
Online Parameter Tuned SAHiD Algorithm for
Capacitated Arc Routing Problems

Changwu Huang∗†, Yuanxiang Li† and Xin Yao∗
∗Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,

University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,
Department of Computer Science and Engineering,

Southern University of Science and Technology, Shenzhen 518055, China
†School of Computer Science, Wuhan University, Wuhan 430072, China

Email: huangcw3@sustech.edu.cn, yxli@whu.edu.cn, and xiny@sustech.edu.cn (the corresponding author)

Abstract—The Capacitated Arc Routing Problem (CARP) is
a general and challenging arc routing problem. As the problem
size increasing, exact methods are not applicable, and heuristic
and meta-heuristic algorithms are promising approaches to solve
it. To obtain good performance, parameter values of heuristics or
meta-heuristics should be properly set. In recent years, automatic
parameter tuning, which includes off-line and online parameter
tuning, has attracted considerable attention in the evolutionary
computation community. At present, parameters are usually
determined through simple off-line parameter tuning, such as
empirical analysis or grid search, when designing algorithms for
CARP. However, using off-line parameter tuning on CARP has
some disadvantages, among which the computational cost is the
serious one. This work proposed an online parameter tuning
approach using exponential recency-weighted kernel density
estimation (ERW-KDE), and combines it with the SAHiD algo-
rithm, which is an hierarchical decomposition based algorithm
for CARP, to constitute the online parameter tuned SAHiD
(OPT-SAHiD) algorithm. The experimental results show that
OPT-SAHiD significantly outperforms the compared algorithms
on two CARP benchmark sets owing to the proposed online
automatic parameter tuning approach. The proposed online
automatic parameter tuning approach based on ERW-KDE not
only improves the performance of SAHiD algorithm, but also
removes the additional computational overhead required for off-
line parameter tuning.

Keywords—Capacitated arc routing problem, automatic pa-
rameter tuning, online parameter tuning, kernel density estima-
tion.

I. INTRODUCTION

The Capacitated Arc Routing Problem (CARP) [1] is the
most general arc routing problem and a difficult combinato-
rial optimization problem. Specifically, CARP is the routing
problem of servicing a set of edge (or arc) on a graph (or
network) using a fleet of capacity constrained vehicles which
are initially located at a node called depot. Usually, each
edge in CARP stands for a street in the real world and the
graph represents a street network. The goal of the problem
is to minimize the total routing cost. Practical examples
and applications of the CARP include street sweepers, snow
removal vehicles, waste collection, and so forth. Because of its
wide application , CARP has received more and more attention
in the past few decades and many heuristic and meta-heuristic
algorithms have been designed to solve it.

Theoretically, the CARP and its variants are NP-hard [2].
Thus, exact methods are only suitable to small-size CARP
instances, and heuristic and metaheuristic algorithms are effec-
tive alternatives to address CARP. A large number of heuristic
and meta-heuristic algorithms, for instances, Path-Scanning
[3], Ulusoy’s method [4], genetic algorithm [5], and etc., have
been proposed or introduced to solve CARP during the past
few decades. Most of the existing approaches are designed for
relatively small-scale CARP instances which usually consist
of up to a few hundred edges and tasks. With the rapid
development of cities, real-world CARPs usually involve a
large number of roads and tasks, such as several hundred and
thousand edges. Consequently, efficient approaches for large-
scale CARPs are highly desired. It is more computationally
expensive to find a near-optimal or sub-optimal solution for
large-scale CARPs than that for small-scale ones due to
the problem size increasing. There are, to the best of our
knowledge, only a few recent works focus on large-scale
CARPs. Tang et el. [6] proposed the SAHiD algorithm for
large-scale CARPs that consists of thousands of edges (or
arcs).

