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Abstract—Robust Optimization Over Time (ROOT) is a new
method of solving Dynamic Optimization Problems in respect
to choosing a robust solution, that would last over a number
of environment changes, rather than the approach that chooses
the optimal solution at every change. ROOT methods currently
show that ROOT can be solved by predicting an individual fitness
for a number of future environment changes. In this work, a
benchmark problem based on the Modified Moving Peaks Bench-
mark (MMPB) is proposed that includes an attractor heuristic,
that guides optima to a determined location in the environment,
resulting in a more predictable optimum. We study a number
of time series forecasting methods to test different prediction
methods of future fitness values in a ROOT method. Four time
series regression techniques are considered as the prediction
method: Linear and Quadratic Regression, an Autoregressive
model, and Support Vector Regression. We find that there is
not much difference in choosing a simple Linear Regression to
more advanced prediction methods. We also suggest that current
benchmark problems that cannot be predicted will deceive the
optimizer and ROOT framework as the peaks may move using a
random walk. Results show an improvement in comparison with
MMPB used in most ROOT studies.

Index Terms—Particle Swarm Optimization, Computational
Modelling, Metaheuristic Optimization, Benchmark Testing, Evo-
lutionary Algorithm

I. INTRODUCTION

Real-world optimization problems deal with changing ob-
jective functions, constraints and problem environments over
a period of time [1]–[4]. These time-varied optimization
problems that are known as Dynamic Optimization Problems
(DOPs) require ad-hoc algorithmic solutions to continuously
“chase” moving global optima. Other challenges include de-
tecting when the problem changes and tracking the global
optima. DOPs are conceived from the belief that learning
from previous evaluations, when assuming the problem has
not changed much, can increases the efficiency and reliability
of the optimizer thus allowing for a quicker and more informed
convergence to a solution.

A widely adopted approach of dealing with DOPs is track-
ing moving optima (TMO) on each environment change. Two
strategies can be used to improve on TMO approaches: one is
to use historical information [5] and the other is to maintain
the population diversity [6]. However, TMO approaches do not
take into account the cost of frequently changing solutions if
the solution chosen is too costly or impossible to switch to.

A new approach that does take into account of these
factors, called robust optimization over time (ROOT), was
proposed by Yu [7] where the goal of optimization is to find
consecutive solutions over time that can have a varied degree
of optimality rather than finding the global optimum at each
time interval. ROOT finds a solution that can be used over
environment changes by maximizing the survival time of the
robust solutions over time [8]. An acceptable optimal solution
is problem specific and can be pre-defined by the user [9].

In this paper a novel experimental study is designed to test
the performance of various time series forecasting methods.
We test multiple regression techniques based on different
paradigms, specifically; Linear and Quadratic Regression [10],
a Autoregressive model [9], and Support Vector Regression
(SVR) [11], to identify their success in finding a robust solu-
tion and establish whether a more accurate predictor achieves
better results.

A new benchmark problem, is proposed that extends the
MMPB problem by including a factor that attracts the peaks to
a location. The latter allows for the movement to be predicted
while keeping a satisfactory degree of random walk movement.
We include an attractiveness weighting which attracts the
peaks at different rates in order to influence the amount of
random walk and noise in the predictive movement.

This paper is structured as follows. In Section 2 the related
works of ROOT are reviewed. In Section 3, the current MMPB
and new benchmark is proposed. The experiment methodol-
ogy, performance measures and compared forecasting methods
to be used are described in Section 4. Furthermore, in Section
5 the results of the experiments are discussed. Finally, Section
6 summarizes the findings and discuss potential further work.

