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Abstract—Evolutionary algorithms are a class of population-
based metaheuristic methods partially inspired by natural evolu-
tion. Specifically, they rely on stochastic variation and selection
processes to sequentially find optimal solutions of a function
of interest. We attempt in this work to extract preferences in
these stochastic evolutionary operators in form of empirical
and improved distributions as basis for model-based mutation
operators. The latter can be considered as representing problem-
tailored search operators which exist independently from the
optimisation run and thus can be transferred to similar problem
instances. This offline approach is different to existing model-
based optimisation techniques, e.g. EDA’s, CMA-ES and Bayesian
approaches, where adaption happens rather in an online manner
without the influence of prior experience. Our approach can
be rather considered to follow the recent line of research on
knowledge transfer in optimisation, which until now heavily
relies upon the transfer of candidate solutions across different
optimisation tasks. We investigate in this paper the interplay
between algorithm and optimisation task, its influence on the
retrieved distributions and explore whether or not these can lead
to performance improvements on a selected range of problems,
as well as when transferring them across problems. At last, we
make a comparison of built distributions in the hope of relating
similarity in statistical distances between distributions to possible
performance gains.

Index Terms—Evolutionary computation, metaheuristic opti-
mization, statistical machine learning, knowledge transfer.

I. INTRODUCTION

Evolutionary algorithms are notable for being
metaheuristics, meaning they try to avoid being problem
specific. Nevertheless, most of them come with a set of
various hyperparameters and degrees of freedoms which
have to be chosen by the practitioner first. In this case, the
correct choice of parameters can indeed have a beneficial
and problem-dependent effect on the performance of the
algorithm. An interesting, however barely explored topic to
this regard is whether or not the efficiency of an algorithm
can be directly improved from prior optimisation experiences
by means of harnessing statistical properties arising in the
algorithm-problem interaction. In our work, we try to address
the issue of learning from prior solved problem instances by
means of improving the search operators for new problem

instances. While in principle, one may question whether
this approach defeats the purpose of a metaheuristic in the
first place, one can counter this argument with the fact that
generalizing this method could allow one to design specialized
operators for entire classes of problems directly from previous
experience. Introducing learning in a metaheuristic context
therefore does not defeat its purpose, but instead allows one
to integrate it into a framework of higher level heuristics [1].

The remainder of this paper is structured as follows.
We first review in Sec. II relevant literature in the domain of
metaheuristic stochastic optimisation and give an overview
on methods used which try to establish a notion of learning
or knowledge transfer. Secondly, in Sec. III we introduce the
algorithm of interest for our study and explain necessary
modifications. These will enable us to build a distribution for
improved sampling in our framework. We note at this point,
our approach is different from notions of learning found in
adaptive optimisation algorithm such as EDAs [2], CMA-ES
[3] and Bayesian approaches (e.g. [4]), as well as recent
advances on transfer learning in optimisation [5]–[9] which
operate on the sole basis of direct or indirect solution transfer.
This is because we explicitly try to transfer knowledge
of optimisation runs from a procedural view by means of
building a static distribution for sampling, which represents
rough and globally averaged properties of a fitness landscape.
It is also different in the sense of local improvements or
Lamarckian learning, because resampled mutations from
this distribution may not necessarily be improving for
individual candidate solutions. In our conducted experiments,
we investigate first the algorithm-problem interaction by
looking at the obtained search distribution while varying free
parameters in the algorithm configuration and problem of
interest, as well as investigate the dynamics and how the
sampling width influences the performance of the retrieved
search distribution. At last, we try to relate algorithm
performance with different statistical distances between the
obtained distributions. We conclude this paper in Sec. IV
with a summary of our study, highlight peculiarities of our
framework and give an outlook for potential future work.
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II. RELATED WORK