To efficiently solve a problem or to provide high-quality so-
lutions, in addition to designing effective strategies or schemes
to create candidate solutions and to improve their quality,
the value of control parameters should be properly set by
algorithm designers or end-users since parameter setting has
strong impact on performance of parameterized algorithm. The
so-called parameter setting problem [7], that is, to identify
proper parameter setting for algorithms, is an important and
challenging task in the design and application of algorithm.
Parameter setting problem is mainly divided into off-line
parameter tuning (usually referred to as parameter tuning) [8],
where suitable parameter values are identified before the algo-
rithm starts to run, and online parameter tuning (also known
as parameter control) [9], where the values of parameters
are changing dynamically during the execution of algorithm
according to some strategies. Recently, automatic parame-
ter setting methods, that is, automatic approaches to handle
parameter setting problems, has draw considerable attention
from algorithm designers and end-users. Many automatic off-
line parameter tuning approaches have been proposed and

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

applied to parameterized algorithms for hard problems. In-
terested readers can find more methods and details in [10]
which comprehensively reviewed off-line parameter tuning
approaches. Online parameter tuning, however, is still an
open issue that requires further research and development
since it is more challenging than off-line tuning problem. [9]
briefly summarized the development of parameter control in
evolutionary computation and pointed out the challenges in
this area.

Automatic parameter tuning approaches, however, are rarely
proposed and employed in CARP area. At present, algorithm’s
parameter values are commonly set by means of empirical
analysis when designing or applying algorithms to CARP.
When designing the SAHiD algorithm in [6], empirical tests of
25 different parameter settings were conducted to determine a
proper one from them. This approach is commonly known as
grid search, which is one of the simplest off-line parameter
tuning methods. To improve above simple off-line param-
eter tuning approach and further enhance the performance
of SAHiD algorithm, Huang et el. [11] adopted Bayesian
optimization as an off-line parameter tuning approach to
automatically tune two parameters of the SAHiD algorithm.
The results showed that the off-line automatic parameter
tuning approach significantly improve the performance of
the SAHiD algorithm. However, off-line parameter tuning
approaches have some disadvantages. The most serious one is
that off-line parameter tuning is usually time-consuming and
computational expensive because a large number of possible
parameter value combinations need to be explored before
finding a proper parameter setting. This is especially the case
for computationally expensive problems, such as large-scale
CARPs. Additionally, the obtained parameter setting from off-
line tuning may be not proper or optimal for problem instances
at hand. Since the parameter values are optimized according
to the empirical performance estimated on training problem
instances in off-line tuning, the obtained parameter setting
usually cannot achieve peak performance on problem instances
that are significantly different from the training instances. Ad-
ditionally, in off-line parameter tuning, the obtained parameter
setting keeps unchanged in solving the problem, but the proper
or optimal parameter values may changes at different steps or
stages of the search process. Online parameter tuning methods
can eliminate or alleviate above drawbacks. Therefore, this
paper focuses on introducing online parameter tuning approach
to SAHiD algorithm with the goal of improving algorithm
performance and alleviating above described disadvantages
suffered by off-line parameter tuning.

In this work, an online parameter tuning approach based
on exponential recency-weighted kernel density estimation
(ERW-KDE) is proposed and applied to the SAHiD algorithm
to constitute an online parameter tuned SAHiD (OPT-SAHiD)
algorithm. In OPT-SAHiD, its parameter values are determined
by the online parameter tuning procedure and dynamically
changed during the problem solving process, thus the pa-
rameter setting task is addressed in an online fashion and
the computational overhead for exploring different parameter

value combinations required in off-line parameter tuning is
removed. To examine the effectiveness of the proposed online
parameter tuning approach and the OPT-SAHiD algorithm,
experimental studies are conducted on two CARP benchmark
sets. The experimental results show that the OPT-SAHiD
algorithm achieves better solution quality than the investigated
algorithms, because of the use of the proposed online param-
eter tuning approach.

The rest of the paper is organized as follows. First, the
background, including the definition of CARP and the SAHiD
algorithm, are introduced in Section II. Then, the proposed
online parameter tuning approach ERW-KDE and the OPT-
SAHiD algorithms are presented in Section III. Section IV
provides experimental studies to evaluate the performance of
our proposed approach. Finally, a brief conclusion is given in
Section V.

