
An Adaptive and Near Parameter-free Evolutionary
Computation Approach Towards True Automation

in AutoML
Benjamin Evans, Bing Xue, Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, P.O. Box 600

Wellington 6140, New Zealand
{benjamin.evans,bing.xue,mengjie.zhang}@ecs.vuw.ac.nz

Abstract—A common claim of evolutionary computation meth-
ods is that they can achieve good results without the need
for human intervention. However, one criticism of this is that
there are still hyperparameters which must be tuned in order
to achieve good performance. In this work, we propose a near
parameter-free genetic programming approach, which adapts
the hyperparameter values throughout evolution without ever
needing to be specified manually. We apply this to the area of
automated machine learning (by extending TPOT), to produce
pipelines which can effectively be claimed to be free from human
input, and show that the results are competitive with existing
state-of-the-art which use hand-selected hyperparameter values.
Pipelines begin with a randomly chosen estimator and evolve to
competitive pipelines automatically. This work moves towards a
truly automated approach to AutoML.

I. INTRODUCTION

In recent years, machine learning has made its way into
many application areas, which has attracted a wide variety of
interest from many users from outside the machine learning
world. This demand for machine learning has spurred the
area of automated machine learning (AutoML), which aims to
make machine learning accessible to non-experts [1], or allows
experts to focus on other aspects of the machine learning
process rather than pipeline design [2].

However, while two of the goals of AutoML are automation
and ease of use, most current state-of-the-art methods become
a new optimisation problem themselves: rather than searching
for pipelines, one must search for appropriate hyperparame-
ters. Granted, this is a simpler search space than the original
one, but is still an undesirable property and prevents true
human-free automation.

In this work, we aim to overcome the aforementioned
limitation by proposing an adaptive evolutionary computation
method, which requires no specification of evolutionary hy-
perparameters and finds good performing pipelines automati-
cally. The proposed method starts with a single randomly se-
lected estimator with no preprocessing steps and automatically
evolves to a well-performing pipeline without requiring any
hyperparameters to be set. The entire evolutionary process is
achieved without any human configuration.

The major contribution is a truly automated approach to
AutoML, based on a near parameter-free evolutionary com-
putation approach, which is able to rival human selected
hyperparameters for current state-of-the-art systems.

II. BACKGROUND AND RELATED WORK

There are three related areas here: parameter-free optimisa-
tion, adaptive hyperparameters, and automated machine learn-
ing. Unfortunately, there are no current works on parameter-
free (or adaptive) automated machine learning, so we look at
the areas separately in this section, before introducing the first
adaptive parameter-free AutoML approach in Section III.

A. Automated Machine Learning

The goal of AutoML can be summarised as “producing test
set predictions for a new dataset within a fixed computational
budget” [3]. In this work, we focus particularly on classifica-
tion problems, although AutoML can also be applied to other
ML tasks such as regression and clustering. Essentially, the
idea is to treat the process of constructing a machine learning
pipeline, as a machine learning or optimisation problem itself.
In doing so, the repetitive/tedious task of pipeline design is
automated.

The main approaches to AutoML are TPOT [4, 2], auto-
sklearn [3] and AutoWEKA [5, 6]. TPOT (short for Tree-
based Pipeline Optimization Tool) is based on evolutionary
computation, and both auto-sklearn and AutoWEKA are based
around Bayesian optimisation. TPOT and auto-sklearn both
optimise scikit-learn pipelines [7], whereas AutoWEKA op-
timises WEKA pipelines [8]. All methods look to generate
a machine learning pipeline by maximising some internal
scorer on the training set (for example with an internal cross-
validation) over a given amount of time.

It has been shown there is little difference between the meth-
ods in terms of resulting performance [9, 10]. We therefore
choose to extend TPOT, by removing the need for specifying
hyperparameter values. TPOT was selected as a base for two
reasons. Firstly, TPOT features a truly flexible structure, so
the discovered pipelines can be considered more “automatic”
than the fixed pipeline structure of auto-sklearn (which has

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

TABLE I: TPOT default hyperparameters

Hyperparameter Default Value

Number of generations 100
Population size 100
Offspring size 100
Mutation rate 0.9
Crossover rate 0.1
Initial tree size 1-3
Optimisation metric Accuracy
Evaluation strategy 5-fold CV
Number of CPUs 1
Max running time (total) NA
Max per model evaluation time. 5 Minutes

one feature preprocessor, one classifier, and up to three data
preprocessors), which was a human-defined limit. Secondly,
as TPOT uses evolutionary computation as an optimisation
method, this allows for parameter-free extensions more na-
tively.

1) Hyperparameters: Each AutoML comes with its own
range of hyperparameters. Table I summarizes the hyperpa-
rameters for TPOT and gives the default values.

There are certain hyperparameters here which we do not
automatically optimise, which are shown in italics in the table.
The reason that these hyperparameters are not optimised is
that they are either regarding the availability of computational
resources, or purely dependant on the desired outcome (i.e.
with the scoring function). As we mention below, [11] looks
at beginning the automation of such hyperparameters via a
meta-learning approach based on similar datasets.

