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Abstract—Feature selection (FS) is a challenging data mining
problem that incorporates a complex search process to find the
most informative feature subset. In the brute force methods
generating the entire feature space and applying an exhaustive
search makes the FS NP-hard problem. Meta-heuristic algo-
rithms are good alternative solutions that provide (near) optimal
solutions through a random search process instead of a complete
search. In this paper, an FS approach based on the Moth
Flame Optimization algorithm (MFO) and k-NN classifier are
proposed. MFO is a recent meta-heuristic algorithm that has
proved its effectiveness in solving different complex problems
in a reasonable time. Nevertheless, the performance of MFO
highly depends on achieving a balance between exploration and
exploitation during the search process. To address this issue,
we propose an adaptive method to update the position of a
moth toward the best global solution based on the search status.
The proposed MFO has been evaluated using sixteen benchmark
medical data sets and the results show promising performance of
the modified MFO algorithm in terms of the applied evaluation
measures.

Index Terms—Feature Selection, Classification, Moth Flame
Optimisation.

I. INTRODUCTION

Advances in data collection technologies have produced
huge data sets with a massive number of dimensions (features).
In the data mining community, this is known as the curse
of dimensionality phenomenon. It causes several negative
consequences for the learning process including slowing down
the learning time and degrading the learner’s performance [1].
Feature selection (FS) is a dimensionality reduction technique
that produces a smaller version of a data set without affecting
the original meaning of features. This is done by eliminating
the noisy features and maintaining the most representative fea-
tures that are highly correlated with the target class (relevant)
and weakly correlated with each other (not redundant). The
target of using FS as a preprocessing step in a data mining task
(e.g. classification or clustering) is to achieve two conflicting
objectives simultaneously: minimizing the number of features
and maximizing the performance of the learning algorithm.

FS process traditionally consists of two main processes:
search and evaluation [45]–[49]. In the evaluation process,
each candidate feature subset is assessed to determine its
suitability as a solution for an FS problem. Two main methods

that can be used to evaluate a feature subset: filters and
wrappers. Filters rely on the properties of the data set itself
without involving any learning step so it is a simple and fast
method such as F-score, Information Gain (IG) and Chi-square
[42]. On the other hand, wrappers incorporate a learning step
in the FS process that consumes a longer time, but it may
contribute to better performance results.

Search in an FS process means moving around in the feature
space to find the best feature subset among the generated
feature subsets. This can be done by either creating the
entire feature space using a complete search algorithm or
by generating random feature subsets using a meta-heuristic
search algorithm (MH). Applying the complete search and
exhaustively traversing all the feature subsets generated from
a moderate and large data set is impractical. In mathematics,
if the size of the data set is N dimensions then the size of
the fully generated feature space size is 2N . This requires
exponential running time which makes FS NP-hard problem.
Applying the MH algorithm reduces the feature space com-
plexity and efficiently guides the search procedure for a (near)
optimal solution.

The main category of MH algorithms is Swarm Intelligence
(SI). SI algorithm simulates the natural survival behaviors
of creatures that live in groups. The method of exchanging
information between group members to approach prey is trans-
formed into mathematical models like Grey wolf optimization
(GWO) [41], Binary Cuckoo Search (BCS) [33], and Binary
Bat Algorithm (BBA) [32]

Over the past decade, there has been a monotonous increase
in the use of SI algorithms to solve various optimization
problems including the FS problem. A wide range of applica-
tions have gained the benefits of FS-SI approaches including:
facial expression recognition [16], Arabic handwritten letter
recognition [7], hyperspectral image processing [8], protein
and related genome annotation [9], biochemistry and drug de-
sign [10], electroencephalogram (EEG) [4], financial diagnosis
[5], [6], software product line estimation [11], spam detection
in emails [12] and medical application [13]. In the medical
applications, the FS-SI approach has been widely applied to
improve the classification tasks by preprocessing the medical
data set without affecting its readability and changing the
original features. In literature, there were many studies that
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proposed different modification strategies to enhance SIs to
solve FS problem such as integrating new operators (e.g.
chaotic maps [44], rough set [15], transfer functions [28]
and Levy flight [16]), hybridization with other algorithm (e.g.
filter [1], SI [17] and classifier [31]), using new initialization
mechanism [18] and adopting new update strategy such as the
time-varying strategy [28].