II. BACKGROUND

A. The Capacitated Arc Routing Problem (CARP)

The CARP considered in this paper is defined on a con-
nected undirected graph (or network) G(V,E), where V
denotes the set of nodes (or vertices) and E represents the
set of edges (or arcs). Each edge e ∈ E associates with a
deadheading cost c(e) > 0 and a demand d(e) ≥ 0. An
edge with positive demand is referred to as a task, and all
the edges that have positive demands form the so-called task
set T = {τ ∈ E|d(τ) > 0}. A fleet of identical vehicles with
capacity Q are located at the node called depot, which is a
predefined node v0 ∈ V . The goal of CARP is to minimize the
total cost of a set of routes for the fleet of vehicles to serve all
the edges in task set T , subject to the following constraints:

1) each route must start and end at the depot v0,
2) each task τ ∈ T is served exactly once,
3) the total demand of tasks served in each route, i.e., the

total demand of tasks served by a vehicle, cannot exceed
the vehicle capacity Q.

B. The SAHiD Algorithm

In this subsection, the SAHiD algorithm proposed in [6] is
briefly described. The SAHiD algorithm is an iterative algo-
rithm that involves the loop of create new solution based on
previous one and improve it by local search. To handle large-
scale CARPs, SAHiD adopts the hierarchical decomposition
scheme which decomposes the tasks into subgroups and solves
the induced sub-problems recursively. The general procedure
of the SAHiD algorithm taken from [12] is presented in
Algorithm 1.

Before describing the execution process of the SAHiD
algorithm, its three main operators, namely, the HDU, LS, and
Reconstruction operators, are introduced. The HDU operator,
which is a combination of the hierarchical decomposition (HD)
and the Ulusoy’s split [4] procedures, is to create candidate
solutions for CARP based on the task set. In HDU operator,
firstly, the HD procedure dedicates to finding a permutation
of all tasks (a giant tour that passes all tasks) regardless of
the capacity constraint. Next, the Ulusoy’s split procedure is

applied on the obtained permutation to split it into a set of
(several) feasible routes that satisfy the capacity constraint,
so that a candidate solution is achieved. The LS (local search)
operator, which combines the reverse operator and merge-split
operator [13], aims at improving the quality of the created
candidate solution. The Reconstruction operator creates a new
solution based on an existing solution. Specifically, it firstly
splits an existing solution into a set of virtual tasks and then
the HDU operator is applied on this virtual task set to create
a new solution.

Next, the executing process of SAHiD algorithm is briefly
described. Firstly, the HDU operator is used to generate an
initial solution s of CARP before entering the loop (Line 2).
Then, the initial solution s is improved by the LS operator
(Line 3). After that, the SAHiD algorithm enters into the
iterative procedure (Line 5 to 14). In each iteration, a new
solution s′ is generated by applying the reconstruction operator
on current solution s (Line 6). This new solution s′ is then
improved by using LS operator on it (Line 7). Lastly, the
threshold accepting idea is used to determine whether the
solution s′ will be selected to enter in the next iteration or not
(Line 8 to 13). Above iterative procedure is terminated until
the computational resource, such as maximum iterations or run
time, is exhausted. The current best solution s∗ is returned as
the obtained solution (Line 15). More details about the SAHiD
algorithm can be found in [6].

In the original SAHiD algorithm, the two parameters, that is,
the scale parameter β for HDU operator and the probability α
of splitting a route into sub-routes for reconstruction operator,
were set by the authors via experimental analysis. Specifically,
the performance of SAHiD algorithm with 25 different α
and β value combinations were evaluated on 4 representative
CARP instances, and the parameter setting that achieved best
performance was selected. The two parameters β and α both
are real-valued parameters that take values within [0, 1]. In the
original SAHiD algorithm given in [6], these two parameters

are set as β = 0.1 and α = 0.1. In the following of this paper,
the SAHiD algorithm using β = 0.1 and α = 0.1 is named as
the Original-SAHiD algorithm for the sake of simplicity.

