon is called neuromod-
ulation and is considered to be a major mechanism producing
memory and learning in biological nervous systems [13]. The
neuromodulatory neurons control the amount of plasticity of
other neurons in biological organisms by using neurotransmit-
ters such as dopamine and serotonin [13]. The computational

theory on the roles of neuromodulatory systems and how they
mediate signals that regulate the learning mechanisms in the
brain are presented in [25]. Based on a review of experimental
data and theoretical models, a unified theory on the roles
of neuromodulators is presented. In this model, dopamine
controls the error in reward prediction, serotonin controls the
time scale of reward prediction, noradrenaline controls the
randomness in action selection, and acetylcholine controls the
speed of memory update.

Neuromodulation of the synaptic plasticity augments the
classic (Hebbian) learning rule by providing gating of the
plasticity of a synapse between two other neurons, by updating
the synapse after the neuron has fired [9], [14]. Increased
performance in ANNs through simple Hebbian plasticity has
previously been demonstrated, but shown to have limited
learning and memory capabilities in more complex tasks [9].
Controlling Hebbian synaptic plasticity by neuromodulation
has been presented as more powerful and biologically plausible
than simple Hebbian plasticity in [14]. In [13], neural networks
that employed neuromodulatory neurons were found to have a
clear advantage over those with no neuromodulatory neurons
based on experimental data.

A simplified version of neuromodulation is assumed in [6],
and a similar approach is used in this research. Here the model
of the neuromodulation activation for each neuromodulating
neuron is calculated using Equation 4, where wji is the weight
connection of the pre-synaptic neuron j and the post-synaptic
neuron i, and oj is the output of pre-synaptic neuron j.

mi =
∑
j

wjioj (4)

Applying neuromodulation from Equation 4 to the model
of synaptic plasticity described in Equation 3, the weight
between neuron j and neuromodulated neuron i is modified
using Equation 5 (oi is the output of the post-synaptic neuron
i, and oj is the output of pre-synaptic neuron j).

∆wji = η tanh
(mi

2

)
(Aojoi +Boj + Coi +D) (5)

Where mi represents the amount of neuromodulator (such
as dopamine) received and is the neuromodulation transmit-
ted by the neuromodulating neuron and connections. The
values A, B, C, and D can be determined in a variety
of manners, including evolutionary methods. Figure 2 shows
how neuromodulation is applied by a neuromodulating neuron
to neuromodulated neurons. Here, each weight represents a
synapse. The value of the weight represents the amount of
signal transmitted from the pre-synaptic neuron, through the
synapse, to the next neuron, the post-synaptic neuron.

Hebbian learning, and by extension neuromodulated learn-
ing, are unsupervised learning methods, as no desired value
is necessary. Unlike the backpropagation algorithm, no error
feedback is required in neuromodulated Hebbian learning, and
thus it is fully unsupervised, fulfilling one of the requirements
for fully autonomous robots. Evolutionary methods can be
used to determine the parameters of the neural networks,
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Fig. 2. Neuromodulation

including those of neuromodulation, and in these cases, the
objectives used in the evolutionary optimization could be
considered as a form of supervision.

III. NEAT-MODS WITH NEUROMODULATION

The combination of neuromodulation and NEAT-MODS
alternately tests the learning space with a genetic operator, and
then attempts to improve upon these results using neuromodu-
lated Hebbian learning to adapt the network during operation.
This approach allows exploration of the entire learning space,
and fine tuning to find each local error minimum, until a
solution with the global minimum error is found. The evolu-
tionary neurocontroller is assembled based on NEAT-MODS
[5], with network weights that are modified during each evalu-
ation tournament using neuromodulated Hebbian learning, as
applied to a single objective NEAT-based neurocontroller in
[10]. Here, we define a tournament as the time period during
which candidate controllers are both learning and evaluated to
determine their individual fitness. The NEAT node (neuron)
gene is augmented to include the synaptic plasticity terms
A,B,C,D, and a flag to denote if the node was standard
or neuromodulated. The NEAT connection (synapse) gene is
similarly augmented to include neuromodulatory neurons. In
the experiments presented here, the model of neuromodulation
allows neuromodulating neurons to modulate any neurons,
including themselves and other neuromodulating neurons.

A. Lamarckian Inheritance

Lamarckian inheritance is the term commonly used to
describe the hypothesis that a parent organism can pass on
characteristics acquired during its lifetime to its offspring
[26]. Here, Lamarckian inheritance is implemented by saving
the parent generation’s adapted weights after completion of
the neuromodulated learning period during each tournament.
Lamarckian inheritance extends the neuromodulated evolved
neurocontroller by allowing knowledge about the parent gen-
eration’s environment learned through neuromodulation to be
passed on to offspring populations. Thus offspring do not
have to relearn behaviours that were acquired during parent
generations, saving time and computational resources.

B. Neuromodulated NEAT-MODS with Lamarckian Inheri-
tance

Lamarckian inheritance is implemented by inserting a new
step (Step 2.5) into the procedure described in Algorithm 1.
At this new step, we save the offspring generation’s weights
adapted during Step 2 by re-encoding them in their respective
NEAT genes. Thus the weights that have been adapted by
neuromodulated learning during each tournament are available
for future populations. This architecture has previously been
demonstrated with a simulated maze and foraging task in [4].