The MFO is a recent SI algorithm that is inspired by the
behavior of moths in nature [19]. MFO as all SI algorithms fol-
lows a population-based paradigm that requires the initializa-
tion of a population of moths at the initial optimization steps.
Each moth represents a possible solution for the optimization
problem at hand. MFO applies a spiral update strategy to
change the positions of moths in the solution space. Moths are
updated and evaluated in an iterative process until a stopping
condition is satisfied (e.g maximum number of iteration is
reached). In MFO, the optimization process is performed in
two phases: exploration and exploitation. In exploration, the
moths distribute globally to explore different regions of the
search space. In exploitation, the moths search locally within
a limited region where the global optimal solution may exist.
A smooth transition between these two conflicting phases
during the optimization process improves the performance of
the search algorithm. This is because if the exploration phase
takes longer, this leads to the loss of the optimal solution and
an increase in search time, while if the exploitation is longer,
this will cause stagnation in the local minimum.

MFO was proposed in [19] to solve continuous optimization
problems, then a binary version called BMFO was proposed
in [35] to solve the binary optimization problem such as FS.
Since then, many modifications have been adopted to improve
the BMFO as a search algorithm in the FS process including
[16], [29]–[31]. The reason for this widespread usage of MFO
as a wrapper FS approach is that the MFO is equipped with
spiral update strategy and adaptive parameters that control
the adaptive convergence of MFO and maintain the trade-off
between exploration and exploitation. For more information
about MFO, a reader can refer to the reviews [36], [37].
By referring to No Free Lunch Theorem (NFL) [43], there
is no evolutionary algorithm that is considered the perfect
solution for all optimization problems. Therefore, the doors are
always opened to either suggest new evolutionary algorithms
or to suggest new modifications to improve existing algorithms
when used to solve various optimization problems.

In this paper, a new adaptive update mechanism is proposed
to update the position of a moth toward the flame based
on the search status. Instead of the original update strategy
that updates all moths in the same way and ignores their
closeness to the global solution. In this work, each moth will
be updated adaptively by taking into account its position from
the global solution. Thus, all moths in the swarm will be
given a rank that depends on how far a moth from the global
solution. Therefore, a low-quality moth with a low fitness
value will have a large rank and there will be a large change
in its position. On the other hand, a high-quality moth with
a high fitness value will have a small rank and there will be

a small change in its position. To evaluate the performance
of the proposed MFO, sixteen benchmark medical data sets
were used and the results are compared with three similar
approaches from the literature. The results showed promising
performance of the proposed MFO in terms of the applied
evaluation measures. The remaining of this paper is organized
as follows: Section II presents the methodology of the MFO
algorithm and its binary version. Section III discusses the
proposed FS approach. In Section IV, the experimental results
are discussed and analyzed. Finally, in Section V, conclusions
are provided.

II. METHODOLOGY

A. Moth Flame Optimisation (MFO)

Moth Flame Optimization (MFO) is a recent SI algorithm
that emulates the natural movement of moths [19]. Moths
travel in a straight line by applying a transfer orientation
mechanism. Maintaining the same angle is possible only when
the source light is far away from such as the moonlight.
However, when the source light is close such as the light of
a candle, the moth is forced to move spirally. Fig.1 shows
the conceptual model of the MFO algorithm. Eq.1 describes
mathematically the natural spiral motion of moths around a
flame where Mi represents the ith moth, Fj represents the jth
flame, and S is the spiral function. Eq.2 formulates the spiral
motion using a standard logarithmic function where Di is the
distance between the ith moth and the jth flame as described
in Eq.3, b is a constant value for determining the shape of the
logarithmic spiral, and t is a random number in the range [-1,
1]. The parameter t = −1 indicates the closest position of a
moth to a flame where t = 1 indicates the farthest position
between a moth and a flame. To achieve more exploitation in
the search space the t parameter is considered in the range
[r, 1] where r is linearly decreased throughout iterations from
-1 to -2. Eq.4 shows gradual decrements of the number of
flames throughout iterations where l is the current number of
iteration, N is the maximum number of flames and T is the
maximum number of iterations. Algorithm 1 shows the entire
pseudo code of the MFO algorithm.

