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Abstract—In this paper, we present an approach based on
robust probabilistic optimization via simulation to take into
account uncertainties in the data used for model calibration.
We apply this work to a fishery resource management problem
and show that the results obtained can be used in real situation.
The model links two time series that are difficult to estimate.
During the calibration phase, we are able to identify if the
estimates are consistent with each other and to correct them.
It reduces uncertainties, improves our knowledge of the system
and increases calibration accuracy. We also identify the limits of
this approach and its optimal context of use.

Index Terms—model calibration, optimization, uncertainties

I. INTRODUCTION

The French Research Institute for Exploitation of the Sea
has published a report [1] showing that overexploitation affects
about a quarter of the fish stocks fished in France. As the
oceans are the main source of protein of our planet, it is
essential to propose effective stock management strategies.

This is the objective of the PO FEDER MoonFish project1

on the scale of Corsica, a territory where fishing is still
mainly coastal and artisanal. Four main areas (Bastia, Balagne,
Bonifacio, Ajaccio) share more than 1000Km of coastline,
with 42 ports and anchorage points for approximately 200
boats (49 in Bastia, 23 in Balagne, 44 in Bonifacio and 76 in
Ajaccio) and 300 fishermen. Computer tools for planning and
decision support allow us to study the evolution of stocks and
identify strategies to help decision-makers.

However, the beginning of any study on fishing strategies
is to know the population dynamics of the species being
exploited. It is the model calibration phase. This phase consists
of moving from a theoretical, mathematical model to a one
adapted to a real situation. We are going to look for the
values of the generic parameters in order to correspond to
the observed reality. This can be done automatically, with op-
timization, or manually with expertise. That is to say, experts
in the studied domain will estimate themselves the values for
the parameters [2], potentially through real experiments and
measurements. They can also carry out a simulation with a set
of parameters which seems coherent, observe the results and
adapt them until satisfaction. In marine ecology, the ecopath
with ecosim software is a reference and the model proposed

1https://moonfish.universita.corsica/

is entirely based on an expert calibration approach [3]. The
automatic methods are mainly based on optimization and a
set of real data. The goal is to optimize the model parameters,
perform simulations and measure the quality of the results
by comparing them to real data. However, the two approaches
are not incompatible and it is often possible to combine expert
knowledge and optimization to improve results [4] or to ensure
the physical consistency (validation) of the proposed solutions
[5].

On the other hand, some models can have an infinite
number of equilibrium points by compensation between the
parameters. This is called the equifinality problem [6] [7]. This
problem is all the more important when the data are imprecise
time series as we will illustrate later in this document.

So, a part of optimization problems in scientific computing
have multi-solution nature, there is more than one combination
of the decision variables that can optimize the objective value
and find the best one is a challenge. The works presented
in this article deal to propose and test an approach based on
robust optimization via multiple simulations in order to take
into account uncertainties in the input data and correct them
when it is possible. We apply it to a real world problematic
in an environment where data are always under uncertainties
and can never be considered truly reliable. We at least need to
consider a margin of error in the estimation or use probability
laws.

This article begin with a background section to define the
optimization, model types and show some relative works on
model calibration. We then present a preliminary work, classi-
cal in model calibration, but which presents some limitations
in our case. Thus we propose an approach to overcome the
identified problems and show its results.

II. BACKGROUND

A. Optimization

In order to ensure the preservation of endangered stocks at
minimum cost to fishermen, methods must be developed and
the problem formally defined with: (1) objective functions:
mathematical equations, simulation results, fuzzy verbal de-
scription, etc.; (2) constraints to be respected.

Optimization is the process of automatically search the
values of a set of parameters to get the best possible results
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on the different objectives and satisfying the constraints. Opti-
mization methods can be deterministic or stochastic. When the
problem complexity is too high, we favor stochastic approxi-
mation methods such as metaheuristics. These are extremely
versatile optimization algorithms that can easily be adapted
to a very large number of problems. They allow acceptable
solutions to be found in a limited time, but cannot guarantee
to find the optimal one. On the other hand, they are subject
to a problem illustrated by the ”no free lunch theorem” [8]: it
is very difficult to determine in advance which metaheuristic
will be the most efficient on a given problem. This is why, in
the rest of the paper, we will use several different algorithms
but only present the results of the best one.