First notable steps towards a learning framework for
metaheuristics were made in 2004 through the CIGAR
framework [10]. Specifically, it proposes a case-based
approach where intermediate and final solutions from
previously solved combinatorial optimisation tasks are kept
in a storage. Whenever a new optimisation problem is
tackled, this case-base is queried and solutions are sampled
probabilistically from similar previously tackled problems
under the further help of a task-similarity measure based
upon problem characteristics. These then sub-sequentially
form part of the initial population on the new task of
interest. A more recent approach similar in the sense of
the case-base from CIGAR is also represented by AMTEA
[5]. Within their work, Gaussian distributions are used to
model final populations from previously tackled continuous
multi-objective optimisation tasks. When new tasks are
encountered, periodically a mixture model is constructed
from the repository to approximate the current generation in
the new optimisation task of interest. The obtained weights
of the mixture model are used subsequently to sample
probabilistically new child solutions from the previously
solved tasks.

Note that their work reflects a problem similarity through
solution similarity philosophy. This has been originally
proposed by [10] as a way to cope with situations where task
similarity measures are not trivially definable. Further notable
works also concern the repeating construction of a linear
mapping between ranked intermediate solutions of a task,
which is then subsequently used to map final or current best
solution of a past or concurrent related task into the population
[6]–[8]. Note, that the former assume that for effectiveness of
their method, task similarity and thus complementarity can
be or has been established a priori. A similar approach has
been also used in the dynamic multi-objective optimisation
algorithm Tr-DMOEA ([9], [11]). However, aside from a few
works [12], there exists no clear concept on what constitutes
task similarity in a more abstract manner. And secondly, how
to learn task specific characteristics in a generalized way and
from a procedural perspective, to help improve solving future
similar tasks without relying on an explicit solution transfer.

In reflection upon these unanswered questions in the
literature, we will introduce in the following a simple
framework for continuous evolutionary single-objective
optimisation, which allows us to capture experience from
solving optimisation problems in form of empirical probability
distributions as basis for model-based search operators. The
statistical approach also allows us to define task similarity
in terms of similarity of the retrieved distributions. We show
the viability of this approach and discuss related issues on a
selected variety of multi-modal problems. Again, we stress
that we do not attempt to challenge existing model-based
methods (e.g. [2], [3]), but stress that our school of thought
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Fig. 1. Illustration of the framework we study in our experiments. From
knowledge extracted from past searches on source tasks we build an improved
operator which can be subsequently used to initialize an algorithm on a new
target task.

can be seen as rather relating to recent research on transfer
learning in optimisation [5]–[8]. In the latter, the perspective
of the operators is seemingly missing. To our knowledge,
aside from our own recent work [13], similar thinking has
not been applied in the literature on continuous optimisation
before.

III. FRAMEWORK AND EXPERIMENTS

A. Algorithm and Setup

In our study, we consider continuous single-objective opti-
misation problems of the form f : χ ⊆ R

d → R, where χ is
the search space and d its associated dimension. We further use
as base the continuous genetic algorithm [14], which unlike
its binary version does not distinguish between genotype and
phenotype. Thus, solutions are directly represented in the
search space by vectors

x(j) = (x1(j), x2(j), · · · , xd(j)), (1)

where the variable j simply indicates the j-th solution. Subse-
quently one can also define variation operators which act upon
the solutions. In our following study we use the one point
crossover operator defined analogously to the binary case [14]
and draw mutations from a multivariate Gaussian mutation
operator

∆x ∼ N (x|0,Σ), (2)

with spherical covariance Σ = 1 · σ−2 and fixed sampling
width σ, which upon mutation shifts solutions such that

x′ = x + ∆x. (3)

To foster the use of learned experience by means of improved
operators, we keep in our framework track of mutations per-
formed. The necessary modification to the genetic algorithm is
illustrated in Fig.1. In principle, we only extend the standard
architecture by a repository, which while in ’storing mode’
is filled with copies of pairs of fitness values f and solution
positions x from before and after application of the mutation



Fig. 2. Illustration of the inverse transform sampling technique [15]. The
histogram to the left is used as a parametrization of an empirical probability
density function (PDF). The latter is integrated to obtain a cumulative density
function (CDF), which can be used to generate pseudo-random numbers xr
by inversion.