Mi = S(Mi, Fj) (1)

S(Mi, Fj) = Di × ebt × cos(2π) + Fj (2)

Di = |Mi − Fj | (3)

FlameNo = round(N − l × (N − 1)/T ) (4)



Fig. 1: The conceptual model for the movement behaviour of moths

Algorithm 1 Pseudo-code of the MFO algorithm
Input:Max iteration, n (number of moths), d (number of
dimensions)
Output:Approximated global solution
Initialize the position of moths

while l ≤Max iteration do
Update flame no using Eq.4
OM = FitnessFunction(M);
if l == 1 then
F = sort(M);
OF = sort(OM);

else
F = sort(Ml−1,Ml);
OF = sort(OMl−1, OMl);

end if
for i = 1: n do

for j = 1: d do
Update r and t;
Calculate D using Eq.3 with respect to the corre-
sponding moth;
Update M(i, j) using Eqs.1 and Eqs.2 with respect
to the corresponding moth;

end for
end for
l = l + 1;

end while

B. Binary Moth Flame Optimisation

The original MFO was designed to deal with continuous
search space in which the solution is composed of real values
[19]. For the discrete search space, the solution is composed
of binary values either ”0” or ”1.” This implies that the
MFO should be modified by integrating some operators that

guarantee that this constraint on the solutions is not violated.
The most common binary operator used to convert continuous
optimizers into binary is the transfer function (TF) [20]. The
main reason for using TFs is that they are easy to implement
without affecting the concept of the algorithm. In this paper,
the used TF is the sigmoid function which was used originally
in [21] to generate the binary PSO (BPSO). In the MFO
algorithm, the first term of Eq.2 represents the step vector
which is redefined in Eq.5. The function of the sigmoid is
to determine a probability value in the range [0,1] for each
element of the solution. Eq.6 shows the formula of the sigmoid
function. Each moth updates its position based on Eq.7 which
takes the output of Eq.6 as its input.

∆ M = Di × ebt × cos(2π) (5)

TF (∆ Mt) = 1/(1 + e∆ Mt) (6)

Md
i (t+ 1) =

{
0, if rand < TF (∆ Mt+1)

1, if rand > TF (∆ Mt+1)
(7)

III. THE PROPOSED APPROACH

This section presents the proposed approach by explaining
the FS algorithm and the used evaluation criterion.

A. FS algorithm

In this paper, the BMFO algorithm is used as a search
algorithm in the FS process. BMFO has been used effectively
in various discrete problems such as FS. BMFO is similar to
MFO in that the update process of a moth doesn’t take into
consideration the fitness value of a moth. This means that low-
quality moths will change their positions in the search space
as high-quality solutions. Ignoring the closeness of a moth



from the optimal solution and updating them without caring
about its fitness may degrade the performance of the optimizer.
Therefore, this work addresses this issue by incorporating the
rank of a moth in the update process. Thus, the original update
strategy of a moth in the standard MFO algorithm that is
formulated by Eq.2 will be modified to be an adaptive update
strategy as illustrated in Eq.8. The added term is Ri

N where Ri

indicates the rank of the i moth in the swarm and N represents
the size of the swarm.

S(Mi, Fj) =

(
Di × ebt × cos(2π) + Fj

)
×
(
Ri

N

)
(8)

In this strategy, each moth will be given a rank based on
its fitness value. The high-quality moths with high fitness
values will have a small rank and therefore there will be small
changes in their positions. This enables the optimizer to search
locally and do more exploitation for the specified region in
the search space. This is useful when the moth is close to
the optimal solution because it will increase the opportunity
to reach global optima. In contrast, the low-quality moths
with low fitness values will be given high ranks which forces
them to violently change their positions and search globally
to explore more regions in the feature space.

B. Evaluation criterion

The proposed FS approach applies the wrapper method to
evaluate the candidate feature subset that represents a possible
solution for the FS problem. Two important criteria must be
involved in the fitness function when designing a wrapper
FS algorithm: maximizing the performance of a learning
algorithm (e.g. classification accuracy) and minimizing the
number of selected features simultaneously.