II. EXISTING RESEARCH

ROOT was proposed as new method of solving DOPs in
respect to choosing a robust solution that would last over
a number of environment changes rather than the approach
that chooses the optimal solution at every change [7]. A
general framework was proposed by Jin [9] that consists
of a population-based optimization algorithm (POA) as the
optimizer; a database to store historical solutions informa-
tion; a fitness-approximator and a fitness-predictor. In [9], a
Radial Basis Function Network (RBFN) is adopted as the
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local approximator and an autoregressive (AR) model as the
predictor. In further studies, the approximation methods were
not used as a stronger focus was given on quantifying the
effects of prediction error on the metrics to use the solution’s
true previous fitness instead [8], [12], [13]. The work in [14]
studies the impact of various approximation models of past
environments in ROOT considering the algorithm performance
in terms of robustness. Precisely, both a Gaussian Radial
Basis Function Network (referred to as RBFN-GAU) and Thin
Plate Radial Basis Function (RBFNTHI) is included in the
comparative analysis, as well as a Shepard Interpolation model
(SHEPARD), a Support Vector Regression method equipped
with a Gaussian Kernel (SVR-GAU) and one more equipped
with a Laplacian Kernel (SVR-LAP). This experimentation
unveiled that the number of peaks in the benchmark function
directly impacts the performance of the approximation method.
Moreover, although the obtained results suggest that selecting
a suitable approximator significantly impacts the algorithm
performance in ROOT, this is not enough to guarantee quality
solutions close to the true optimum of the problem.

The suitability of ROOT methods compared to traditional
TMO approaches remains an important characteristic that
impacts the design of ROOT algorithms. The measurement of
whether a ROOT approach is needed is vital and the incorrect
use of ROOT may be deceptive in the problem and lead to
worse results than expected.

Differently, the multi-swarm approach in [15] does not re-
quire an approximator and a predictor to base future solutions,
as it only needs to work out metric values from the swarms
to guide the search. This approach is extended in [16] to
obtain a multi-swarm method capable of finding, tracking
and monitoring peaks. In the latter, future behaviours of the
peak are predicted based on information extracted from each
swarm and exploited to pick the next robust solution when
the current solution becomes unsatisfactory. Numerical results
have shown that classic methods using survival times based
metrics are less performing in highly dimensional problems as
this task becomes almost impossible with larger search space
and higher change frequencies.

Multi-objective approaches to ROOT have also been consid-
ered. In [17] the authors convert a scalar DOP to a two-layer
multi-objective DOP to find the true robust solution set for
both the survival time and average fitness simultaneously. In
the first layer, the acceptable robust Pareto front considering
both metrics is found at each time-varying moment. In the
second layer, taking the average fitness and the length of the
robust solution set as two objectives, the sequences of robust
solutions chosen from the first layer during all time-varying
moments are explored.

ROOT can also be extended to consider the switching
cost from one solution to another solution as a metric to be
minimized. This metric is termed Previous-Solution Displace-
ment Restrictions (PSDR), or Switching Costs and forms of
requirement satisfaction constraint in solving DOPs. PSDRs
consider real-world problems where it may be expensive, or
impossible, to change to a new solution if it is far from the

current one in the problem space.
Typically, studies are focussed on the multi-objective ap-

proach to finding robust optimal solutions to DOPs and
switching costs. [18] considers the switching cost, reflecting
the degree of changes in implementing a new solution as
an objective to be minimised while robustness is maximised
simultaneously. In [19] the authors solves PSDRs by exploring
the environment around the current solutions. This approach
has a faster convergence time than TMO approaches thus being
suitable for online DOPs. It is also worth mentioning the multi-
objective Optimization of Adaptation method proposed in [20],
which displays a hybrid structure implementing both ROOT
and PSDR algorithmic behaviours. This work considers how
the problem changes from the current optimum to the new
optimum with a known location. The objective is to minimize
the cost associated with the change between these solutions
which is solved by creating a trajectory of solutions across
the environment space to the new optima. The possible conflict
between the optimality of the performance during the change
and the cost of the adaptation defines a new optimization
problem where the cost is minimized while the function value
is maximised. This problem is addressed with an EA in [20]
but other algorithms may also be used to solve it. Two test
examples: a theoretic mathematical function and a robotic arm
control problem were used and for both examples, the EA was
able to find a set of suitable solutions that considers multiple
trajectories of different adaptation costs.

An different approach [21] presents a multi-swarm Adaptive
Solution Chooser (ASC) algorithm for DOPs where switching
costs is used. ASC tracks peaks and calculates their fitness
variance for individuating, in terms of robustness of the solu-
tion, the most reliable ones. The choice between a new solution
or keeping the previous solution is decided on multiple factors
such as the current solutions fitness values; the fitness value
of a prefixed number of higher quality (i.e. fitter) solutions;
their switching cost from the current solution.