IV. SIMULATION

The proposed evolved multiobjective Lamarckian-inherited
neuromodulated controllers are applied to simulated pursuer
agents in the pursuit-evasion game. The evader agents use a
simple controller that applies maximum thrust in the direction
of the pursuer agent’s original location.

A. The Neurocontrollers

The initial network topology is minimal. There are 3 input
neurons directly connected to two output neurons through 6
initially randomly assigned weights as shown in Figure 3. The

1 2 3

4 5
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OUTPUTS

Fig. 3. Initial Neural Network Topology

neurocontroller’s inputs are the evader range, evader bearing,
and ‘friend or foe’ signals. The neurocontroller outputs are the
robot’s thrust and steering commands. The network topology
is then augmented in a minimalist fashion, by a maximum
of one node gene and one connection per individual per
generation. The genotype is defined as in [7] with a list of
connection genes and a list of node genes. The node genes
have been augmented to include the synaptic plasticity param-
eters A,B,C,D. A learning factor of 0.05 was found to be
effective in [4], and is used here. As in [5], no simple neuron
biasing has been included in the neuron model. The process
outlined in Algorithm 1 (with the Lamarckian inheritance step
described in Section III-B, but without the speciation steps)
is then used to evolve the candidate neurocontrollers, with
neuromodulation being performed as described in Section II-E
during the tournament step.

B. The Pursuit-Evasion Game

A basic 2D pursuit-evasion differential game is used to
measure the performance of the proposed system. In each
game, one pursuer attempts to capture one evader. There are
no obstacles or walls. The pursuer is always placed at the
origin. The evader is placed at a radial distance of 1m from
the pursuer, but at a randomly determined angle. An evader
is considered captured if the distance between pursuer and



evader is less than 0.1m. If the evader has not been captured
with 600 time-steps of simulation, equivalent to 60s, the game
is terminated, and considered a draw. Both agents have a mass
of 1kg, and a drag coefficient of 0.295. This value is based on
drag coefficients of similar vehicles. The pursuer can produce
a thrust of 0.1N, the evader 0.09N. Both agents can produce
thrust in any direction.

A population of 44 pursuer individuals is maintained. The
population size of 44 is used in [5] and [4]. The populations
are evolved for 150 generations as in [5] and [4].

C. Objective Functions

For each generation, the individual candidate pursuer neu-
rocontrollers are evaluated based on their performance against
a simple evader opponent in the pursuit-evasion game. The
candidate pursuer neurocontrollers are each evaluated using
two objective functions. The two objective functions F1 and
F2 for the pursuer are:

F1 = 2H +
1

1 +R
(6)

F2 =
1

1 + T
(7)

Where H is the Boolean outcome of the game (1 for
a capture, otherwise 0). The distance between pursuer and
evader at the end is R. The average thrust of the pursuer is
T . The purpose of F1 is to reward the pursuer for capturing
the evader, and achieving the minimum final distance from the
evader. The purpose of F2 is to minimize energy consumption,
by minimizing the amount of thrust produced during the
simulation.

The optimal F2 agent is one that uses no energy, and
remains stationary. It is impossible to maximize F1 and capture
the evader used here while remaining stationary. Therefore
objective functions F1 and F2 are considered contradictory,
and a Pareto-optimal set of neurocontrollers should exist.

V. RESULTS

As evolutionary algorithms are stochastic in nature, repet-
itive runs (a run being a random seeded completion of Al-
gorithm 1) are generally used to obtain statistically relevant
results. Therefore, the simulation results are exhibited statis-
tically as the standard deviation, and mean of 30 independent
runs (as in both [5], and [6]) of 150 generations. Table I
presents the performance of Lamarckian-inherited neuromod-
ulated simulated pursuer controllers.

Objective Fitness Mean Max Standard Deviation

F1 2.8504 2.9279 0.37243

F2 1 1 0

TABLE I
NEUROCONTROLLER FITNESS

Figure 4 shows the mean and standard deviation of per-
formance objective F1 for each generation. After an initial

period of approximately 50 generations, Lamarckian-inherited
neurocontrollers capable of capturing the evader agents have
been evolved.
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Fig. 4. Neurocontroller Objective F1 Performance versus Generation.

Figure 5 shows the mean and standard deviation of perfor-
mance objective F2 of the neurocontrollers for each genera-
tion. After an initial period of approximately 10 generations,
the neurocontrollers have evolved to maximize the F2 objec-
tive. This is the trivial case, as an F2 value of one indicates
that the evolved pursuer agent has optimized objective F2,
and not moved at all. After the initial 10 generations there is
always at least one agent in every population that exhibits this
behaviour, as the mean and maximum over the generations are
one (with standard deviation zero) in Table I.
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Fig. 5. Neurocontroller Objective F2 Performance versus Generation.