Eq.9 formulates the FS problem where αγR(D) is the error
rate of the classification produced by a classifier, |R| is the
number of selected features in the reduced data set, and |C|
is the number of features in the original data set, and α ∈
[0, 1], β = (1 − α) are two parameters for representing the
importance of classification performance and length of feature
subset based on recommendations [28].

Fitness = αγR(D) + β
|R|
|C|

(9)

IV. EXPERIMENTAL RESULTS

In this paper, sixteen medical data sets from well-regarded
data repositories [38]–[40] were used to evaluate the modified
wrapper approach. Table I shows the details of these data sets.
Table II shows the parameters settings of three well-known
meta-heuristic algorithms: BGWO, BCS, and BBA. These
wrapper based approaches were used for comparison with the
proposed approach. All the experiments were executed on a
personal machine with AMD Athlon Dual-Core QL-60 CPU at
1.90 GHz and memory of two GB running Windows7 Ultimate
64 bit operating system. The optimization algorithms have
been all implemented in Python in the EvoloPy-FS framework
[1]. The maximum number of iterations and the population

size were set to 100 and 10 respectively. In this work, the
K-NN classifier (K = 5 [1]) is used to assess the goodness
of each solution in the wrapper FS approach. Each data set is
randomly divided into two parts; 66% for training and 34% for
testing. To obtain statistically significant results, this division
was repeated thirty independent and the final statistical results
represent the average results of these runs. The α and β
parameters in the fitness equation is set to 0.99 and 0.01,
respectively [2].

TABLE I: Description of the used datasets
NO Dataset Name No features No instances No classes

1 Breast Cancer Wisconsin (Diagnostic) 30 569 2
2 Breast Cancer Wisconsin (Original) 9 699 2
3 Breast Cancer Coimbra 9 115 2
4 BreastEW 30 596 2
5 Dermatology 34 366 6
6 ILPD (Indian Liver Patient Dataset) 10 583 2
7 Lymphography 18 148 4
8 Parkinsons 22 194 2
9 SPECT 22 267 2
10 HeartEW 13 270 2
11 Hepatitis 18 79 2
12 South African Heart (SA Heart ) 9 461 2
13 SPECTF Heart 43 266 2
14 Heart 13 302 5
15 Pima-indians-diabetes 9 768 2
16 Colon 2000 62 2
17 Leukemia 7129 72 2

TABLE II: Parameter settings.

Algorithm Parameter Value

GWO α [2,0]

BA Qmin Frequency minimum 0
Qmax Frequency maximum 2
A Loudness 0.5
r Pulse rate 0.5

CS pa 0.25
β 3/2

The results were analyzed in two steps: firstly, by comparing
the standard BMFO algorithm and RBMFO together to study
the effect of the rank-based modification strategy on the
optimization ability of the algorithm in the feature space.
The performance of the algorithms is evaluated in terms of
classification accuracy, number of selected features, fitness val-
ues and running time evaluation measures. Secondly, involves
comparing the proposed RBMFO with three well-regarded
wrapper based approaches (e.g. BGWO, BCS, and BBA) using
the same environment and using the same evaluation measures
in the first step.

Inspecting the results in Table III, it can be observed that the
results of BMFO and RBMFO are very competitive in terms
of classification accuracy. RBMFO obtained the best results
across nine of the sixteen data sets while BMFO scored the
best results across the remaining seven data sets. Generally,
both approaches have approximately the same classification
performance because the difference between accuracy results
is not significant. From the other side, the standard deviation
for the accuracy results over thirty runs shows that RBMFO
is more stable than BMFO.