operator. This mutation tracking allows us in the following to
further distinguish between improving

f(x(j)ibefore)− f(x(j)iafter) ≥ 0 (4)

and worsening mutations

f(x(j)ibefore)− f(x(j)iafter) < 0. (5)

The idea is that once we have stored the mutations outside of
the algorithm, we can filter them according to whether they are
improving or worsening and subsequently aggregate them into
bins to build histograms. The latter can be considered to serve
as improved and problem-tailored search distributions for the
problems of interest. In our case, we only harness histograms
of improving mutations, as worsening mutations are strongly
normal distributed [13]. Note, that the constructed histograms
do not necessarily behave like Gaussian normal distributions,
thus we have to explicitly use a resampling technique. For
this reason we use a non-library implementation of the inverse
transform sampling technique [15]. For a histogram with only
one random variable we first calculate the cumulative density
function given by

CDF(x) =

∫ x

−∞
ρ(x′) dx′. (6)

Note that 0 <CDF(x) < 1, thus we uniformly sample a
random number r ∈ [0, 1] and use CDF−1(r) to generate
a pseudo-random number xr according to the distribution ρ
(also c.f. Fig. 2). The multivariate case works analogously,
however one starts first with a marginalized cumulative prob-
ability density and subsequently conditions it upon randomly
generated components until a full point in the search space
is obtained. Note, that in our study we use a bin size of 100
per dimension and choose the histogram widths h individually
such that important features of the distributions are preserved.

Our experiments are mainly based upon a modified version
of the DEAP library for evolutionary computation [17]. We
choose the crossover probability to be 0.2, the mutation
probability as 0.5, the population size as 30 and limit the
maximum number of generations to 100. The sampling width
of the mutation operator is, except when explicitly mentioned

Fig. 3. Fitness landscapes of the benchmark functions considered within this
study. Top row from left to right: Rastrigin’s and Ackley’s function. Bottom
row: Griewank’s and Shekel’s function with the standard parameter setting
commonly found in literature [16].

otherwise, set by default to σ = 0.71. Tournament selection
with a size of 4 is further chosen. The start population is
initialized randomly on the complete search space, where we
keep the dimensionality fixed to d = 2 for all experiments.
In all cases, except when explicitly mentioned, obtained min-
imum fitness values are averaged over 1000 runs to retrieve
expressive statistics. We use in this paper the term fitness in
the sense of a fitness cost which we want to minimize.

B. Experiments

1) Algorithm-problem interaction: We first start our 1st
series of experiments with an investigation into the algorithm-
problem interaction, as we expect that the balance in the in-
terplay between both should lead to notable differences in the
statistical distributions of improving mutations we can extract.
For this reason, we run experiments using our extended genetic
algorithm with the configuration as detailed in Sec. III-A. In
the first series we keep the algorithm configuration constant
and consider exclusively Ackley’s benchmark function [14]

f(x) = −a exp

−0.2

√√√√1

d

d∑
i=0

x2i

+ exp

(
−1

d

d∑
i=0

cos(2πxi)

)
+ a+ exp(1),

(7)

with χ = [−32.768, 32.768]d and the depth parameter being
usually defined as a = 20. However, in the following we vary
a with the range from 20 to 1, thus varying the depth and
steepness of the funnel while essentially keeping the positions
of local extrema the same. In the 2nd series of experiments we
consider Griewank’s benchmark function. However, we keep
the parameters constant and only vary the sampling width for
mutations from σ = 0.71 to 4. The retrieved distributions from
the first and second experiment series are illustrated in the first



Fig. 4. Column 1 and 2: Demonstration on how the interplay between algorithm configuration and optimisation problem can effect the retrievable statistics.
First column: Distributions retrieved on Ackley’s function for a = 20 (top) and a = 5 (bottom) for unchanged algorithm configuration. Second column:
Distributions obtained on Griewank’s function for constant problem parameters and changed sampling width σ = 0.71 (top) and σ = 4 (bottom). Column
3 and 4: Retrieving distributions from multimodal problem and with irregular periodicity and investigation of the dynamics. Third column: Evolution of the
distributions extracted on Griewank’s function from generation 0 to 10 (top) and generation 10 to 40 (bottom). Intervals were chosen to achieve a same
sampling quality of about 40, 000 samples. Fourth column: Extracted distribution on Shekel’s function for σ = 2 (top) and σ = 4 (bottom).