III. ONLINE PARAMETER TUNING USING EXPONENTIAL
RECENCY-WEIGHTED KERNEL DENSITY ESTIMATION

A. Kernel Density Estimation

Kernel density estimation (KDE) [14] is a popular unsuper-
vised learning approach to estimate the unknown probability
density function (PDF) of random variables based on a set of
observations or samples [15]. It can estimate the PDF for both
univariate and multivariate (or multidimensional) data set [16].
As a nonparametric density estimation method, KDE does
not require the assumption of the underlying distribution, it
automatically learns the PDF from the observed data set. This
nonparametric nature and its flexibility make KDE become a
very popular and widely-used density estimation approach.

Let x1, . . . ,xn ∈ Rd denote a set of independent and iden-
tically distributed (IID) samples drawn from some distribution
with unknown density function p. The KDE model or estimator
of the density function p(x) is expressed as,

p̂n(x) =
1

nhd

n∑
i=1

K(
x− xi

h
), (1)

where K : Rd 7→ R is known as kernel function and h > 0 is
the bandwidth (also known as smoothing parameter). One of
the most commonly used kernel functions [17] is the Gaussian
kernel,

K(x) =
1√
2π
e−

x2

2 . (2)

KDE firstly smooths out each data sample into a bump,
which is defined by the kernel function K(x). Then, it
obtain a density estimator by summing up all these bumps.
Consequently, KDE model will output a high density value at
the regions where many data points are located, since many
bumps are around there. On the contrary, for regions where
only a few data samples are observed, the density value will
be low.

B. Exponential Recency-Weighted KDE

In this paper, we attempt to use KDE to estimate the
probability distribution function of promising or successful
parameter values for SAHiD based on the used parameter
settings during the execution of the algorithm. Since the
promising parameter value may change at different stages of
the algorithm execution, its probability density changes over
time. In other words, the probability density of successful
or promising parameter values is nonstationary. It is well
known that nonstationary problems are often encountered in
reinforcement learning problem, for instance, the nonstation-
ary multi-armed bandit (MAB) problems [18]. An effective
and commonly used approach to address nonstationary MAB
is to use the so-called exponential recency-weighted average
action value [18] in stead of classical average action value

in stationary MAB. In this work, we adopt the idea of ex-
ponential recency-weighted average and bring the exponential
recency-weights into KDE, which is referred to as Exponential
Recency-Weighted Kernel Density Estimation (ERW-KDE).

Given that the samples of parameter setting x1, . . . ,xn ∈
Rd are collected incrementally during the run of algorithm,
that is, xk is acquired after xk−1, each sample xi is assigned
a exponential recency-weight (ERW) wi = αn−i, where α
is called the discount which takes value within (0, 1). Since
α is less than 1, the weight given to the very last sample
xn is 1, and weights given to prior samples xi(i < n)
decreases exponentially. In other words, weights on newly
collected samples are larger than that of the older ones. The
density is estimated by KDE based on x1, . . . ,xn ∈ Rd

with consideration of the assigned weights. In this way, more
emphasis is put on the last samples. Consequently, the density
estimator in Equaton 1 is changed into Equation 3 in ERW-
KDE.

p̂n(x) =
1

nhd

n∑
i=1

wiK(
x− xi

h
), (3)

C. Online Parameter Tuned SAHiD Algorithm

The basic idea of online parameter tuned SAHiD (OPT-
SAHiD) algorithm using ERW-KDE is to learn probability
distribution of promising parameter value from the previously
used parameter settings and sample new parameter setting dur-
ing the execution of the algorithm. Firstly, different parameter
values are used in the beginning iterations of SAHiD and
the successful or promising parameter settings are identified
and collected. Here, the parameter setting with which the
algorithm generates a candidate solution with better quality
than that of the previous iteration is marked as successful
or promising. When enough data is collected, the density
distribution function of the successful parameter values is
learned by ERW-KDE based on the collected data set. New
parameter settings are then draw from the distribution function
estimator from ERW-KDE. By this means, the parameter
values are dynamically sampled during the execution of the
algorithm. The OPT-SAHiD is illustrated in Figure 1.