Table IV reports the fitness values for both approaches.
It can be seen that, in general, RBMFO achieved better
fitness results compared to BMFO. RBMFO obtained the best



TABLE III: Comparison between BMFO and RBMFO in
terms of the average classification accuracy

Dataset Name BMFO RBMFO
Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 0.907 0.006 0.895 0.003
Breast Cancer Wisconsin (Original) 0.969 0.003 0.971 0.001
Breast Cancer Coimbra 0.775 0.000 0.802 0.000
BreastEW 0.935 0.011 0.927 0.008
Dermatology 0.972 0.028 0.952 0.012
ILPD (Indian Liver Patient Dataset) 0.648 0.000 0.653 0.023
Lymphography 0.673 0.059 0.693 0.029
Parkinsons 0.776 0.000 0.807 0.000
SPECT 0.657 0.029 0.662 0.019
HeartEW 0.788 0.022 0.778 0.019
South African Heart (SA Heart) 0.627 0.002 0.649 0.001
SPECTF Heart 0.768 0.027 0.763 0.021
Heart 0.741 0.037 0.764 0.028
Pima-indians-diabetes 0.802 0.000 0.725 0.000
Colon 0.652 0.051 0.632 0.048
Leukemia 0.852 0.029 0.857 0.028

results in nine data sets, while BMFO achieved the minimum
fitness values for only four data sets. Fitness values remained
the same for the ILPD (Indian Liver Patient Data set),
Pima-Indians-diabetes and Leukemia data sets. Furthermore,
RBMFO achieved more stability in fitness results when it runs
for thirty times. Because the fitness function includes both
classification accuracy and reduction rate, it can be inferred
that the overall performance of RBMFO is better than BMFO.

TABLE IV: Comparison between BMFO and RBMFO in
terms of the average fitness value

Dataset Name BMFO RBMFO
Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 0.038 0.022 0.083 0.011
Breast Cancer Wisconsin (Original) 0.049 0.007 0.042 0.003
Breast Cancer Coimbra 0.287 0.073 0.274 0.000
BreastEW 0.071 0.025 0.076 0.021
Dermatology 0.061 0.040 0.084 0.024
ILPD (Indian Liver Patient Dataset) 0.345 0.000 0.345 0.017
Lymphography 0.405 0.077 0.409 0.029
Parkinsons 0.348 0.000 0.347 0.000
SPECT 0.371 0.050 0.369 0.036
HeartEW 0.196 0.061 0.177 0.047
South African Heart (SA Heart) 0.406 0.014 0.404 0.010
SPECTF Heart 0.303 0.066 0.263 0.050
Heart 0.243 0.075 0.229 0.068
Pima-indians-diabetes 0.258 0.000 0.258 0.000
Colon 0.377 0.000 0.376 0.000
Leukemia 0.115 0.000 0.115 0.000

From Table V, it can be seen clearly that RBMFO outper-
formed BMFO in reducing the number of features in the speci-
fied feature subset. RBMFO recorded the minimum number of
selected features across 75% of the data sets. Sure, this is very
useful especially for large medical data sets as the goal of the
FS process is to create the smallest size feature subset with
the most useful features. Moreover, RBMFO showed more
stability in results when the experiments were repeated thirty
times.

Table VI shows the average running time results for both
approaches. It is clearly shown that the RBMFO requires the
smallest running time to converge toward the global solution.
RBMFO obtained the smallest running time in eleven of the
sixteen data sets while BMFO had the smallest running time
on only five data sets. Furthermore, the RBMFO shows more
stability in the running time results when the experiments were
repeated thirty times.

TABLE V: Comparison between BMFO and RBMFO in terms
of the average number of the selected features

Dataset Name BMFO RBMFO
Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 16.500 1.367 11.833 1.075
Breast Cancer Wisconsin (Original) 4.400 0.932 3.900 0.305
Breast Cancer Coimbra 4.000 0.254 4.067 0.000
BreastEW 19.433 1.888 14.200 1.789
Dermatology 22.167 2.849 17.467 1.877
ILPD (Indian Liver Patient Dataset) 3.967 0.183 4.000 0.000
Lymphography 9.367 1.591 7.233 0.718
Parkinsons 8.233 0.776 6.467 1.040
SPECT 14.167 2.401 10.600 1.464
HeartEW 7.767 1.569 6.767 0.817
South African Heart (SA Heart) 4.030 0.305 4.100 0.183
SPECTF Heart 29.500 3.192 21.133 3.048
Heart 5.700 0.973 4.867 0.596
Pima-indians-diabetes 4.000 0.000 4.033 0.183
Colon 1082.067 164.537 969.267 15.733
Leukemia 3506.367 21.886 3435.467 17.122