III. PROPOSED MODIFIED MOVING PEAK BENCHMARK
ATTRACTOR

In this section we first describe the Modified Moving
Peaks Benchmark (MMPB). We then propose our benchmark,
Modified Moving Peaks Benchmark Attractor(MMPBA).

A. Modified Moving Peaks Benchmark

In order to compare the suitability of MMPBA, the modified
version of moving peaks benchmark (MPB) [14, 1, 3] is also
used. In MMPB, at each environment change; the height,
width and position of each peak randomly changes dependant
on a severity factor. This test set is modified to allow each
peak to have its own severity factor where it is possible to
change some areas of the environment space more severely
than others, making this an appropriate benchmark to test
ROOT algorithms. The base equation of the Moving Peak
Benchmark is described in Eq.(1).

Ft(~x) = max
i=1,2,...,m

{
Hi

t −W i
t ∗
∥∥∥ ~X − ~Ci

t

∥∥∥
2

}
(1)



where m is the number of peaks, ~x is a solution in the problem
space, and Hi

t , W i
t , Ci

t are the height, width and centre of the
ith peak in the tth environment. The MPB is modified by
introducing a movement severity for the height, width, centre
and shift respectively and is changed as follows:

Hi
t+1 = Hi

t + height severity i ∗N(0, 1) (2)

W i
t+1 =W i

t + width severity i ∗N(0, 1) (3)

~Ci
t+1 = ~Ci

t + ~V i
t+1 (4)

where:

~V i
t+1 = shift severity ∗ (1− λ) ∗ ~r + λ ∗ ~V i

t∥∥∥(1− λ) ∗ ~r + λ ∗ ~V i
t

∥∥∥ (5)

where N(0, 1) is a random number from a gaussian distribu-
tion with a zero mean and one variance. The parameter settings
of the MMPB are shown in Table II.

B. Modified Moving Peaks Benchmark Attractor

The peaks of the MMPB undergo a random walk due to
a random number drawn from a gaussian distribution. The
problem may not be predicted accurately and could lead the
ROOT framework to fall under prediction-deception [15]. A
benchmark problem derived from the MMPB, called MMPB-
Attractor (MMPBA) is proposed to allow for the ROOT
framework to not fall under prediction-deception.

The benchmark problem uses a random location for each
peak in the environment space to act as point at which the
peak is attracted to. As the peaks change, the movement
is influenced towards the attractor location for which such
movement may be able to be predicted by the framework. The
benchmark takes the euclidean distance between the optima
and its attractor location and and applies this value to the shift
factor of the optima. A weighting is used to adjust the severity
of the how much the peaks move towards their respective
attractor location. A high weighting attracts the peaks more
compared to a low weight, allowing a peak to undergo a
more severe random walk. In this study, the peaks attractor
location does not change for the duration of the experiment.
Fig 1 shows the distribution of peak changes in 1000 runs,
highlighting the effect of changing the weighting value. For
these figures the MMPBA benchmark problem is formed with
one peak, the starting location is at [25, 25] and the attractor
location is [40, 40]. The peak is allowed to change 100 times,
and at each change the location is recorded. Fig 1(a) shows a
wa of 0, which is the original MMPB problem, and highlights
that over time the peaks change forms a gaussian distribution
around the starting location, therefore for a number of runs in a
ROOT experiment the peaks movement cannot be effectively
predicted. In Fig 1(c) and Fig 1(b) the weighting value is
set to 0.01 and 0.005 respectively. The distribution of the
peaks shows the general attraction to the attractor location, in

Fig 1(b), the distribution is more sparse with a mean located
between the original starting location and attractor location.
Such sparsity means that the peak undergoes a random walk
while also attracted to the attractor location.

The attractor method can be extended by moving the
attractor location itself during every environment change. Such
change can be pre-planned in order to produce cyclic, recurrent
or periodical changes, or fully stochastic. However, an issue
with prediction arises when the training data for the forecasting
method within the ROOT framework is dealing with a static
attractor problem. If the attractor changes to a new location,
the historical data may lead to prediction-deception.