and second column of Fig. 4.
We find that on Ackley’s function for the parameter a = 20,
the retrieved distribution resembles a simple multivariate nor-
mal distribution and does not seem to encode any problem
specific information. Setting the parameter to a = 1, the
retrieved distribution strongly differs from a Gaussian bell
shape by having further peaks akin to grid points in a Moore
neighborhood. The algorithm configuration thus is able to
resolve notable problem-specific information. On Griewank’s
function [14]

f(x) = 1 +
1

4000

d∑
i=1

x2i +
1

4000

d∏
i=1

cos
(
xi√
i

)
, (8)

usually defined on the search space χ = [−600, 600]d and
without any further free parameters, we only vary the sampling
width σ. We find that for σ = 0.71, the algorithm again only
retrieves a Gaussian multivariate distribution. After signifi-
cantly enhancing the sampling to σ = 4, we can however
retrieve a neighborhood structure of peaks arranged in a
hexagonal grid akin to the pattern in the fitness landscape in
Fig. 3. Note, that we can interpret the recovered distribution
as consisting out of a central part for local improvements and
an outer part for long-range exploration of the neighborhood.
As we considered so far only problems with a strong peri-
odicity, we further investigate in the following the retrievable
distributions from a problem with less obvious defined be-
haviour. For this reason we consider the generalized Shekel’s

benchmark function defined by [16]

f(x) = −
m∑
i=1

 d∑
j=1

(xj − Cij)
2 + βi

 , (9)

with search space χ = [0, 10]d, the number of dimensions
d and the number of extrema m. The free parameters Cij

and βi can in principle be set arbitrarily by the practitioner.
We choose in our experiments standard settings found in the
literature [16] for the parameters of the first two dimensions
and include the usual ten extrema.
We find in Fig. 4 that for σ = 2 the density vaguely re-
sembles a multivariate normal distribution, however includes
distortions such that the region of high density has a flatiron
shape. Enhancing the sampling width to σ = 4, the retrieved
distribution picks up more peculiarities. In the inner high
density regions an elongated double peak shape emerges along
the diagonal, while in the outer regions smaller islands of
increased density emerge. This reflects features in the fitness
landscape of Shekel’s function (c.f. Fig. 3).
The last series of experiments that we conduct briefly inves-
tigates the dynamics of the retrieved distribution. Particularly,
as for the retrieval procedure we always assumed a full
generational interval ranging from 0 to 100. For this reason,
we run experiments on Griewank’s function and aggregate
mutations from the generational intervals 0 to 10 and 10 to
40. The intervals were chosen to approximately retrieve the
same sample sizes of about 40, 000 improving mutations. We
find that in the initial generations the distribution resembles to



Fig. 5. Top to bottom: Comparison of the minimum fitness costs per gener-
ation averaged over 1000 runs for different sampling widths σ (continuous
lines) and the resulting improved distributions (dashed lines) for Rastrigin’s
(top), Griewank’s (center) and Shekel’s (bottom) benchmark function.

a multivariate normal Gaussian. Only in later generations the
prominent hexagonal grid structure emerges.

2) Sampling width and performance improvements: As
we have seen in the previous series of experiments, that
the sampling width is crucial in the retrieval of problem
characteristic distributions, we investigate in the following the
effect of it in regards to possible performance improvements.
The resulting plots of average minimum fitness cost achieved

Fig. 6. Comparison of the behaviours of different statistical distance measures
as possible proxies of task similarity to the fractional fitness cost achieved
when transferring the improved sampling from Rastrigin’s to Ackley’s func-
tion. The depth parameter a of Ackley’s benchmark function is varied. Note,
that due to normalization 0 only indicates highest similarity and not sameness.