Figures 6 and 7 show the pursuer and evader agent’s paths.
Initial positions are marked with an ’x’. The evader path is a
red solid line with dot markers. The pursuer path is shown
as black dots. For clarity, the path data points have been
down-sampled by a factor of five (only one in 5 position
points is displayed). A black circle indicating the capture
radius surrounds the pursuer agent’s final position. The game
outcome and game number are displayed in the figure title
area. Figures for objective function F2 are not shown, as
individuals that dominate objective F2 are the trivial case



where the pursuing agent does not move, as discussed in
Section IV-C.

Figure 6 shows the paths of the evader agent and pursuer
agent with the best performance objective F1 over all 30 runs.
This pursuer’s neurocontroller has captured the evader, but
does not follow the most direct, efficient path.
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Fig. 6. Robot Path for Neurocontroller with Best F1 = 2.9279 Performance
Objective (F2 = 0.9095).

As the objective of this research is to synthesize pursuer
neurocontrollers that are not only capable of capturing the
evader, but doing so using the minimum amount of energy, the
best neurocontroller is not the one with the best F1 value, but
some compromise between best F1 and best F2 values. The
top ranked neurocontroller as defined by the nondominating
algorithm (as used in NSGA-II) is one such compromise. This
neurocontroller is considered ‘top ranked’ in that it is not
dominated by any other neurocontroller. Figure 7 shows the
paths for the evader and pursuer agent with the top ranked
(NSGA-II dominating) performance objective F1 over all 30
runs. This pursuer neurocontroller has captured the evader, and
follows a more direct, efficient path than that shown in Figure
6. This neurocontroller has a slightly less fit F1 value, but has
still managed to capture the evader. However, it has a fitter
F2 value, and hence it has consumed less energy than the
neurocontroller used in Figure 6. Thus efficient and compact
neurocontrollers with unsupervised learning can be evolved
that are capable of capturing evaders while minimizing energy
consumption.

Figure 8 shows the evolved neural network structure with
the highest ranked neurocontroller over all runs and genera-
tions. Non-neuromodulated neurons are shown in blue, with
regular connections being blue lines. Connections that have
been disabled by the NEAT mutation algorithm are shown in
grey. Neuromodulating neurons and connections are magenta,
and neuromodulated neurons are red. The values displayed for
each edge are the evolved neuromodulated weight values for
the synapse associated with their respective edge. The inputs
are numbered one through three, the outputs four and five. The
neurocontroller’s inputs are the evader range, evader bearing,
and ‘friend or foe’ signals. The neurocontroller outputs are
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Fig. 7. Robot Path of Top Ranked Neurocontroller (F1 = 2.9199, F2 =
0.9150)

the robot’s thrust and steering commands. This neurocontroller
has two neuromodulating neurons (nodes 6 and 9), and one
neuromodulated neuron (node 4). The synapse (connection)
between nodes 5 and 7 has been disabled, and as a result,
there is no input signal to node 7, and therefore no output
signal from node 8. It is likely that eventually, this entire
sub-circuit would be disabled by the evolutionary algorithm;
however, it could also be removed with a simple pruning
algorithm, yielding a compact, efficient neurocontroller that
is also effective in capturing evaders and energy efficient.
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On average, after 150 generations, the Lamarckian-inherited
neuromodulated neurocontrollers used 9.6 neurons and 23.2
connections. The average number (over all 30 runs) of nodes
(neurons, all types), connections, and neuromodulated nodes
per generation is shown in Figure 9. The bars display the
standard deviation from the mean.

While, as shown in Figures 4 and 5, after 150 generations
the objective fitnesses have converged to final values, the size
of the neural networks has not yet converged to final values as
shown in Figure 9. In other experiments involving thousands
of generations, we have observed that the size of Lamarckian-
inherited networks does converge to a final size in terms of
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number of both neuromodulating and non-neuromodulating
nodes and connections. In future publications we intend to
show the common factors among these long term evolved
neural networks.

VI. CONCLUSIONS

An evolutionary multiobjective neuromodulated controller
with unsupervised learning, capable of controlling autonomous
vehicles subject to the effects of mass and drag, is demon-
strated. By optimizing the conflicting objectives of ‘capturing
evaders’ and ‘minimizing energy consumption’, efficient neu-
rocontrollers are evolved. Combining neuromodulation with
evolution provides a powerful tool for exploring the search
space. This combination gives the unique ability to test the
search space with a genetic operator, and then improve upon
these results using neuromodulated learning to adapt the
network during operation. This approach allows exploration
of the entire search space, and fine tuning to find each
local maximum, until a solution with the global maximum
is found. Including Lamarckian inheritance allows transfer
of learned behaviour from parent to offspring populations,
reducing convergence times and improving performance.

The ability of the proposed architecture to control vehicles
subject to mass and drag is demonstrated in a series of
experiments with a simulated evolved vehicle pursuing an
evader vehicle. The results demonstrate that the augmentation
of neuromodulated NEAT-MODS with Lamarckian inheritance
gives an effective and efficient tool for generating neuro-
controllers by allowing pretraining of offspring generations
based on parent generations’ unsupervised learning obtained
while the neurocontrollers are evolving. Compact and efficient
neurocontrollers for pursuer agents with nonzero mass and
drag, capable of capturing an evader while simultaneously
minimizing energy consumption, are consistently evolved.
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