Extending Eq.(5) we can suggest a new peak shift as follows
in Eq.(6):

~V i
t+1 = Ss

(1− λ)~r + λ~V i
t∥∥∥(1− λ)~r + λ ∗ ~V i
t

∥∥∥ + wa| ~Ai
t − ~Ci

t | (6)

where Ss is the shift severity factor, Ai
t is the attractor

location, and wa the weighting of the attractor. The Euclidean
Distance between the attractor and peak is used as the metric
to influence the peaks movement.

IV. EXPERIMENTAL STUDY

A. Methodology

We use the framework proposed by Jin et.al. [9] as our
basis for the algorithm, but we significantly modify it to have
a system of using a Radial Basis Function, trained on a set
of individuals to find an approximate solution representing
the current individual, the true fitness values of individuals
from historical environments to isolate the effects of the
predictor, thus preventing the introduction of approximation
errors present in the original framework. A algorithm [22] is
used as the optimizer where the parameters can be found in
Table I, any population-based optimizer may be used. We also
employ a simple restart strategy by keeping the best global
particle from the previous environment change and insert it
into the new population, therefore the particles are attracted
to the last known best position.

Relevant time series forecasting methods are used to test
fitness values predictions in the ROOT framework. Four time
series regression techniques are considered as the prediction
method: Linear and Quadratic Regression [10], a Autoregres-
sive model [9], and Support Vector Regression (SVR) [11].
Comparison with the Linear and Quadratic Regression is to
identify the performance of the framework given a simple
regression technique. The Autoregressive model is the same
prediction method used in the ROOT framework from [9],
the parameters for the autoregressive model is unchanged
allowing us to compare other prediction methods to the
standard method. Finally, a more advanced method, i.e. the
SVR approach, is also used to deal with noisy training data.



(a) wa = 0, creating the original MMPB problem.
Normal distribution shows peak is not influenced
in a certain direction.

(b) wa = 0.0005, small weighting in attractor
movement creates a weak movement towards the
attractor. Distribution is moderately skewed to-
wards the attractor location. Wide distribution in
the density chart suggests peaks still undergo a
large random walk.

(c) wa = 0.01, large weighting towards the attractor
causes peaks to quickly move to the attractor
location. Distribution is strongly skewed towards
the attractor location. Higher frequency of peaks
movement around the attractor location suggests
peak quickly converges to the attractor and then
random walks around it for the rest of the environ-
ment changes.

Fig. 1. Two-dimensional density distribution and frequency distribution charts of MMPBA peak movement over 100 environment changes for three different
values of wa ∈ {0, 0.005, 0.01}. Peak starting location of (25, 25) and attractor location at (40, 40), and represented as solid line and dashed line on frequency
distribution chart respectively.

B. Performance Measures

The following performance measure takes into account the
chosen solutions fitness performance. Here we take the Aver-
age Fitness and Average Survival Time [8] which quantifies
the best fitness of the chosen solution in all environments.
The performance measures of a ROOT solution can be derived
using Eq. (7) and by in Eq. (8):

Average Fitness =
1

N

N∑
i=1

F (i) (7)

Average Survival Time =
1

N

N∑
i=1

S(i) (8)

where N is the total number of environment changes, F (i) is
the fitness of the best individual found for each environment
change. S(i) is the survival time of this best individual found
at the ith time-varying moment.

TABLE I
PARAMETER SETTINGS FOR PSO AND PREDICTION METHODS

Parameter Value
r1, r2 2.05

c 0.729
Particle Count 50

V. EXPERIMENTAL RESULTS

Table III shows the average fitness of solutions using
the MMPB problem with different dimensions and peaks,
comparing different forecasting methods with varying lengths

TABLE II
PARAMETER SETTINGS FOR MMPB AND MMPBA BENCHMARK

PROBLEMS

Parameter Value
Number of Peaks 5, 10, 20
Change Frequency 2500

Shift Severity Randomized in [0.5, 3]
Height Severity Randomized in [1, 15]
Width Severity Randomized in [0.1, 1.5]
Peaks Shape Cone

Number of Dimensions 2, 5, 10
Correlations Coefficient 0
Peaks Location Range [0, 50]

Peak Height [30, 70]
Peak Width [1, 12]

Initial Height Value 50
Initial Width Value 6

Number of Environments 100
Historical Length, p [1, 2, 3]
Prediction Length, q [4, 6, 8]

Survival Threshold, V [40, 45, 50]
Maximum Survival Length 10

Other Parameters MMPBA Attractor Weighting,
wa = [0, 0.005, 0.01]

of historical data and the number of future environments to
predict. The results show that the all methods achieve the same
results given different peaks and dimensions, however linear
regression is slightly superior than the other methods, which
is also reflected in Table IV giving the results of the average
survival time on the MMPB problem with varying peaks,
dimensions, and forecasting methods given their parameters.