It is assumed that, before the algorithm starts running
on a CARP instance, no prior knowledge about promising
parameter values, i.e., which parameter values will performs
well, is available. Thus, in the first few iterations, two param-
eters α and β are uniformly sampled within (0, 1). So that,
different parameter values are applied and the parameter space
is explored to identify promising regions. If a new solution
generated by using a parameter setting is better than the best
solution of the previous iteration, the used parameter setting is
considered as successful. The successful parameter settings are
collected and saved in the data set D. When there are enough
data samples in D (in this paper, at least 10 samples in D),
the probability distribution p(α, β) is estimated by training a
ERW-KDE model on data set D. Then, parameter setting for
next iteration is sampled from the learned distribution p̂(α, β).
Once there is a new sample, i.e., a successful parameter setting,
added to D, the ERW-KDE model is retrained and the density

distribution estimator is updated. The two parameters α and
β are considered together as a two-dimensional variable for
ERW-KDE, so that, the jointed effects of these two parameters
on algorithm performance is considered in the online param-
eter tuning in this work.

IV. EXPERIMENTAL STUDIES

To validate the performance of our proposed OPT-SAHiD
algorithm, empirical studies are conducted to evaluate the per-
formance of OPT-SAHiD by comparing it against the Original-
SAHiD on two benchmark sets. Furthermore, to conform the
advantage of online parameter tuning approach using ERW-
KDE, another two algorithms the Random-SAHiD, in which
ERW-KDE is not used and (α, β) are uniformly sampled
within (0, 1) in each iteration, and the Adaptive-SAHiD
proposed in [12] are also compared with OPT-SAHiD. The
difference between OPT-SAHiD and Random-SAHiD is that
the latter dose not use ERW-KDE to sample (α, β). And
the difference between OPT-SAHiD and Adaptive-SAHiD is
that the latter uses KDE rather than ERW-KDE. In other
words, in Adapive-SAHiD, when estimating the distribution
of promising parameter value by KDE, all the data samples
taken equal weights as 1 and the exponential recency-weights
(ERW) are not used.

A. Experimental Setting

Two CARP benchmark sets, that is, the EGL-G [19]
benchmark set of a medium-scale CARP instances, and the
Hefei [6] benchmark set of large-scale CARP instances, are
used in experimental studies. The stopping criterion of the
investigated algorithms are set the same as the maximum
iterations bmax = 500. The experimental results are collected
by executing each algorithm for 25 independent runs on each
CARP instance. Meanwhile, all the investigated algorithms
are started from the same initial solution, which make the
comparison fair. For online parameter tuning approach using
ERW-KDE in OPT-SAHiD, the Gaussian kernel is adopted
and the bandwidth is set as h = 0.2, the discount is set as
α = 0.9.

B. Experimental Results

The total cost of solution, i.e., the costs of final solutions
achieved by four investigated algorithms on two benchmark
sets, are listed in Tables I and II, respectively. The columns
headed “Best”, “Average” and “Std” present the best, average
and standard deviations of total costs among the 25 runs,
respectively. The minimal average costs, i.e., the average qual-
ity of solutions, on each test instance among the investigated
algorithms are marked with “*” and in bold. The OPT-SAHiD
is compared with the Original-SAHiD, the Random-SAHiD
and the Adaptive-SAHiD by using Wilcoxon rank-sum test
with the level of significance 0.05 over 25 runs on each test
instance. If the results of a compared algorithm is worse
than that of OPT-SAHiD on test instances according to the
statistical test, these results in columns headed “Average” are
marked with underline. Otherwise, no symbol is marked on

CARP Instance G

Generate an Initial Solution
s using 𝐻𝐷𝑈(𝛽, 𝐺)

Generate New Solution 𝑠′ by
𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝛼, 𝛽, 𝑠)

Improve Solution s by 𝐿𝑆(𝑠)

Stopping
Criteria

Final Solution s*

Improve Solution 𝑠′ by 𝐿𝑆(𝑠′)

Acceptance of solution 𝑠′

Original-SAHiD Online Parameter Tuning using Exponential Recency-Weighted Kernel

Density Estimation (ERW-KDE)

Collect successful

parameter settings, i.e.,

pairs of 𝛼, 𝛽 .