TABLE VI: Comparison between BMFO and RBMFO in
terms of the average running time (seconds)

Dataset Name BMFO RBMFO
Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 21.476 0.537 20.351 0.100
Breast Cancer Wisconsin (Original) 23.241 0.405 22.108 0.105
Breast Cancer Coimbra 7.918 0.368 7.878 0.074
BreastEW 23.493 0.566 21.736 0.094
Dermatology 16.038 0.619 15.385 0.091
ILPD (Indian Liver Patient Dataset) 13.724 0.469 13.344 0.058
Lymphography 9.146 0.608 9.222 0.135
Parkinsons 10.572 0.154 10.339 0.079
SPECT 12.418 0.314 12.349 0.072
HeartEW 11.848 0.527 11.907 0.086
South African Heart (SA Heart) 16.354 0.640 16.381 0.095
SPECTF Heart 13.866 0.580 13.546 0.090
Heart 12.165 0.224 11.812 0.063
Pima-indians-diabetes 24.727 0.543 23.845 0.128
Colon 76.932 1.044 80.271 0.854
Leukemia 265.892 3.009 276.099 5.121

The second comparison was performed between the pro-
posed approach and three well-regarded approaches using the
same evaluation measures and data sets. Observing the results
in Table VII and Fig 2, it can be seen that RBMFO obtained
the best accuracy results in nine out of sixteen data sets. BCS
and BGWO achieved the best classification performance on
five data sets while BBA did not score the best performance
for any of the data sets. Moreover, RBMFO shows more stable
results compared to other approaches. From the results of
classification performance, it can be revealed that the embed-
ded spiral operator of the MFO algorithm and the enhanced
update strategy using the rank-based method have a significant
impact on increasing the optimization ability of the algorithm
and achieving a better trade-off between exploration and
exploitation phases. This is because the RBMFO will alternate
effectively between exploration and exploitation phases. This
is accomplished by emphasizing more exploitation around the
high-quality solution and stressing further exploration of the
search space in the event of low-quality solutions.



TABLE VII: Comparison between RBMFO and other ap-
proaches in terms of the average classification accuracy

Dataset Name RBMFO BGWO BCS BBA
Avg Std Avg Std Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 0.895 0.003 0.904 0.015 0.896 0.004 0.760 0.065
Breast Cancer Wisconsin (Original) 0.971 0.001 0.963 0.012 0.971 0.001 0.939 0.022
Breast Cancer Coimbra 0.802 0.000 0.707 0.052 0.777 0.139 0.583 0.037
BreastEW 0.927 0.008 0.925 0.013 0.923 0.011 0.896 0.017
Dermatology 0.952 0.012 0.956 0.021 0.961 0.020 0.739 0.069
ILPD (Indian Liver Patient Dataset) 0.653 0.023 0.591 0.066 0.653 0.000 0.582 0.049
Lymphography 0.693 0.029 0.956 0.044 0.690 0.051 0.705 0.066
Parkinsons 0.807 0.000 0.799 0.037 0.776 0.000 0.786 0.037
SPECT 0.662 0.019 0.656 0.036 0.653 0.019 0.624 0.052
HeartEW 0.778 0.019 0.770 0.028 0.778 0.020 0.709 0.051
South African Heart (SA Heart) 0.649 0.001 0.647 0.022 0.627 0.002 0.622 0.033
SPECTF Heart 0.763 0.021 0.767 0.032 0.760 0.032 0.748 0.035
Heart 0.764 0.028 0.723 0.041 0.769 0.140 0.645 0.063
Pima-indians-diabetes 0.725 0.000 0.750 0.018 0.725 0.000 0.664 0.046
Colon 0.632 0.048 0.655 0.047 0.632 0.053 0.645 0.051
Leukemia 0.857 0.028 0.856 0.023 0.853 0.032 0.715 0.027

Fig. 2: Accuracy based comparison

Regarding fitness value results, Table VIII and Fig 3 show
that RBMFO and BCS have achieved competitive results in
terms of fitness values. However, RBMFO has more stability
in results. BGWO came next and was the best across five data
sets while BBA achieved the best in only three data sets.