The length of the historical data and prediction shows that
it is more appropriate to use a shorter length for both, with
a increase of average fitness for most forecasting methods



TABLE III
AVERAGE FITNESS RESULTS OF DIFFERENT PREDICTION METHODS ON MMPB, WITH A VARIED NUMBER OF PEAKS AND DIMENSIONS, AND LENGTH

HISTORICAL AND PREDICTED FITNESS SOLUTIONS.

Dimensions = 2 Dimensions = 5 Dimensions = 10
(p, q) Algorithm P = 5 P = 10 P = 20 P = 5 P = 10 P = 20 P = 5 P = 10 P = 20
(1, 4) Linear Regression 23.50 27.06 32.43 17.75 23.65 27.77 15.61 18.27 23.32

Quadratic 23.11 26.72 32.24 17.74 23.63 27.68 15.48 17.61 23.11
AR 22.27 26.31 32.27 16.85 23.23 27.34 15.23 17.64 22.47
SVR 22.53 26.16 32.00 16.85 23.25 27.94 15.64 17.56 22.22

(2, 6) Linear Regression 22.36 32.59 39.61 16.97 29.02 34.17 12.56 21.47 34.63
Quadratic 22.69 31.51 37.93 16.54 29.18 34.05 11.92 21.88 32.54
AR 22.22 31.93 37.22 16.12 29.03 33.43 11.86 22.25 32.53
SVR 22.62 31.15 37.12 16.69 29.50 33.97 11.95 21.70 33.22

(3, 8) Linear Regression 23.62 37.09 39.73 20.99 34.60 35.19 16.59 33.16 28.63
Quadratic 22.12 36.98 37.89 19.42 33.90 34.15 15.51 32.67 27.43
AR 22.31 36.91 37.43 19.59 34.53 33.78 15.63 32.83 27.33
SVR 22.26 37.02 38.19 19.57 34.87 32.79 15.48 32.67 27.18

TABLE IV
AVERAGE SURVIVAL TIME RESULTS OF DIFFERENT PREDICTION METHODS ON MMPB, WITH A VARIED NUMBER OF PEAKS AND DIMENSIONS, AND

LENGTH HISTORICAL AND PREDICTED FITNESS SOLUTIONS.

Dimensions = 2 Dimensions = 5 Dimensions = 10
V Algorithm P = 5 P = 10 P = 20 P = 5 P = 10 P = 20 P = 5 P = 10 P = 20
40 Linear Regression 4.37 5.63 6.30 1.07 2.28 3.10 0.79 1.42 1.66

Quadratic 4.44 5.55 6.26 1.07 2.29 3.08 0.73 1.41 1.64
AR 4.36 5.60 6.29 1.06 2.29 3.05 0.81 1.37 1.64
SVR 4.40 5.56 6.23 1.02 2.37 3.03 0.77 1.38 1.69

45 Linear Regression 3.65 4.67 5.56 0.29 0.73 0.87 0.20 0.33 0.80
Quadratic 3.58 4.67 5.63 0.35 0.65 0.83 0.19 0.27 0.77
AR 3.64 4.67 5.55 0.29 0.64 0.87 0.18 0.24 0.76
SVR 3.56 4.87 5.49 0.20 0.69 0.80 0.19 0.24 0.75

50 Linear Regression 2.27 3.27 4.17 0.08 0.42 0.77 0.09 0.19 0.30
Quadratic 2.23 3.21 4.15 0.12 0.38 0.75 0.07 0.07 0.24
AR 2.26 3.20 4.17 0.10 0.39 0.75 0.09 0.15 0.27
SVR 2.18 3.14 4.18 0.09 0.43 0.71 0.08 0.15 0.31

TABLE V
AVERAGE FITNESS RESULTS OF DIFFERENT PREDICTION METHODS ON MMPBA, WITH A VARIED NUMBER OF PEAKS AND DIMENSIONS, AND LENGTH

HISTORICAL AND PREDICTED FITNESS SOLUTIONS.