The optimization can be used as a preliminary work to help
calibrating models [9]. This phase consists, from real data,
to carry out simulations with different sets of parameters in
order to find the one, or those, allowing to retrieve the known
data. An external expertise can also be used [10] to limit the
parameters in coherent values, or to add constraints to ensure
the coherence of the mathematical model with the reality of
the studied system.

The equifinality problem [7] introduces a notion of uncer-
tainty. Indeed, if we cannot be sure of the accuracy of the
calibration data, it may be necessary to move towards methods
capable of managing uncertainties such as robust optimization.
Many methods exist, but here we will focus on a simulation
context. In this paper, we use a so-called direct method which
consists by using the uncertain informations directly in the
evaluation function and adapting the algorithm to take them
into account. Metaheuristics, and more particularly evolution-
ary algorithms, seem to be especially adapted to obtain robust
models capable of taking uncertainties into account [11] [12].

B. Relative works on model calibration via optimization

The success of ecopath with ecosim [13] shows that, in
some cases, the expert approach alone is valid. But it also
has limitations. For example, [14] requires the use of an
optimization method to determine a parameter of a physical
model of thermal degradation, as it is not experimentally
determinable. Thus, model calibration can often be considered
as a global optimization problem [15]. Most of the time, a
stochastic optimization method is used. Deterministic methods
can be considered but they do not allow to solve complex
problems because the cost of calculation becomes too high.

In [16], the authors propose the use of global optimization
to calibrate a mathematical model of DNA synthesis. Based on
a set of experimental data, they use different types of methods.
First manually via expertise to determine a parameter. They
then use a local search based on this parameter to successfully
improve the expert’s accuracy. They then propose the same
operation using a global search rather than expert knowledge
and obtain better results. Coupling expertise and optimization
is therefore not incompatible [17]. According to [4] it should
even be encouraged because it can reduce the need for
calibration and ensure the physical consistency of the solutions
[18].

In some cases, multi-objective optimization methods can be
considered [19] but we won’t address it in this article because
we will always have a single objective.

The use of monte carlo simulation can also be useful
to ensure the robustness of the solution [20]. In addition,
the use of methods based on the neighborhood [21] can
allow uncertainties to be taken into account directly during
the calibration phase. It can be very efficient on complex
models. However, neighborhood measurement can be difficult
to define.

In marine biology, accurate data acquisition is very difficult.
In the context of Corsican exploitation, where a large number
of species are concerned, it is totally impossible to acquire
accurate data for each one. Uncertainty must therefore be taken
into account right from the model calibration phase. So the
model must also be adapted to these problems. We know that
it will be impossible for us to use a complex model due to a
lack of knowledge about the system. So using a simple model
with a fast calculation time can make it easier for us to deal
with uncertainties.

C. Fishery models

Fishery models are based on biological models of popula-
tion growth. We find on one side the global models [22] and on
the other side the structural models that distinguish individuals
in class of age, size or weight classes.

Structural models offer high precision for efficient manage-
ment. Nevertheless, they require a large amount of population
and farm data to be calibrated.

Global models, which consider the population as a whole
with a general biomass, have the advantage of being usable
and configurable with a small amount of data. By having
knowledge of catches and fishing effort2 applied by the ex-
ploitation, the parameters can be deduced. A particular notion
of these models is to consider that without exploitation, the
population tends to equilibrate. On the other hand, the loss of
precision avoids any regulation in terms of the weight or size
of individuals.

Most of the works focuse on a particular species with
an industrial type of exploitation. This type of study is not
possible in this case. Fishing on the Corsican coast is artisanal
and with small boats exploiting many species. This type
of exploitation makes it difficult to obtain accurate data on
a particular species, which is why we identifyed that it is
preferable to move towards a global type model.