Data Set 𝑫

𝑫 ≥ 𝑛 ?

Randomly sample

(𝛼, 𝛽) within (0,1).

Sample (𝛼, 𝛽) by KDE model
according to Ƹ𝑝(𝛼, 𝛽).

Estimate density Ƹ𝑝(𝛼, 𝛽) by
ERW-KDE based on data set D.

𝑠′ is better

than s ?

Parameter setting (𝛼, 𝛽).

Collect current (𝛼, 𝛽) pair to 𝑫.

No Yes

Yes

Learn the distribution

of promising parameter

settings.

Online Parameter Tuned SAHiD (OPT-SAHiD)

Fig. 1. Illustration of the Online Parameter Tuned SAHiD (OHT-SAHiD).

the results. For the three compared algorithms, the # of “w-
d-l” summarizes the number of “Win-Draw-Loss” from the
Wilcoxon rank-sum test.

The experimental results given in Tables I and II show
that the OPT-SAHiD apparently achieves the best performance
among the investigated algorithms. In terms of average cost
of the solution, the OPT-SAHiD achieves the smallest average
costs, i.e., higher solution quality, on all 10 instances of EGL-
G test set and on 9 out of 10 instance of Hefei test set.
Considering the results of statistical tests, the OPT-SAHiD
performs significantly better than the other three compared
algorithms on the majority of the 20 test CARP instances.

Firstly, according to the results of statistical tests between
the OPT-SAHiD and the Original-SAHiD, the OPT-SAHiD
performs better than the Original-SAHiD on 9 instances of
EGL-G test set and 6 instances of Hefei test set. Considering
that the values of α and β in Original-SAHiD are determined
by off-line parameter tuning, which takes some additional
computational cost, this computational overhead is not re-
quired in OPT-SAHiD since it performs parameter tuning in an
online method. Thus, with the aid of online parameter tuning,
the OPT-SAHiD not only performs better than the Original-
SAHiD, but also removes the computational overhead required
by off-line parameter tuning.

Furthermore, according to the results of statistical tests
between the OPT-SAHiD and the Random-SAHiD, the OPT-
SAHiD performs better on all 10 instances of EGL-G test set
and 8 instances of Hefei test set. Additionally, in the com-
parison between the OPT-SAHiD and the Adaptive-SAHiD,
the OPT-SAHiD performs better on 7 instances of EGL-G
test set and 6 instances of Hefei test set. It is obvious that
the OPT-SAHiD performs better than the Random-SAHiD
and the Adaptive-SAHiD. Since the only difference between
OPT-SAHiD and Random-SAHiD is that the latter dose not
use ERW-KDE and the main difference between OPT-SAHiD
and Adaptive-SAHiD is the latter dose not use exponential
recency-weight (ERW) in KDE, it is no doubt that the advan-
tages of the OPT-SAHiD over the three compared algorithm,
namely the Original-SAHiD, Random-SAHiD and Adaptive-
SAHiD, is credited to the proposed online automatic parameter
tuning method using ERW-KDE. Consequently, this indicates
that the proposed online autmatic parameter tuning approach
based on ERW-KDE is effective, and this method brings
significant performance improvement for SAHiD algorithm on
CARPs.

Additionally, several average convergence curves of each
algorithm on some test instancces from EGL-G and Hefei
test sets are presented in Fig. 2. In these convergence plots,

TABLE I
RESULTS ON EGL-G BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS.