Dimensions = 2 Dimensions = 5 Dimensions = 10
(p, q) Algorithm P = 5 P = 10 P = 20 P = 5 P = 10 P = 20 P = 5 P = 10 P = 20
(1, 4) Linear Regression 27.40 31.05 32.81 22.12 26.58 31.79 19.21 20.55 25.28

Quadratic 27.33 28.94 32.54 21.80 28.41 30.64 18.77 19.31 24.45
AR 26.58 29.19 31.66 23.01 27.11 30.45 18.74 20.21 24.94
SVR 26.30 29.16 32.00 21.84 27.83 30.90 19.11 19.20 23.01

(2, 6) Linear Regression 25.83 34.33 40.54 20.27 30.67 35.60 14.33 26.30 36.61
Quadratic 23.80 34.09 39.84 20.09 30.34 35.83 13.99 24.90 36.45
AR 24.34 34.13 39.84 19.66 31.24 36.31 14.38 25.38 36.63
SVR 24.32 34.07 39.92 19.92 31.11 35.71 14.41 25.63 36.52

(3, 8) Linear Regression 25.56 39.01 42.02 24.81 37.89 36.06 17.02 27.17 28.37
Quadratic 25.04 39.16 41.93 22.05 37.20 36.29 18.30 27.05 27.58
AR 25.07 39.28 41.70 22.90 37.30 36.53 18.82 26.77 28.04
SVR 25.81 39.16 41.18 22.60 36.33 35.50 18.43 26.63 27.90

compared to longer lengths of historical data and predictions.
The average survival time results in Table IV using the

MMPB problem with varying peaks and dimensions, and
different levels of thresholds also exhibit the same results of
Table VI. There is no clear difference between the forecasting
methods, and the higher the survival threshold the lower the
average survival time.

For both the average fitness and average survival time results
the conclusion is the same with comparing different forecast-

ing methods and it suggests that the metrics are unsuitable in
finding ROOT solutions if the accuracy of the prediction is
not known or the performance measures used are not suitable
if this accuracy is considered between forecasting methods as
proved in [8]. In this study, the linearity of the forecasting
methods has a direct impact in both metrics. Considering
the survival time metric with a linear regression forecasting
method, if the historical data is continuously above the survival
threshold with a small variance, then the subsequent predicted



TABLE VI
AVERAGE SURVIVAL TIME RESULTS OF DIFFERENT PREDICTION METHODS ON MMPBA, WITH A VARIED NUMBER OF PEAKS AND DIMENSIONS, AND

LENGTH HISTORICAL AND PREDICTED FITNESS SOLUTIONS.

Dimensions = 2 Dimensions = 5 Dimensions = 10
V Algorithm P = 5 P = 10 P = 20 P = 5 P = 10 P = 20 P = 5 P = 10 P = 20
40 Linear Regression 5.52 6.41 6.40 1.52 2.81 4.08 1.73 2.22 2.54

Quadratic 4.71 6.42 6.37 1.84 2.30 3.92 0.40 1.62 1.62
AR 4.46 6.03 6.71 1.74 2.35 3.20 1.59 1.58 2.31
SVR 5.01 6.08 6.86 1.61 2.60 3.42 1.34 2.49 2.18

45 Linear Regression 4.07 5.16 5.94 1.13 0.95 1.40 1.05 0.99 1.00
Quadratic 3.81 5.00 5.70 0.75 1.03 1.08 0.48 0.50 0.84
AR 4.26 5.15 5.85 1.07 0.47 1.24 1.38 0.76 1.55
SVR 4.16 4.91 6.00 0.62 1.07 1.31 1.12 0.57 1.37

50 Linear Regression 3.32 3.44 4.85 0.81 0.54 1.99 1.03 0.79 1.23
Quadratic 2.98 3.32 4.31 0.68 1.03 1.00 0.23 0.42 0.71
AR 2.92 3.99 4.30 1.43 1.07 1.73 0.54 0.46 0.69
SVR 2.98 3.88 4.59 0.33 1.36 1.72 0.38 0.42 0.41

TABLE VII
AVERAGE FITNESS RESULTS OF DIFFERENT ATTRACTOR WEIGHTS FOR MMPBA, WITH A VARIED NUMBER OF PEAKS AND DIMENSIONS, USING A AR

PREDICTION METHOD WHERE P=1, Q=4.