III. PRELIMINARY WORKS

A. Graham-schaefer model

We choosed the Graham-Schaefer global model [23], a
population dynamic model based on the stock production
model introduced by [24]. In a fishery context, it is based
on the following equations :

B(t+ 1) = B(t) + r(1− B(t)

k
)B(t)− C(t) (1)

2Indicator quantifying how intensively fishing has been carried out



Fig. 1. Problem with accurate knowledge

C(t) = qE(t)B(t) (2)

With:
• k : biomass at equilibrium (in mass);
• r : the growth rate per unit of time;
• q : caturability per unit of effort;
• B(t) : the biomass at time t (in mass);
• E(t) : the fishing effort apply from time t to t+ 1

The simplicity of this model allows us to calibrate it even
when a little amount of data is available. Indeed, for any pair
of time series (C(t), E(t)) coherent between them, there is
an infinity set of parameters allowing to find these data. The
model being simple, the simulation time is very short which
is also an advantage in situation of evaluation via multiple
simulations.

B. Model calibration

Based on two datasets for each species:
• catches estimations, C(t), during 58 years presented in

[25]
• and estimations of fishing effort associated to these

catches defined by value intervals
Our goal is to find the parameters set of the Graham-

Schaefer model allowing, via simulation, to find back the
known catches using the estimate efforts.

Thus, at each iteration and for each potential solution, a
simulation of the fishery is conducted using known fishing ef-
forts. This will determine catches associated with the proposed
population dynamics. The efficiency of the proposed solution
is then estimated by calculating the quadratic error committed,
i.e. the difference between estimated and simulated catches.

f(x) =

nbY ears∑
i=0

[Ci − Csi]2 (3)

We have defined several configurations of this problem:
• 10 or 58 years of data
• a level of knowledge of the fishing effort: perfect; accu-

rate (limits of ±5% of the true value); no knowledge.

Fig. 2. Evolution of average fitness on 100 replications of the problems with
58 years with perfect knowledge

Fig. 3. Calibration results for consistent data estimations

On each one, we tested 6 algorithms from the literature:
General Variable Neighborhood Search algorithm [26] [27]
(GVNS); Ant Bee Colony [28] (ABC); Differential Evolution
[29] (DE); Particule Swarm Optimization [30] (PSO2007), Im-
proved Grey Wolf [31] (IGW); Whale Optimizatoin Algorithm
[32] (WOA).

For each, we used the same parameters as in the associated
publication. In addition, we limit the computing time to 1
Standard Time Unit [33] (STU) which is equivalent to 7s on
1 thread of a 4GHz Intel I7 processor.

Figure 1 represents the optimization process on the problem
with accurate knowledge. Without knowledge, we set Et >
0 ∀ t. With perfect knowledge, the E set is fixed and managed
by the simulation.

The results are presented in the table I where NA means
Not Applicable. They allow us to conclude that assuming
perfect knowledge, PSO2007 is the algorithm to use. Indeed,
even if other algorithms have close average performances, its
convergence time is optimal as shown in the figure 2. Finally,
still according to the table I, if we know that the data are
inaccurate, GVNS should be used. We can also note that the
DE presents competitive results up to 10 years of simulation.

Figure 3 shown the simulated and real catches curves are
superimposed, so the calibration could not be better. However,
a problem arises, these results can be found with a large
number of parameter sets.

To illustrate this, we have carried out 2000 calibrations
on fully simulated data for which we know the result to be
obtained during the calibration phase. For each one, we use



GNVS ABC DE PSO2007 IGW WOA
years knowledge mean t (tsu) mean t (tsu) mean t (tsu) mean t (tsu) mean t (tsu) mean t (tsu)
10 perfect 2,68E-2 7,20E-1 1,23E-3 6,80E-1 2,45E-6 2,40E-1 8,98E-2 9,40E-3 4,68E-4 2,60E-2 5,27E-2 3,90E-1
10 accurate 4,18E-5 1,40E-1 1,13E-5 4,20E-1 4,39E-2 7,10E-1 9,60E-7 2,76E-1 1,22E-4 2,50E-1 7,60E-1 8,20E-1
10 none 1,00E-8 8,60E-2 1,81E-3 5,70E-1 3,83E-1 8,30E-1 NA NA 7,41E-1 8,60E-1 NA NA
58 perfect NA NA NA NA 7,70E-7 6,90E-1 8,30E-7 1,10E-2 2,74E-3 8,60E-2 NA NA
58 accurate 2,50E-5 4,40E-2 2,46E+0 8,90E-1 NA NA NA NA 2,75E+0 7,90E-1 NA NA
58 none 9,98E-3 9,20E-2 NA NA NA NA NA NA NA NA NA NA