TABLE VIII: Comparison between RBMFO and other ap-
proaches in terms of the average fitness value

Dataset Name RBMFO BGWO BCS BBA
Avg Std Avg Std Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 0.083 0.011 0.074 0.0137 0.085 0.018 0.322 0.084
Breast Cancer Wisconsin (Original) 0.042 0.003 0.069 0.023 0.042 0.094 0.079 0.035
Breast Cancer Coimbra 0.274 0.000 0.276 0.140 0.287 0.059 0.557 0.029
BreastEW 0.076 0.021 0.075 0.022 0.068 0.025 0.093 0.028
Dermatology 0.084 0.024 0.090 0.032 0.070 0.034 0.436 0.104
ILPD (Indian Liver Patient Dataset) 0.345 0.017 0.407 0.060 0.345 0.000 0.414 0.054
Lymphography 0.409 0.029 0.405 0.066 0.433 0.094 0.431 0.065
Parkinsons 0.347 0.000 0.329 0.067 0.347 0.001 0.366 0.057
SPECT 0.369 0.036 0.358 0.056 0.374 0.046 0.351 0.041
HeartEW 0.177 0.047 0.194 0.048 0.154 0.053 0.290 0.080
South African Heart (SA Heart) 0.404 0.010 0.400 0.052 0.404 0.014 0.371 0.047
SPECTF Heart 0.263 0.050 0.276 0.061 0.264 0.059 0.272 0.051
Heart 0.229 0.068 0.278 0.075 0.182 0.078 0.456 0.045
Pima-indians-diabetes 0.258 0.000 0.261 0.039 0.258 0.000 0.386 0.061
Colon 0.376 0.000 0.376 0.000 0.376 0.000 0.376 0.000
Leukemia 0.115 0.000 0.115 0.000 0.118 0.020 0.329 0.000

Fig. 3: Fitness based comparison

By examining Table IX, it appears that BBA was the best
approach to reduce the number of selected features. BBA was
superior in ten data sets. BCS and RBMFO were the best
across four and three data sets respectively. On the other hand,
BGWO did not achieve the best feature reduction ratio over
any of the data sets.

TABLE IX: Comparison between RBMFO and other ap-
proaches in terms of the average number of selected features

Dataset Name RBMFO BGWO BCS BBA
Avg Std Avg Std Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 11.833 1.075 14.733 3.062 11.533 1.756 14.533 3.421
Breast Cancer Wisconsin (Original) 3.900 0.305 5.667 1.295 3.933 0.254 3.633 1.564
Breast Cancer Coimbra 4.067 0.000 4.333 1.398 4.133 1.974 4.600 1.192
BreastEW 14.200 1.789 15.600 1.567 14.933 2.348 12.500 2.224
Dermatology 17.467 1.877 17.267 2.392 16.667 2.202 14.367 2.785
ILPD (Indian Liver Patient Dataset) 4.000 0.000 3.533 0.730 4.000 0.000 2.467 1.106
Lymphography 7.233 0.718 9.767 2.176 7.000 1.875 6.600 2.513
Parkinsons 6.467 1.040 9.333 1.826 5.800 1.186 10.400 2.268
SPECT 10.600 1.464 10.667 2.249 10.400 2.207 9.000 2.767
HeartEW 6.767 0.817 7.100 1.561 6.200 1.769 5.467 1.9429
South African Heart (SA Heart) 4.100 0.183 4.433 1.223 4.100 0.305 4.167 1.416
SPECTF Heart 21.133 3.048 22.033 3.882 19.933 3.194 17.900 4.641
Heart 4.867 0.596 4.767 1.194 5.467 0.945 5.967 2.059
Pima-indians-diabetes 4.033 0.183 4.033 0.999 4.033 0.183 3.767 1.431
Colon 969.267 15.733 970.867 14.219 961.867 13.475 974.233 65.520
Leukemia 3435.467 17.122 3495.567 27.931 3422.367 18.524 1241.767 53.723

To analyze optimization time for a different approach, Table
X records the run time for each algorithm. It is noted that the
proposed approach achieved the minimum run time to reach
the convergence state. This can be seen in 88% of data sets.
On the other hand, the BBA had the smallest run time on only
two data sets, Colon and Leukemia. BGWO and BCS were not
the best run time for any data set.