B. Parameter-Free and Adaptive Evolutionary Computation

The proposed approach is both Adaptive (values change
over time), and parameter-free (no need to specify the values).

Adaptive hyperparameters for Evolutionary Computation
has seen many practical (and theoretical) works. An overview
of such methods is given in [12] and [13], however, most
methods require the specification of additional hyperparame-
ters, e.g., a threshold [14] or a step size [15]. So rather than
removing a parameter, they tend to introduce an additional
parameter. Most adaptive work falls under this category as it
is difficult to adapt a hyperparameter without introducing new
ones (as is done here).

The importance of appropriate hyperparameter settings in
EC is known [16, 17], and the idea of parameter-free (or near
parameter-free) optimisation has also been explored for EC
[18, 19]. However, in the context of AutoML, surprisingly
there is very little work on this parameter-free optimisation.

Feurer and Hutter [11] look to automate the selection of
the evaluation strategy in AutoML based on a meta-learning
strategy assuming a tabular result containing results on a target
metric for a set of meta-datasets. The possible evaluation
strategies considered are: Holdout (67:33 train:test), k-fold
Cross-validation (k=5), and successive halving (minimum bud-
get=16, maximum budget=256, discard ratio=2). This is only a
step towards automation, as the hyper-hyperparameters of the
evaluation strategy are not optimised. That is, the train:test

split of holdout is not selected, likewise, the number of folds
in cross-validation is not automated, and successive halving
still needs values for minimum budget, maximum budget and
discard ratio to be set. This is looked at specifically in the
context of auto-sklearn, although this is applicable to others
(such as TPOT). In this sense, the meta-learning approach
proposed in [11] can be seen as complementary to the method
proposed here (as different hyperparameters are optimised).

The goal of this work is to propose a method capable
of achieving equivalent results as TPOT without requiring
the need for human-defined/manually set evolutionary hyper-
parameters. We achieve this by developing an adaptive and
parameter-free extension of TPOT.

III. PROPOSED METHOD

In this section, we develop a new method for AutoML based
on TPOT. The key contribution is how the search is performed.
All evolutionary hyperparameters are removed and adapted at
run time. These are discussed in the following section.

A. Adaptive Hyperparameters

There are several hyperparameters common to evolutionary
computation methods. These define how the optimisation
process should behave, and how the search space should be
explored. The most common ones are the population size,
crossover and mutation rates, and the number of generations.
These are explored in more detail in the following sections.

1) Population Size: Population size (µ) is an important
hyperparameter for EC. A size too small may prevent the
search from finding good solutions, and in the extreme case
(size of 1) just behaves as hill climbing (i.e. a (1 + 1)-EA
[20]). A size too large wastes computation [21], which may be
better spent on further generations and can, in fact, be harmful
in certain situations [22], and in the extreme case behaves as
random search (if there is only time for a single generation).
Somewhere between this “too small” and “too large” size is
the ideal size, but of course, this is a complex choice and this
depends heavily on the search space in question. Furthermore,
this ideal size could change between generations [23]. If we
use the evolutionary reference, we can see population growth
occurs in nature and this idea of a fixed number of individuals
rarely exists in natural evolution.

Here, we propose an adaptive scheme which follows the Fi-
bonacci sequence [24], i.e., 0, 1, 1, 2, 3, 5, 8, 13, Of course,
we skip the size = 0 case, as this does not make sense for a
population size. The Fibonacci sequence was chosen for a va-
riety of reasons. It was important to follow an existing integer
sequence, as we are trying to remove the need for manually
specifying any hyperparameters without introducing new ones
(for example a population growth rate). If we continue with
the evolutionary perspective, then the Fibonacci sequence is a
good candidate as it can be seen in the population growth of
certain animals [25], and appears frequently throughout nature
[26, 27]. [28] refer to the Fibonacci sequence as a “shining star
in the vast array of integer sequences”. But more importantly,
this sequence provides a steady increase in population size at

a manageable rate, unlike say doubling each time (i.e. with
exponential growth).

Although we do not just want to grow the population size
every generation, as we want the smallest population size that
allows for adequate improvement. With this in mind, there are
three possible cases: increase the population size, decrease the
population size or maintain the population size.

• If no progression is made (maximum fitness equal to
the previous maximum fitness), the population size is
increased to the next number in the sequence.

• If progress is made on both objectives (better score with
a lower complexity), the population size is decreased to
the previous number in the sequence.

• If only one of the two objectives is improved (i.e.
higher score with same or higher complexity, or lower
complexity with the same score), the population size is
maintained as we are progressing at an “acceptable” rate.

2) Offspring Size: In this work, we use the (µ + λ) EA,
which is the default method in TPOT. By default, µ = λ, with
both values set to 100, so (100 + 100).