over increasing generation are shown in Fig. 5. Again we have
used the algorithm configuration as detailed in Sec. III-A.
We find for Griewank’s function that although it possesses
many deceptive minima and although we can retrieve an
improved distribution, increasing just the sampling width
seems to be enough for performance improvements. In fact,
for increased sampling width the retrieved distributions even
slightly worsen the performance. For all tested settings, we
could only retrieve for σ = 0.71 a better performing search
distribution, however with statistically insignificant difference
to the naive distribution when compared within a t-test (c.f.
Tab. I). This seems to be counter-intuitive at first, however
considering the fact that Griewank’s function is characterized
by a comparatively flat gradient and far apart extrema, re-
ducing the sampling distribution to those of just improving
mutations may impede the exploratory properties of the search
too much to result in any performance improvements. Looking
at Rastrigin’s benchmark function

f(x) = 10 d+

d∑
i=1

[x2i − 10 cos(2πxi)] (10)

with χ = [−5.12, 5.12]d and Shekel’s benchmark, we
find that we can indeed retrieve distributions which can
enhance the performance of the algorithm in a statistically
significant manner. However, apart from Shekel’s function, the
distributions retrieved at higher sampling width on Rastrigin’s
function do not out-compete those for the smaller widths.
Note, that we did not tested our procedure on Rastrigin for
σ = 6.0, as this sampling width exceeds the size of the search
space.

3) Test of statistical measures for task similarity: At last,
an interesting question to investigate is whether or not the
statistical distributions can be considered as proxies for task
similarity in terms of improved performance, when transfer-
ring them to tasks of similar structure with similar retrievable



TABLE I
SAMPLING WIDTH σ, HISTOGRAM WIDTH hwidth , BEST AVERAGE FITNESS VALUES f , STANDARD DEVIATIONS s AND T-VALUES t-val AFTER 100

GENERATIONS AVERAGED OVER 1000 RUNS. NOTE THAT fbest AND sbest STEM FROM THE NAIVE SAMPLING APPROACH, WHILE f
′
best AND s′best STEM

FROM THE EXPERIENCE-BASED SAMPLING APPROACH. BEST ACHIEVED FITNESS VALUES WHERE THE NULL HYPOTHESIS FOR α = 0.05 COULD BE
REJECTED ARE MARKED IN BOLD FONT, WHILE AMBIGUOUS HIGH-PERFORMING VALUES ARE MERELY UNDERLINED.

Rastrigin Griewank Shekel

σ 0.71 2.00 4.00 6.00 0.71 2.00 4.00 6.00 0.71 2.00 4.00 6.00
hwidth 1.5 3 5.5 - 1.5 6 11 15 1.5 3.5 6 8

fbest 0.11 0.37 0.83 - 1.88 1.04 0.11 0.02 -10.34 -10.51 -9.48 -8.67
sbest 0.19 0.37 0.62 - 2.16 1.18 0.13 0.02 1.84 1.08 1.51 1.96

f
′
best 0.01 0.08 0.26 - 1.85 1.17 0.15 0.03 -9.93 -10.58 -10.83 -10.67
s′best 0.01 0.12 0.30 - 2.13 1.33 0.19 0.03 2.30 1.47 0.52 0.69

t-val 16.17 23.90 26.35 - 0.30 2.26 6.28 4.93 4.47 1.18 23.30 30.48

distributions. For this reason, we consider Rastrigin’s and
Ackley’s benchmark function. Both are characterized by the
same positions of local extrema and the global optimum.
However, the exponential function makes the neighborhoods
around the extrema in Ackley’s function significantly steeper.
One could expect, that a beneficial distribution retrieved on
Rastrigin’s function therefore could also be beneficial for
Ackley’s function and effectively emulate the effects, when we
would likewise extract a distribution from Ackley’s. However,
the similarity of both distributions should be the deciding
factor for the effectiveness of such a procedure. For this
reason, we investigate the impact on reducing the fitness
when using an improved sampling procedure retrieved from
optimizing Rastrigin’s function by transferring it to Ackley’s
function. We vary the parameter a which controls the depth
and steepness of the funnel and compare the behavior of the
impact or fractional fitness of improved to standard sampling
fexp/fstandard calculated from 1000 runs with the algorithm
configuration from Sec. III-A, to the similarity of the retrieved
distribution with the one from Rastrigin’s function. We use as
distance measures the Bhattacharya distance [18] given by