Dimensions = 2 Dimensions = 5 Dimensions = 10
W P = 5 P = 10 P = 20 P = 5 P = 10 P = 20 P = 5 P = 10 P = 20
0 22.27 26.31 32.27 16.85 23.23 27.34 15.23 17.64 22.47
0.005 24.89 28.46 33.48 19.86 25.04 28.53 17.40 20.25 23.80
0.1 0.37 4.37 19.22 -0.02 8.54 12.53 -3.62 1.38 6.65

results are above this threshold until the maximum length is
reached. If the historical data has a larger variance, and as
the forecasting method is linear, the predicted values may
fall below the survival threshold within the first few survival
lengths or continue until the maximum length, influencing the
results to show a higher average survival length. With non-
linear functions the accuracy may be reduced leading to more
appropriate results with less extreme survival lengths. In this
case, averaging extreme results and good results achieves the
same result.

Comparisons with Table III and Table V show the use of
the standard MMPB problem and the problem proposed in
this work, MMPBA. Results show that MMPBA has a slight
higher average fitness in most cases reflecting the suitability
of a predictable problem in ROOT studies.

Table VII shows the effect of different weightings of the
attractor function in MMPBA using AR as the predictor and
p=1, q=4. A smaller weighting suggests that the peak is
attracted less to the attractor location and undergoes more
random walk therefore it cannot be predicted effectively,
whereas a higher weighting attracts the peak more severely
leading to a heuristic that can be predicted. With a weighting of
0 the benchmark is the same as the standard MMPB problem.
The results show that a small attraction weighting leads to
slightly higher average fitness than that of a higher attraction
weight and a weighting of 0.

One reason for this is that a heuristic that creates a pre-
dictable environment space is ideal for the ROOT framework
- the ROOT framework does not predict the movement of
the peaks rather the estimation of the individuals fitness. A
prediction method’s accuracy may be higher if the uncertainty

of the individuals fitness in future environments is reduced
by reducing the random walk of the peak. This forecasting
error, and that using the standard MMPB problem, is further
reduced if the linearity of the prediction method matches that
of the peak shape, i.e. a simple linear regression method is
appropriate for a conical peak shape.

Worse results in higher attractiveness weightings suggests
that the movement of the peak between changes is too great
for the ROOT metric, in this case the average fitness, and de-
pendant on the peak shape. With a small peak width and large
movement the fitness drops significantly in future environment
changes. Methods to find a robust solution considering this
characteristic may need more research.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper we investigate the characteristics of different
time series forecasting methods for the predictor component
in the ROOT framework proposed in [9]. The framework were
tested on the MMPB function, and a new benchmark problem
extending MMPB called MMPB-Attractor was proposed. This
benchmark problem guides the peaks movement towards a spe-
cific position in the environment increasing the predictability
of the problem.

The findings of the paper were that given the performance
measures and metrics used there is not much difference in
choosing a simple Linear Regression to more advanced pre-
diction methods. These methods may achieve a more accurate
result, however this may be masked by a simple method were
the predicted future fitness values are a significantly higher
but not accurate - unless using the updated ROOT metrics
that incorporate prediction error.



Benchmark problems that cannot be predicted will deceive
the optimizer and framework as the peaks may move using a
random walk whereas, a benchmark problem that includes a
predictable heuristic leads to slightly better results as shown
using MMPBA. A characteristic that considers the distance a
peak moves between changes was highlighted showing that
the ROOT framework does not work well.

Future work will explore this issue and include uncertainty
in the approximation or prediction of the future possible
solution. The relationship of quick recovery and requirement
satisfaction in ROOT problems will be explored. Finally,
MMPBA will be extended to include cyclical, recurrent, and
periodic predictive factors in order to identify ROOT algo-
rithms that can adapt to predictable changes.
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