The problem of modifying the offspring size is more com-
plex than modifying the population size alone. However, since
µ is dynamic, the choice of λ is less important than with a fixed
µ. Most work on the offspring size considers the special case
of (1+λ), where λ is “increased roughly to the probability of
producing an improving offspring” [29]. Jansen et al. [29] also
claim that a dynamic size “might lead to a performance similar
to that of a (1 + λ) EA with an optimal value of λ without
having to determine that optimal value a priori”, which is the
goal we aim to achieve for all hyperparameters in this work.

In the previous subsection, we increase µ based on past
performance. We then fix the value of λ to be the difference
between the current number fib(i) and the next number
fib(i+1) in the Fibonacci sequence, λ = fib(i+1)−fib(i).
For example, if we have a population size of µ = 144, the
offspring size would λ = 89. Since µ is dynamic (unlike the
theoretical cases of µ = 1), there is little extra knowledge we
can use for specifying λ, which is why we reuse the knowledge
from selecting µ.

If µgen+1 > µgen, the result will be that all the offspring
are used (i.e. no selection performed). If µgen+1 <= µgen,
then only the best µgen+1 will be selected from µ + λ. In
all cases, λ is positive so a generation will always produce
offspring.

3) Crossover, Mutation, and Reproduction: In many EC
methods, the sum of the crossover, mutation and elitism rates
should be 1. However, in this case, since we are using the
µ+λ algorithm, the elitism is implicit. The best µ individuals
will be kept from µ+ λ, so top performers are never lost.

We are left with the crossover and mutation rates, which
should sum to 1. Of course, the rates need to begin somewhere.
Since our first population size is 1, the mutation rate begins
at 1 and the crossover at 0. The reason for this is we can not
perform crossover with a single individual, so this is the only
option.

For subsequent generations, the rates become adaptive. We
do not introduce any new hyperparameters (as this would
defeat the parameter-free idea) such as a decay rate, or the
number of generations without improvement, instead, we base
the rates purely on statistics about the population.

Mutation randomly changes an individual in an effort to
promote diversity. Therefore, in populations with low diversity,
mutation should be performed frequently (as crossing over two
structurally similar). As a “naive” measure of diversity, we
use the standard deviation σ of the population’s fitness. Since
this is multiobjective (maximise performance and minimise
complexity), we only use the ‘performance’ measure here and
not both objectives, in this case, F1-score when discussing
fitness. This is a fast and approximate measure of diversity,
but we call this naive as it is not necessarily a measure
of behavioural or structural diversity. In future work, we
would like to explore the idea of semantically, rather than
just “fitness” diversity.

With σ as a “diversity” measure (although strictly this is just
a fitness diversity measure), we use this to set the mutation
rate. A high σ indicates high (fitness) diversity, so a lower
mutation rate can be used. Likewise, a low σ indicates similar
performance, so a higher mutation rate should be used. The
equation for dynamically setting the mutation rates is given in
Eq. (1), where σgen represents the standard deviation of the
population’s fitness in generation gen.

The maximum value for σ is 0.5, since the objective is
bound between [0, 1]. To standardise this, and ensure the
mutation rate can be set to a value above 0.5, we scale σ by
the maximum observed standard deviation from all previous
generations. We scale by the maximum observed standard de-
viation rather than the maximum theoretical standard deviation
(of 0.5) for two reasons. Firstly, the mutation should be based
on the current problem, in certain tasks there may naturally be
a very small variation in results (i.e. simplistic problems where
all methods perform well, or problems with local optima where
many methods can hit but not surpass), and crossover would
never be trialled. Instead, if the mutation is relative to previous
observations (rather than the theoretical maximum variation),
crossover can occur if comparatively this generation seems
diverse. Secondly, this is more general in the sense that it will
work for unbounded objective measures with no theoretical
maximum.

mutationgen = 1− σgen
max{σg : g = 1 . . . gen}

(1)

As the rates should sum to 1, the crossover rate becomes
the remainder (1−mutation). In this sense it is not possible
to vary one without adjusting the other, so attempting to adjust
both would be redundant.

4) Maximum Generations: With an adaptive population
size, the need for a certain number of generations becomes less
important/meaningful. Therefore, this can be easily removed,
and instead, we just replaced with a running time (in minutes).
An alternative would be a certain number of evaluations (i.e.
10,000 models), but a maximum running time seems more

user-friendly due to the large variation in the cost of evaluation
for different models. For this reason, we remove the number of
generations and replace with a maximum number of minutes
to allow for optimisation. Of course, this running time can be
considered a parameter, but the running time tends to be an
easy choice based on computational resources.

5) Additional Hyperparameters: There are also some addi-
tional hyperparameters which we remove. These are “internal”
hyperparameters, not user-specified in TPOT, but nevertheless,
the removal is another step towards the goal of full automation.

The first is the size of the initial pipelines, which is set by
default to be between 1 and 3 nodes. This is instead replaced
by stumps, so pipelines begin as a single node (a classifier).