Instance |T | Original-SAHiD Random-SAHiD Adaptive-SAHiD OPT-SAHiD
Best Average Std Best Average Std Best Average Std Best Average Std

EGL-G1-A 347 1046510 1077890 12684 1067200 1109020 19349 1056330 1077510 13073 1061720 1076100* 9099
EGL-G1-B 347 1192080 1215120 11590 1215730 1255710 21219 1191650 1217030 12339 1182670 1207030* 10284
EGL-G1-C 347 1305990 1360630 16903 1368280 1403510 17003 1326620 1352670 14858 1319410 1346070* 14626
EGL-G1-D 347 1485660 1519800 18187 1517850 1560110 26845 1469520 1497770 15625 1456160 1482270* 12827
EGL-G1-E 347 1667960 1699810 19750 1670280 1730880 26316 1620220 1649810 15980 1616210 1636630* 12403
EGL-G2-A 375 1168060 1193310 13593 1187810 1235780 19847 1157570 1191610 15758 1159270 1184970* 13371
EGL-G2-B 375 1286780 1326010 18270 1340910 1365080 15497 1291350 1319070 17361 1277030 1308690* 13898
EGL-G2-C 375 1435220 1480480 20537 1475310 1526860 26747 1417920 1460010 13950 1421880 1447970* 12296
EGL-G2-D 375 1623460 1657090 20641 1653120 1696170 19289 1577690 1609310 16963 1553820 1592900* 20359
EGL-G2-E 375 1784170 1833590 22534 1809000 1857940 21189 1745260 1771290 16646 1729440 1748860* 13532

of “w-d-l” 9-1-0 10-0-0 7-3-0

TABLE II
RESULTS ON HEFEI BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS.

Instance |T | Original-SAHiD Random-SAHiD Adaptive-SAHiD OPT-SAHiD
Best Average Std Best Average Std Best Average Std Best Average Std

Hefei-1 121 251848 261543 5243 251122 258205 4279 250632 257650* 4625 250869 259812 5150
Hefei-2 242 457984 473186 7395 464145 473861 6729 459629 473151 5929 457993 471981* 6555
Hefei-3 364 616723 628681 7810 614935 631914 7287 609746 628383 8070 611008 626548* 8058
Hefei-4 485 795461 808768 7344 808976 822577 7924 793902 807645 6222 791898 805728* 7491
Hefei-5 606 1023600 1040980 9536 1038900 1061850 12980 1025290 1033030 4412 1014880 1026250* 6452
Hefei-6 727 1181250 1208900 13909 1188050 1221970 15589 1161250 1179940 12118 1152040 1172020* 9994
Hefei-7 848 1423620 1443690 14810 1412690 1446270 15520 1375310 1392270 9811 1366130 1379110* 10151
Hefei-8 970 1640400 1665010 11777 1632290 1662510 16861 1572420 1592380 14304 1548750 1578230* 17165
Hefei-9 1091 1833870 1860820 19245 1818680 1857910 22398 1754030 1791920 17619 1730590 1768220* 24882
Hefei-10 1212 2016250 2041750 14987 1987010 2025830 17547 1920690 1965560 20587 1902580 1936600* 22237

of “w-d-l” 6-4-0 8-2-0 6-4-0

it can be observed that Original-SAHiD performs better at
the beginning which may thanks to off-line tuning, but the
convergence speed of OPT-SAHiD and Adaptive-SAHiD is
gradually accelerated owing to the online parameter tuning
approach. And finally OPT-SAHiD and Adaptive-SAHiD out-
perform the Original-SAHiD. Although, OPT-SAHiD gener-
ally starts to speed up later than Adaptive-SAHiD, it converges
more quickly than Adaptive-SAHiD in late stage and finally
get better solutions. Because Random-SAHiD does not use
online parameter tuning, it just randomly sample parameter
values during the run of algorithm, no evident enhancement
in convergence speed is observed during the run. This also
validates that the proposed online parameter tuning approach
based on ERW-KDE is an effective method to solve parameter
setting problem.