TABLE X: Comparison between RBMFO and other ap-
proaches in terms of the average running time (seconds)

Dataset Name RBMFO BGWO BCS BBA
Avg Std Avg Std Avg Std Avg Std

Breast Cancer Wisconsin (Diagnostic) 20.351 0.100 23.426 0.941 41.084 0.558 21.125 0.282
Breast Cancer Wisconsin (Original) 22.108 0.105 24.175 0.849 45.724 0.608 23.015 0.298
Breast Cancer Coimbra 7.878 0.074 8.690 0.353 15.852 5.578 8.274 0.131
BreastEW 21.736 0.094 24.955 1.068 43.112 1.020 22.147 0.418
Dermatology 15.385 0.091 18.405 0.731 30.140 0.551 15.607 0.221
ILPD (Indian Liver Patient Dataset) 13.344 0.058 14.249 0.714 27.131 0.407 14.001 0.173
Lymphography 9.146 0.135 10.775 0.201 17.249 0.369 9.206 0.106
Parkinsons 10.339 0.079 13.064 0.747 20.188 0.300 10.628 0.145
SPECT 12.349 0.072 14.483 0.607 24.256 0.358 12.674 1.434
HeartEW 11.907 0.086 13.625 0.632 23.590 0.278 12.395 0.151
South African Heart (SA Heart) 16.381 0.095 17.198 0.476 33.451 0.469 17.170 0.256
SPECTF Heart 13.546 0.090 18.002 0.437 25.759 0.351 13.597 0.172
Heart 11.812 0.063 13.562 0.757 23.625 4.153 12.324 0.142
Pima-indians-diabetes 23.845 0.128 25.043 0.879 49.313 0.778 24.964 0.389
Colon 80.271 0.854 274.127 3.479 73.273 1.254 55.723 0.673
Leukemia 276.099 5.121 964.913 5.703 245.912 4.022 189.204 3.002

Fig 4 illustrates the convergence behavior of all the studied
wrapper approaches on all data sets. Each subfigure shows
the changes in fitness value for each approach across all
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Fig. 4: Convergence curves for the rank-based BMFO and other wrapper-based approaches on the used medical data sets

iterations on a specified data set. In all data sets, RBMFO
and BCS show the best convergence trends compared to other
approaches. This can be realized from the convergence curves
that achieve the minimum fitness values in the final iterations
of the optimization process. On the other hand, premature
convergence and entrapment in local minima can be guessed
from the convergence behavior of BGWO and BBA wrapper
approaches.

V. CONCLUSIONS
This paper proposes a new wrapper-based FS approach to

improve the classification tasks in the medical application. The
MFO is used as a search algorithm in the FS process and K-
NN as an evaluator to decide the quality of the generated fea-
ture subset. The main contribution of this work is to enhance
the optimization capability of the BMFO in the feature space.
The proposed approach adopts a ranked-based update strategy
that uses the fitness value of an individual to adaptively update
its position. The RBMFO is tested on sixteen benchmark
medical data sets from well-regarded data repositories. Then,
it is compared with three wrapper approaches that are tested

on the same data sets. The experimental results show that the
rank-based updating strategy performs better than the standard
update strategy and better than the other approaches. For future
direction, we would like to apply the proposed approach to
other challenging optimization problems.

REFERENCES

[1] Khurma, R. A., Aljarah, I., Sharieh, A., Mirjalili, S. (2020). EvoloPy-FS:
An Open-Source Nature-Inspired Optimization Framework in Python for
Feature Selection. In Evolutionary Machine Learning Techniques (pp.
131-173). Springer, Singapore.

[2] Mafarja, M., Qasem, A., Heidari, A. A., Aljarah, I., Faris, H., Mirjalili,
S. (2020). Efficient hybrid nature-inspired binary optimizers for feature
selection. Cognitive Computation, 12(1), 150-175.
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