Second is related to the genetic operators (crossover and
mutation). By default, these are tried up to 50 times to generate
a unique offspring. This is replaced by a “diversity” preserving
crossover and mutation, which considers only unexplored
offspring directly (i.e. those not in the existing cache). As a
result, the possible mutation operators can be seen as dynamic
and will be disabled for particular individuals if they cannot
result in a novel individual.

6) Manual Hyperparameters: Currently, there are hyper-
parameters which still exist around computational power and
scoring. For example, what metric should we use to measure
performance? Accuracy, F1-score, or a weighted accuracy with
class importances? We did not look to remove this, as this is
entirely dependent on the problem, and the user’s desire. For
example, we may have a binary problem where class 1 is far
more important to predict than class 2 (say cancer diagnosis),
but this can not be inferred from the data. Likewise, other
settings such as max computational time, and number of CPUs
to use remains as a user-specified parameter, as this depends
on the computational resources available. Future work could
look at predicting the performance based on the resources
given, based on meta-learning on similar datasets (i.e. treat
the selection as a regression problem), but this would be a
very broad approximation and not something we attempted in
this work.

B. Algorithm

While the representation of pipelines (trees) and original
search space maintains the same as TPOT (overview given in
Section II and full description in [2]), the key development is
how this search space is explored.

Rather than hyperparameters being fixed and specified a
priori, they are adapted at run time by the algorithm given
in Algorithm 1.

IV. RESULTS

A. Comparisons

While it would be ideal to perform a grid search to find ideal
evolutionary hyperparameters for each dataset for comparison,
this is computationally infeasible. Instead, we compare to
the default values (as this is what will be most commonly
used), which we assume are already the result of large scale
exploration of such values.

Algorithm 1: Pseudo Code for adaptive evolution
def adaptiveEa(run time: int):

population size = 1;
population = [random stump()];
evaluate(population);
while time < run time do

offspring size = preceding fibonacci(population size);
offspring = apply genetic operations(population,

offspring size, mutation rate);
evaluate(offspring);
if improved both objectives then

population size =
preceding fibonacci(population size);

end
else if improved one objective then

population size = population size;
end
else

population size =
proceeding fibonacci(population size);

mutation rate = 1 - (fitness std / max std);
end
NSGA II(population + offspring, population size);

end
return population;

The default values for TPOT are given in Table I. The
default values from TPOT are initially surprising to someone
familiar with GP, which helps reaffirm that the setting of
such values can be difficult. As not only are you required
to know how EC methods work and how these values affect
the search space, but you must also know about the search
space of machine learning pipelines (huge and plagued by
local optima). For the proposed method, this does not require
specifying the hyperparameters. The method was outlined in
detail in Section III.

Both methods were capped at a 1-hour run-time due to
computational restrictions.

B. Datasets

The datasets proposed in [9] as “An Open Source AutoML
Benchmark” were used for comparison here. In total there
are 39 datasets proposed for the benchmark, however, 9 of
these did not generate results within the allowed computational
budget, so were excluded from the results. The datasets
were chosen by Gijsbers et al. to be of sufficient difficulty,
be representative of real-world problems, and have a large
diversity of domains.

C. Statistical Tests

To compare the methods we generate an average (mean)
performing using 10-fold cross-validation (given in Table II).
General significance testing is performed using a Wilcoxon
signed-rank test. We call this general significance testing as
comparisons are made across datasets (rather than across
individual runs on each dataset). Specifically, this type of
significance testing avoids the often inflated Type-1 errors
associated with repeatedly performing significance tests across
many datasets (as is more commonly seen, but we believe
is problematic and according to [30] should not be used).
α = 0.05 is used for reporting significance, with the p-values

also given in Table II. This follows the suggestions in both
[30, 31] for fair classifier comparison, in an effort to remedy
the “multiple comparisons problem” which often arises in
statistical comparisons [32] (particularly in cases such as this
with a large number of datasets, meaning a large number of
comparisons being performed). Another benefit this approach
has over the more typically seen multiple comparisons is
it allows us to draw more general conclusions about the
performance of the methods.

We report the average F1-score, average resulting complex-
ity, and also since the method is multiobjective, we compute
the average hypervolume [33] as well for comparing the
frontiers. The reference point used in all cases was (0,10),
meaning a F1-score of zero and a complexity of 10 (this is the
approximate nadir point, i.e. the worst value of each objective
in the Pareto optimal set [34]). A complexity of 10 was chosen
as no individuals in any frontiers had a complexity ≥ 10,
so even though complexity is not bounded to be < 10, this
was a fair choice. F1-score was chosen over accuracy as we
cannot assume an equal distribution of class instances across
the datasets.

D. Discussion

The average results and significance testing is presented
in Table II. We can see there is no statistically significant
difference between the proposed automated method and the
human-expert configured baseline, therefore, in general, we
can conclude that the proposed method is able to achieve
equivalent performance to the human selected baseline.