TABLE I
MEANS FITNESS AND CONVERGENCE TIME FOR EACH ALGORITHM ON EVERY PROBLEMS

the same catches and efforts data, then we made a multivariate
kernel density estimate following the Silverman rule of thumb
[34] to have a representation of the density of the solution
space.

In figure 4, each point represents a perfect solution to the
calibration problem. The color represents the density of the
solutions in space. The darker the color, the denser the area.
Conversely, the closer the color is to yellow, the lower the
density is. We deliberately removed a parameter in order to
be able to make a graphic representation.

The first test, figure 4(a), with almost perfect knowledge of
efforts (5% maximum variation) and catches presents a set of
points relatively close to each other. On the other hand, when
knowledge is relatively low, figure 4(b), the results are much
more chaotic and it is impossible to determine which solution
to use.

Our work therefore consists of proposing an approach to
calibrate the model by taking into account the confidence rate
given to each year of data.

IV. APPROACH AND RESULTS

A. Formal description of the approach

We start from two time series denoted C(t) and E(t) such
that ∀t, C(t) ∼ PCt(x), E(t) ∼ PEt(x),∀x ∈ R+ with P a
known probability distribution of some kind, potentially dif-
ferent for each data. Any P is discretized into value intervals
for which we calculate the probability of drawing a value in
this interval. The width required for each of these intervals
can be determined through sensitivity analysis. Moreover, via
simulation, for a known E series, we can calculate C(t)
corresponding to ∀t (see algorithm 1 line 8). Thus, we can
compute the probability f(C,E) (line 10 and 15) that a set of
value (C,E) corresponds to reality :

f(C,E) =
∏
t

min(PCt
(C(t)), PEt

(E(t))) (4)

By simulating all possible scenarios for the E series (lines
5 to 13), we can calculate the probability that the proposed
solution is valid regardless actual time series (line 15) :

F (q, r, k, B0) =

nSim∑
i=0

f(Ci, Ei) (5)

Moreover, if the two time series are consistent with each
other, simulating all possible scenarios according to E(t) ∼
PEt(x) should allow us to find PCt in the case of a perfect

solution. Otherwise, ∀x ∈ PCt
,
∑
PCt

computed(x) = F ⇒
PCtcomputed(x)

F = PCtestimates(x). Significant differences
between PCt

estimatee and PCtcomputed

F will then be sign of
inconsistency between time series and thus of estimation error
over the year t.

This approach is highly parallelizable on GPU which allows
us to easily explore all possible scenarios. In case it is
impossible to simulate all the scenarios, a significant set can
be used. Our goal will be to find (q, r, k, B0) maximizing F ,
thus obtaining the most coherent solution with respect to our
data. At the output of each simulation we obtain a set of final
probabilized biomass values that can be used as an input for
a future robust optimization process. This allows us to know
the evolution of the stock in the best and worst case but also
in the most probable set of cases.

To validate our approach, the next two sections first focus on
an arbitrarily defined theoretical case study that is consistent
with reality.

Algorithm 1 Compute fitness
Require: PCtPEt∀t, (q, r, k, B0), n number of years for

each simulation, nsimu the total number of simulation,
E[nsimu][n] the effort to apply for each year and sim-
ulation, Bfinal[nsimu] set to store the final biomass of
each simulation

1: Each GPU thread:
2: for j = threadIndex; j < nsimulation; j+ =
threadStride do

3: B=B0
4: proba[j]=1
5: for i = 0; i < n; i++ do
6: c = q ∗B ∗ E[j][i]
7: B = B + r ∗ (1−B/k) ∗B − c
8: proba[j] = proba[j] ∗min(PCi

(c), PEi
(E[j][i]))

9: end for
10: Bfinal[j]=B
11: end for
12: Thread synchronization
13: fitness =

∑nsimu
i=0 proba[i]

B. Application on consistent estimations

To illustrate our approach, we decided to start from theo-
retical data that we generated by simulating the evolution of
a random species. Thus, a first test on perfect estimates will
allow us to validate the coherence of the approach.