V. CONCLUSION

This paper proposed an online parameter tuning approach
based on exponential recency-weighted kernel density estima-
tion (ERW-KDE) and introduced the so-called OPT-SAHiD
algorithm for CARP. This online parameter tuning method
firstly learns the distribution of successful or promising pa-
rameter values by using ERW-KDE and then samples new pa-
rameter values according to the estimated distribution function
during the execution of the algorithm. Experimental studies
are performed to evaluate the performance of our proposed
OPT-SAHiD and the effectiveness of online parameter tuning
approach based on ERW-KDE. The experimental results prove
that the OPT-SAHiD significantly outperforms the compared

algorithms, that is, the Original-SAHiD, Random-SAHiD, and
Adaptive-SAHiD. This validates the effect of the proposed
online automatic parameter tuning approach. By using the
online automatic parameter tuning approach, OPT-SAHiD not
only obtains significant performance improvement but also
eliminates the parameter setting problems for end-users.

ACKNOWLEDGMENTS

This work was supported by Guangdong Basic
and Applied Basic Research Foundation (Grant No.
2019A1515110575), Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong
Introducing Innovative and Enterpreneurial Teams (Grant
No. 2017ZT07X386), Shenzhen Science and Technology
Program (Grant No. KQTD2016112514355531), the Program
for University Key Laboratory of Guangdong Province (Grant
No. 2017KSYS008).

REFERENCES

[1] S. Wøhlk, A Decade of Capacitated Arc Routing. Boston, MA: Springer
US, 2008, pp. 29–48.

[2] R. van Bevern, R. Niedermeier, M. Sorge, and M. Weller, “Chapter 2:
The complexity of arc routing problems,” in Arc Routing. Society for
Industrial and Applied Mathematics, oct 2013, pp. 19–52.

[3] B. Golden, J. Dearmon, and E. Baker, “Computational experiments with
algorithms for a class of routing problems,” Computers & Operations
Research, vol. 10, no. 1, pp. 47–59, jan 1983.

[4] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
European Journal of Operational Research, vol. 22, no. 3, pp. 329–337,
dec 1985.

Fig. 2. Several convergence curves on test CARP instances. Each curve shows the average costs obtained over 25 runs from each investigated algorithm on
a CARP instance.

[5] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “Evolutionary algo-
rithms for periodic arc routing problems,” European Journal of Opera-
tional Research, vol. 165, no. 2, pp. 535–553, sep 2005.

[6] K. Tang, J. Wang, X. Li, and X. Yao, “A scalable approach to capaci-
tated arc routing problems based on hierarchical decomposition,” IEEE
Transactions on Cybernetics, vol. 47, no. 11, pp. 3928–3940, nov 2017.

[7] H. H. Hoos, Automated Algorithm Configuration and Parameter Tuning.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 37–71.

[8] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and ana-
lyzing evolutionary algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 19–31, 2011.

[9] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter control in
evolutionary algorithms: Trends and challenges,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 2, pp. 167–187, April 2015.

[10] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter
tuning methods for metaheuristics,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 201–216, 2020.

[11] C. Huang, B. Yuan, Y. Li, and X. Yao, “Automatic parameter tuning
using bayesian optimization method,” in 2019 IEEE Congress on Evo-
lutionary Computation (CEC), June 2019, pp. 2090–2097.

[12] C. Huang, Y. Li, and X. Yao, “Adaptive-SAHiD algorithm for ca-
pacitated arc routing problems,” in 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), December 2019, pp. 1668–1675.

[13] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neigh-
borhood search for capacitated arc routing problems,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 1151–1166, oct 2009.

[14] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist., vol. 33, no. 3, pp. 1065–1076, sep 1962.

[15] Y.-C. Chen, “A tutorial on kernel density estimation and recent ad-
vances,” Biostatistics & Epidemiology, vol. 1, no. 1, pp. 161–187, 2017.

[16] T. A. O’Brien, K. Kashinath, N. R. Cavanaugh, W. D. Collins, and
J. P. O’Brien, “A fast and objective multidimensional kernel density
estimation method: fastkde,” Computational Statistics & Data Analysis,
vol. 101, pp. 148–160, 2016.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard
Duchesnay, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Computers & Operations Research,
vol. 35, no. 4, pp. 1112–1126, apr 2008.