When considering individual runs, we can see the results
tend to be very similar. In rare cases, there are large differ-
ences, but these go both ways and appear to cancel out (i.e.
one method is never always better than the other), confirmed
with the general significance testing. An example can be seen
with the segment dataset where the baseline gets 94 and
the proposed gets 84, but then on the covertype dataset the
baseline gets 67 and the proposed gets 87.

1) Frontiers: We visualise the frontiers for comparison in
Fig. 1. Since the results are averaged over several runs to pro-
duce a reliable result, the frontiers visualised are themselves
averaged for a result.

As each run may result in a different size frontier (for
example a different number of complexities), we can not just
do a pairwise average of the frontier for each method on each
dataset. Instead, for visualisation, we compute the average
resulting score for each complexity and then remove points
that were dominated from this set to produce a non-dominated
front. This was only done for visualisation sake, and not for
the significance testing above.

When viewing the frontiers, there is no clear winner be-
tween the methods (again confirmed with the statistical testing
done above on the resulting hypervolumes). No drastic over-
fitting occurs with either of the methods (no large difference
between training and test performance).

TABLE II: Average results. The proposed method comes under
the Automated column, and TPOT with the default (human
specified) hyperparameter values comes under the Human
column. F1-score should be maximised (higher the better),
with an optimal value of 100 (scaled from 0 . . . 1 to 0 . . . 100
for readability). The complexity should be minimised (lower
the better), with an optimal value of 1. The hypervolume
should also be maximised (higher the better). p-values are
presented in the final row.

F1-Score Complexity Hypervolume
Human Automated Human Automated Human Automated

adult 87.10 86.99 2.00 2.00 7.84 7.83
airlines 63.54 57.80 1.00 2.40 5.72 5.20
anneal 99.62 93.86 1.70 1.50 8.97 8.46
australian 87.52 87.81 4.70 2.90 7.97 7.89
bank 85.94 86.06 2.00 2.20 7.76 7.77
blood 75.92 75.07 3.30 2.20 6.93 6.76
car 96.52 91.93 4.50 1.90 8.86 8.30
christine 73.93 69.99 1.00 1.30 6.65 6.29
cnae-9 96.30 95.75 1.80 2.30 8.69 8.63
covertype 67.51 87.24 1.43 1.00 6.68 7.85
credit-g 72.79 75.11 3.10 2.20 6.72 6.92
dilbert 96.84 59.62 1.10 3.00 8.72 5.34
dionis 21.02 20.84 1.00 1.00 1.89 1.88
fabert 69.77 68.41 1.89 1.43 6.29 6.18
fashion 56.45 58.36 1.00 3.00 5.08 5.23
guillermo 66.47 75.80 1.00 1.00 5.98 6.82
helena 25.48 21.26 1.43 1.00 2.27 1.91
higgs 72.22 71.36 1.00 1.22 6.50 6.42
house 16H 5.56 4.43 1.83 1.00 0.50 0.40
jannis 70.27 69.84 1.40 1.90 6.31 6.26
jasmine 81.07 81.72 1.75 3.70 7.33 7.41
jungle 82.65 84.11 1.70 1.50 7.63 7.59
kc1 82.48 82.74 2.90 1.50 7.47 7.51
kr-vs-kp 99.34 99.47 2.80 3.00 8.96 8.96
mfeat 97.70 97.15 1.60 1.60 8.80 8.74
miniboone 93.33 93.76 1.10 1.90 8.40 8.44
nomao 97.03 96.81 1.12 2.20 8.73 8.72
numerai 51.90 51.66 1.50 1.00 4.67 4.65
phoneme 91.29 90.00 2.90 2.30 8.23 8.17
riccardo 77.63 98.79 1.56 1.00 6.96 8.89
robert 41.34 36.43 2.00 1.50 3.67 3.28
segment 93.97 84.41 2.60 2.10 8.52 7.61
sylvine 95.88 95.84 2.90 3.60 8.62 8.64
volkert 63.72 54.56 1.00 1.10 5.73 4.91
Significant p=0.1218 p=0.7187 p=0.0502

V. FURTHER ANALYSIS

To get a further understanding of how the method works,
we analyse each of the adaptive hyperparameters.

A. Adaptive Hyperparameters

1) Mutation: The adaptive mutation rates are shown in
Fig. 2a. Only 5 datasets are chosen for comparison due to
space restrictions, however, these are generally representative
of the behaviours.

The mutation rates start at 1 since the population size begins
at 1 and crossover cannot be applied. We see a large variation
in the mutation rates, both across generations for a dataset and
between datasets. This indicates the adaptations are serving
their purpose, as the values are different throughout time and
between datasets, indicating no one universal optimal value.