Fig. 4. Kernel Density Estimation on 2 tests. (a) accurate knowledge about real catches and fishing efforts. (b) Large value intervals for the fishing effort
dataset

For this, we start from an arbitrary scenario that could
happen in practice:

• 10 years of efforts and catches estimations
• 6 of these, yri, are very reliable
• the 4 others, yei, are estimates that follow a normal

distribution, centered on the real value and which we have
varied σ during different tests.

• effort and catch estimates are consistent with each other.

For reliable years, we consider that E(t) is perfectly accu-
rate and that the estimate of C(t) does not differ by more than
20

As before, it is possible that the parameters compensate
each other and therefore there may be several solutions. We
have therefore chosen a multimodal optimization algorithm
allowing us to propose several solutions for final expertise
and validation.

We use the Dual Strategy Differential Evolution (DSDE)
algorithm presented in [35]. A solution is only composed of
the parameters (q, r, k,B0) of the Graham-Schaeffer model
and is evaluated following the algorithm 1.

The table II shows the results obtained according to the
variability of the probability laws. Note that the more precise
the effort estimates are (low σE), the better the results. On
the other hand, a higher precision on C than on E gives
relatively poor estimates. However, this result can easily be
explained. Indeed, as we explore in functions of E, if E
covers a large range of values while C covers a small range,
a large number of scenarios will have inconsistent C values
and thus f(C,E) = 0. However, the proposed solution is not
necessarily to be rejected and this may help to identify years of
data requiring re-estimation, or even correction (section IV-C).

The figure 5 shows the distribution of the final solutions in
the space composed of the parameters (q, r, B), the parameter
k has been removed to allow a graphical representation. We
obtain a set of quasi-equivalent fitness solutions. The relatively
small number and their dispersion can easily allow an expert

σC σE Fmean σC σE Fmean
C(t)/5 E(t)/5 0.874579 C(t)/15 E(t)/5 0.015499
C(t)/5 E(t)/10 0.965582 C(t)/15 E(t)/10 0.208958
C(t)/10 E(t)/5 0.075843 C(t)/15 E(t)/15 0.893316
C(t)/10 E(t)/10 0.857864 C(t)/15 E(t)/20 0.979369
C(t)/10 E(t)/15 0.991102 C(t)/15 E(t)/25 0.996413

TABLE II
RESULTS DEPENDING OF THE VARIABILITY OF PCt ET PEt

Fig. 5. Solutions of the calibration with perfect estimations of the probability
laws

to analyze the results and direct us to the most biologically
consistent solution.

In addition, the figure 6 represents the evolution of biomass
over time for all the coherent simulated scenarios of one of
the proposed solutions. The final biomass varies by about
10% between the different scenarios. This value may differ
depending on the data and the variability of the estimates
but it is fairly representative of them. Moreover, for each of
these values we know the probability that it is correct. We can
therefore easily use it in a future robust optimization aimed at
improving operating strategies.

Finally, the figure 7 shows the probability laws PCt esti-



Fig. 6. Biomass evolution between time for each simulation

Fig. 7. Comparison between estimated and computed probability law with
perfect estimations

mated (in red) and obtained via simulation in blue for the 4
unreliable years (respectively t=2, 3, 5, 8). As we expected
in the case of perfectly consistent estimates, we find almost
perfectly the estimated distributions.

We will now build on these initial results to identify and
correct inconsistencies in the data.

C. Identification and correction of inconsistent data

We start again from the previous scenario on which we have
made the following modifications:

• Among ye, the first catch estimated is centered on the
right value, the 3 others are overestimated. The user
doesn’t know this.

• As effort estimates are more easily feasible, they will be
more reliable than catch estimates.