DB(P,Q) = −ln

(∑
x∈X

√
P (x)Q(x)

)
, (11)

where x corresponds to the center position of a bin, X being
the set of all bins, P and Q to the two distributions which are
to be compared: the Jensen-Shannon divergence [19] given by

JSD(P,Q) =
1

2
[DKL(P‖M) +DKL(Q‖M)], (12)

where DKL is the Kullback-Leibler divergence and
M = 1/2(P +Q) an average mutual distribution; and
at last the Wasserstein or Earth Mover’s distance [20]

EMD(P,Q) =

 m∑
i=1

n∑
j=1

fi,jdi,j

 /

 m∑
i=1

n∑
j=1

fi,j

 , (13)

where dij are Euclidean distances between the bins of the
distributions P and Q, and fij are flow coefficients which are
calculated by solving the optimal transport problem [21].
Our considered case unfortunately proves to be a good counter

example. While all distance measures in Fig. 6 are shown to
behave similarly when varying the parameter a, the fractional
fitness shows regularly occurring spikes which are not reflected
in any of the distance measures. Although, one may attribute
the latter to errors arising from the stochasticity of the search
process, the overall global trend of the fractional fitness is of
declining nature. This contrasts the behavior of the distance
measures, which all show a clear change of sign in their first
derivative near a ≈ 5.

IV. CONCLUDING REMARKS

In conclusion, we investigated in our paper a transfer
learning method for continuous single-objective optimisation
based upon model-based mutation operators. For this reason,
we tested the assumption that variable preferences arising
in the algorithm-problem interaction can be used to design
operators and compare tasks from an algorithm perspective.
In our study, a continuous genetic algorithm with Gaussian
mutation operator was used as a base from which we retrieved
from optimisation runs distributions of improving mutations,
performed an analysis on these and used them in the hope
of realizing performance improvements on new problem
instances.

Our observations show us, that retrieving a distribution which
significantly differs from the default normal distribution relies
crucially on the interplay between problem characteristics
and algorithm configuration. Further, we also investigated
the retrieval procedure on different optimisation problems.
We have seen, that using the improved distribution works
especially good on multimodal problems and surprisingly also
on problems with low modality, however at times may hurt
the careful balance of explorative and exploitative qualities
of a search distribution. This especially seemed to have been
the case on Griewank’s function, where the performance gain
was at best only minimal, but still not statistically significant.

We note that in our investigation we considered the
integrated statistics over all generations as basis for our
improved sampling, thus neglecting any dynamic components.
However, on further inspection we find that only in later



generations problem characteristic features are unveiled which
are contrasting the default operator. At last, we investigated
whether or not statistical measures can be considered as a
measure of task similarity in our framework. While all tested
measures have shown very similar behavior, relating them
in our case to performance improvements has not shown
significant correlation. However, we think that nevertheless
the proposed concept of relating task similarity to statistical
similarity is an interesting direction to further explore.
For our future work, we intend to extend the number of
considered benchmark problems for our method such that we
can draw clearer boundaries for its effectiveness. Further, we
want to replace the search distribution approximation currently
done through histograms by mixture-based density estimators.
This could also allow us to include dynamic aspects through
online reweighing of mixture components. The long term goal
of our research can be considered as constructing a framework
which enables us to learn operators that generalize over classes
of continuous optimisation problems and subsequentially
can be constructed for new unsolved black-box optimisation
problems. Similar in the sense of generalizing from a set of
training to test instances. While our research may closely
relate to the current popular line of research in regards to
algorithm selection in continuous optimisation, to the best
of our knowledge a model-oriented perspective has not been
taken as of yet. Similar, in the current co-evolutionary line of
research on transfer learning in optimisation, the perspective
of the operators is seemingly missing. Ideally, one would
envision that the ideal transfer method would transfer both,
optimized operators in combination with candidate solutions
of high-fitness from prior optimisation tasks.
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