There are no clear trends in how the mutation behaves
between datasets, showing the rates are very much problem
dependant. One commonly believed/argued point is that mu-
tation should decrease over time, meaning we start with a
high mutation (and high exploration) and over time we begin
to focus more on exploitation, although it is worth mentioning
with genetic programming it is difficult to decide whether an

87.0 87.5 88.0 88.5 89.0 89.5
1

2

3

4

5

6
australian

56.50 56.75 57.00 57.25 57.50 57.75 58.00 58.25
1.0

1.5

2.0

2.5

3.0

fashion-mnist

93.3 93.4 93.5 93.6 93.7 93.8 93.9 94.0
1.0

1.5

2.0

2.5

3.0

miniboone

86.6 86.7 86.8 86.9 87.0 87.1
1.0

1.5

2.0

2.5

3.0

adult

57 58 59 60 61 62 63
1.0

1.5

2.0

2.5

3.0

airlines

94 95 96 97 98 99 100
1.0

1.5

2.0

2.5

3.0

anneal

83.0 83.5 84.0 84.5 85.0 85.5 86.0 86.5
1.0

1.5

2.0

2.5

3.0

bank-marketing

74 76 78 80 82
1

2

3

4

5

6
blood-transfusion-service-center

82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
1

2

3

4

5

6
car

70 71 72 73 74
1.0

1.2

1.4

1.6

1.8

2.0

christine

94.0 94.5 95.0 95.5 96.0 96.5 97.0 97.5
1.0

1.5

2.0

2.5

3.0

3.5

4.0
cnae-9

50 55 60 65 70 75 80 85
0.98

0.99

1.00

1.01

1.02

covertype

74 76 78 80 82
1

2

3

4

5

credit-g

60 65 70 75 80 85 90 95
1.0

1.5

2.0

2.5

3.0

dilbert

20.8 21.0 21.2 21.4 21.6 21.8 22.0
0.98

0.99

1.00

1.01

1.02

dionis

67.0 67.5 68.0 68.5 69.0 69.5 70.0
1.0

1.2

1.4

1.6

1.8

2.0

fabert

66 68 70 72 74 76
0.98

0.99

1.00

1.01

1.02

guillermo

21 22 23 24 25 26 27 28
1.0

1.2

1.4

1.6

1.8

2.0

helena

71.2 71.4 71.6 71.8 72.0 72.2
1.0

1.2

1.4

1.6

1.8

2.0
higgs

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
1.0

1.2

1.4

1.6

1.8

2.0

house_16h

67 68 69 70 71
1.0

1.2

1.4

1.6

1.8

2.0

jannis

80.25 80.50 80.75 81.00 81.25 81.50 81.75 82.00
1.0

1.5

2.0

2.5

3.0

3.5

4.0
jasmine

76 78 80 82 84
1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
jungle_chess_2pcs_raw_endgame_complete

82.2 82.4 82.6 82.8 83.0 83.2 83.4 83.6
1.0

1.5

2.0

2.5

3.0

kc1

97.5 98.0 98.5 99.0 99.5
1.0

1.5

2.0

2.5

3.0

3.5

4.0
kr-vs-kp

96.75 97.00 97.25 97.50 97.75 98.00 98.25 98.50
1.0

1.5

2.0

2.5

3.0

3.5

4.0

mfeat-factors

94.5 95.0 95.5 96.0 96.5 97.0
1.0

1.2

1.4

1.6

1.8

2.0

nomao

51.7 51.8 51.9 52.0 52.1
1.0

1.2

1.4

1.6

1.8

2.0
numerai

90.00 90.25 90.50 90.75 91.00 91.25 91.50 91.75
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
phoneme

70 75 80 85 90 95 100
0.98

0.99

1.00

1.01

1.02

riccardo

36 37 38 39 40 41
1.0

1.5

2.0

2.5

3.0

robert

84 86 88 90 92 94
1

2

3

4

5
segment

94.8 95.0 95.2 95.4 95.6 95.8 96.0 96.2 96.4
1

2

3

4

5

sylvine

54 56 58 60 62 64
0.98

0.99

1.00

1.01

1.02

volkert

Fig. 1: Average frontiers. The proposed method is in purple, and the comparison method TPOT is in orange. The training
frontier is given as dashed lines, and the true testing frontier given as a solid line. The training points in the frontier are
indicated with a ‘.’, and the testing points indicated with a ‘*’. The ideal position is the bottom right (i.e. a score of 100 on
the x-axis, and a complexity of 1 on the y-axis)

operation is promoting exploration or exploitation since both
crossover and mutation can be argued either way. This appears
to be roughly what happens on the jasmine dataset (with high
fluctuations but mutation rate trending downward), whereas on
the cnae-9 and numerai datasets we see the opposite trend. On
blood, cnae-9, and numerai the rate starts high, drops quite
drastically (indicating a diverse population was generated),
then begins an upward trend. On the sylvine dataset, there
is no clear trend at all. Changes appear to occur between the
extremes, going from near zero to near one, indicating each
time after a population with poor diversity, a highly diverse

population was then generated.