The overestimates range from σ(t)/4 to 2∗σ(t) covering a
range of variability from very low to very high. Surprisingly,
the variability of the overestimate has little impact on the
results over this range. Beyond this upper limit, the estimated
probabilities become so low that the success of the proposed
approach becomes very random.

The goal here will be to modify the estimated PCt farthest
from the computed PcomputedCt

probability distribution in
order to get as close as possible to a coherent solution. Here we
will let the algorithm 2 run automatically. In real situation, it
can obviously be used to spot potential errors and let an expert
update the laws of probability himself.

We start (line 1) by calculating the set of solutions following
the method defined above. For each year of simulation, we
update PcomputedCt (lines 2 to 6). Thereafter, if the laws of
probability allow it, we calculate the parameters corresponding
to PcomputedCt

. A calculation of relative distance between
the estimated and calculated parameters then makes it possible
to identify the year ymax for which the estimate is the worst
(line 7 to 11), a sign of an estimation error. These parameters
are finally modified in the direction of those of PcomputedCt

(line 12). Note that a bad estimate can easily impact the
probability laws of other years, so it is important to modify
only one per iteration. In the case where the probability laws
do not allow a quick calculation of the parameters governing
it, these steps can be replaced by a calculation of the distance
between the different values of the discretization intervals and
then a direct update of these values.

Figure 8 shows a diagram of the complete system including
algorithm 1 and 2.

Algorithm 2 improvement of inconsistent data
Require: PCt

PEt
∀t

1: Use DSDE with the compute fitness algorithm (algorithm
1) and keep fitness, proba and C sets of the best solution

2: for j = 0; j < nsimulation; j ++ do
3: for i = 0; i < n; i++ do
4: PcomputedCi

(Cj(i))+ = proba[j]/fitness
5: end for
6: end for
7: for i = 0; i < n; i++ do
8: Compute parameters of the probability law

PcomputedCi (µ, σ for our normal law)
9: Compute relative distance between estimated and com-

puted parameters
10: Keep ymax the year with the maximum difference
11: end for
12: Modify the PCymax parameters in the sens of

PcomputedCymax

13: Loop on first step until a stop criterion is reached

The figure 9 shows the results of this algorithm for the
different years of unreliable estimates with:

• In yellow, what we have called perfect law, which is the
law of probability that we used in the previous application
and that should be found.

• In red, the probability law PcomputedCt at the first
iteration of the algorithm

• In blue, the probability distribution PcomputedCt
after

50 iterations.

We notice that at the beginning, even for t = 2, the only year
for which we kept a correct estimate, the initial PcomputedCt

expectation is slightly out of line. This difference is even
greater for the other years. After 50 iterations on the other
hand, most of the errors are corrected and we find almost
perfect probability laws.



Fig. 8. Complete system diagram

Fig. 9. Comparison between estimated and computed probability law with
wrong estimations

V. CONCLUSION, LIMITATIONS AND PERSPECTIVES

In this paper we have proposed several model calibration
methods by first showing the inefficiency of a classical ap-
proach in imprecise data situations. To overcome this, we
have proposed a robust probabilistic approach that allows us
to propose reliable solutions for as many scenarios as possible.
It also allows us to identify certain inconsistencies in the input
data and to correct them.

Thus, this approach seems very useful for studying phe-
nomena such as marine biology, where data are scarce, hence
imprecise estimates but rapid simulations.

However, it has certain limitations. Indeed, in the case
where the bad estimates are not all in the same direction

(overestimation or underestimation), it can happen that the
algorithm never finds a good result. The intervention of an
expert is then absolutely necessary to modify the data himself
according to the detected inconsistent years.

Moreover, this implies that at least the effort estimates
should be consistent. The algorithm only identifies inconsis-
tencies in the (C,E) pair, but consistency between time series
does not guarantee that they are correct. An expertise is then
essential before concluding anything.

The set of final biomass values obtained makes it possible
to limit this parameter, which is difficult to estimate otherwise,
to a relatively small number of parameters. This can finally
serve as an input for a future robust optimization process
using the fuzzy set formed by the parameters determined via
optimization and their associated probability of likelihood.
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