Reassuringly, across individual runs for a given dataset, we
see similar patterns in how the mutation rate changes. For
example, the cnae-9 dataset shows this clearly. This is a desir-
able property as with slight variations in the training data (i.e.
a new fold in 10-fold CV), the evolutionary process shouldn’t
be drastically different since we are trying to optimise for
some true population and not just the training data. This is
confirmed in the results (Section IV), which show we do not
overfit to the training data, which is very important with such
adaptive methods.

0.0

0.2

0.4

0.6

0.8

1.0

blood-transfusion-service-center

0.0

0.2

0.4

0.6

0.8

1.0

cnae-9

0.0

0.2

0.4

0.6

0.8

1.0

jasmine

0.0

0.2

0.4

0.6

0.8

1.0

numerai

0.0

0.2

0.4

0.6

0.8

1.0

sylvine

(a) Mutation rate.

0

500

1000

1500

2000

2500

australian

0

500

1000

1500

2000

2500

blood-transfusion-service-center

0

50

100

150

200

bank-marketing

0

500

1000

1500

2000

2500

credit-g

0

200

400

600

800

1000

1200

1400

1600

phoneme

(b) Population size.

Fig. 2: Adaptive hyperparameter (y) over generations (x). Each grey line indicates the result from a single run. The dotted
orange line indicates the default (expert chosen) value in TPOT. The dotted purple line shows the average rate for the adaptive
method.

The average mutation rate (indicated by the dashed purple
line in Fig. 2a) is generally lower than the default human
chosen TPOT rate, which is a relatively high rate of 0.9. We
still find the average mutation rate to be much higher than
typical values for GP, perhaps due to the very large search
space which is also plagued with local optima, meaning high
levels of exploration are desirable.

2) Population Size: The growth of the population size is
visualised in Fig. 2b. Again, only 5 datasets are used for
visualisation purposes.

Unlike the mutation rates, the population path is much more
well behaved. This is not by chance, but instead because the
Fibonacci sequence is followed – which explains the curves
seen. We can see that the population size is very rarely
stagnant, and does not just increase monotonically. Often the
size will be maintained or drop. However, it does appear rela-
tively uncommon to decrease for sustained periods (indicating
difficulty in optimisation, requiring a larger population size).

Interestingly, we can observe the average population size
(purple dotted line in Fig. 2b) is often very close to the default
setting of the expert method of 100 individuals (orange dotted
line). However, this may just be a factor of the allowable
running time, as the common trend between datasets seems
to be for the population to grow as the evolution progresses.

Again, for an individual dataset, the individual runs (dark
grey lines), all appear to behave similarly to each other. This
shows robustness in the adaptations, which is a desirable trait.
Between datasets, the population size trends upwards (as it
becomes harder and harder to make progress), but the graphs
may be somewhat deceiving at first glance since between
datasets we can see the y-axis can operate on different scales.
For example, bank-marketing gets to a peak of around 200,
whereas blood-transfusion is around 2500. This is a factor of

the size of the datasets, where blood-transfusion has 45000
instances and 17 features, whereas the bank-marketing has
750 instances and 5 features. Again, this is a beneficial trait
as it shows robustness to various dimensionalities and number
of training instances.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a parameter-free approach to Au-
toML. The search process begins with a single randomly cho-
sen estimator and automatically evolves to a well-performing
pipeline without the need for specifying any evolutionary
hyperparameters such as population size, crossover rate, or
mutation rate. We evaluated the proposed method across a
large number of datasets and found the results to equivalent
to the current state-of-the-art approach which uses human
knowledge for selecting hyperparameters. This is encouraging
as it demonstrates a step towards true “Automation”, in Au-
toML. This opens further research into whether entirely self-
trained systems can see improvements over human-assisted
approaches like has been seen in other areas such as gameplay
[35]. Future work in the area of AutoML can focus on trying
to push the field towards complete automation.

Here we looked at adapting the search hyperparameters
throughout the optimisation process. An additional area of
future research could also look at adapting the search space
itself, where unpromising nodes or subtrees are removed
entirely. This is difficult, as subtrees may only be poor
performing in their current context (i.e. ensembling “poor”
classifiers can improve performance if they are diverse [36]).

This work sets the foundation for fully parameter-free
automated approaches to AutoML.

REFERENCES

[1] P. Gijsbers and J. Vanschoren, “Gama: genetic automated machine
learning assistant,” Journal of Open Source Software, vol. 4, no. 33,
p. 1132, 2019.

[2] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485–
492. [Online]. Available: http://doi.acm.org/10.1145/2908812.2908918

[3] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 2962–2970. [Online]. Available: http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[4] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C.
Kidd, and J. H. Moore, Applications of Evolutionary Computation:
19th European Conference, EvoApplications 2016, Porto, Portugal,
March 30 – April 1, 2016, Proceedings, Part I. Springer International
Publishing, 2016, ch. Automating Biomedical Data Science Through
Tree-Based Pipeline Optimization, pp. 123–137. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-31204-0\ 9

[5] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
847–855.

[6] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 826–830, 2017.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[9] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and
J. Vanschoren, “An open source automl benchmark,” arXiv preprint
arXiv:1907.00909, 2019.

[10] B. P. Evans, “Population-based ensemble learning with tree structures
for classification,” Ph.D. dissertation, Victoria University of Wellington,
2019.

[11] M. Feurer and F. Hutter, “Towards further automation in automl,” in
ICML AutoML workshop, 2018.

[12] A. Aleti and I. Moser, “A systematic literature review of adaptive pa-
rameter control methods for evolutionary algorithms,” ACM Computing
Surveys (CSUR), vol. 49, no. 3, p. 56, 2016.

[13] F. G. Lobo and C. F. Lima, “A review of adaptive population sizing
schemes in genetic algorithms,” in Proceedings of the 7th annual
workshop on Genetic and evolutionary computation. ACM, 2005, pp.
228–234.

[14] D. Chen and C. Zhao, “Particle swarm optimization with adaptive
population size and its application,” Applied Soft Computing, vol. 9,
no. 1, pp. 39–48, 2009.

[15] D. Thierens, “Adaptive mutation rate control schemes in genetic algo-
rithms,” in Proceedings of the 2002 Congress on Evolutionary Compu-
tation. CEC’02 (Cat. No. 02TH8600), vol. 1. IEEE, 2002, pp. 980–985.

[16] F. Lobo, C. F. Lima, and Z. Michalewicz, Parameter setting in evolu-
tionary algorithms. Springer Science & Business Media, 2007, vol. 54.

[17] K. L. Mills, J. J. Filliben, and A. Haines, “Determining relative impor-
tance and effective settings for genetic algorithm control parameters,”
Evolutionary computation, vol. 23, no. 2, pp. 309–342, 2015.

[18] M. Randall, “Near parameter free ant colony optimisation,” in Inter-
national workshop on ant colony optimization and swarm intelligence.
Springer, 2004, pp. 374–381.

[19] H. Sawai and S. Kizu, “Parameter-free genetic algorithm inspired by
“disparity theory of evolution”,” in International Conference on Parallel
Problem Solving from Nature. Springer, 1998, pp. 702–711.

[20] P. A. Borisovsky and A. V. Eremeev, “Comparing evolutionary algo-

rithms to the (1+ 1)-ea,” Theoretical Computer Science, vol. 403, no. 1,
pp. 33–41, 2008.

[21] J. Arabas, Z. Michalewicz, and J. Mulawka, “Gavaps-a genetic algo-
rithm with varying population size,” in Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on
Computational Intelligence. IEEE, 1994, pp. 73–78.

[22] T. Chen, K. Tang, G. Chen, and X. Yao, “A large population size can
be unhelpful in evolutionary algorithms,” Theoretical Computer Science,
vol. 436, pp. 54–70, 2012.

[23] A. E. Eiben, E. Marchiori, and V. Valko, “Evolutionary algorithms with
on-the-fly population size adjustment,” in International Conference on
Parallel Problem Solving from Nature. Springer, 2004, pp. 41–50.

[24] N. N. Vorobiev, Fibonacci numbers. Birkhäuser, 2012.
[25] L. Sigler, Fibonacci’s Liber Abaci: a translation into modern English of

Leonardo Pisano’s book of calculation. Springer Science & Business
Media, 2003.

[26] N. Minarova, “The fibonacci sequence: Nature’s little secret,” CRIS-
Bulletin of the Centre for Research and Interdisciplinary Study, vol.
2014, no. 1, pp. 7–17, 2014.

[27] P. D. Shipman and A. C. Newell, “Phyllotactic patterns on plants,”
Physical review letters, vol. 92, no. 16, p. 168102, 2004.

[28] T. Koshy, Fibonacci and Lucas numbers with applications. Wiley, 2019.
[29] T. Jansen, K. A. D. Jong, and I. Wegener, “On the choice of the offspring

population size in evolutionary algorithms,” Evolutionary Computation,
vol. 13, no. 4, pp. 413–440, 2005.

[30] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[31] S. Garcia and F. Herrera, “An extension on“statistical comparisons of
classifiers over multiple data sets”for all pairwise comparisons,” Journal
of machine learning research, vol. 9, no. Dec, pp. 2677–2694, 2008.

[32] L. M. Sullivan, J. Weinberg, and J. F. Keaney Jr, “Common statistical
pitfalls in basic science research,” Journal of the American Heart
Association, vol. 5, no. 10, p. e004142, 2016.

[33] C. M. Fonseca, L. Paquete, and M. López-Ibánez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in 2006
IEEE international conference on evolutionary computation. IEEE,
2006, pp. 1157–1163.

[34] K. Deb, S. Chaudhuri, and K. Miettinen, “Towards estimating nadir
objective vector using evolutionary approaches,” in Proceedings of the
8th annual conference on Genetic and evolutionary computation, 2006,
pp. 643–650.

[35] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[36] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

