
A Preliminary Study on Evolutionary Clustering for
Multiple Instance Learning

Aurora Esteban
Dept. of Computer Science

University of Cordoba
Cordoba, Spain

aestebant@uco.es

Amelia Zafra
Dept. of Computer Science

University of Cordoba
Cordoba, Spain
azafra@uco.es

Sebastián Ventura
Dept. of Computer Science

University of Cordoba
Cordoba, Spain
sventura@uco.es

Abstract—Since its beginnings, multiple instance learning stud-
ies have shown an excellent performance in the areas where
it has been applied. This efficiency is due to multiple instance
learning allows to represent a complex object by a set of feature
vectors, being a more flexible representation to preserve more
information than one based on single feature vector. This paper
attempts to progress in this area carrying out a first study that
introduces evolutionary algorithms for solving multiple instance
cluster analysis. Specifically, we present four proposals of genetic
algorithms for multi-instance partitional clustering: three of
them are adaptations of existing algorithms for single-instance
clustering, while the last one is a novel approach based on
CHC evolutionary algorithm. Moreover, two classic non-genetic
partitional algorithms are included in the final comparison.
Experimental results considering ten representative datasets show
promising results for our proposal.

Index Terms—multiple instance learning, clustering, genetic
algorithm

I. INTRODUCTION

Clustering task appears as one of the most representative
fields in data mining to extract useful information through
the raw data. Thus, cluster analysis, or clustering, attempts
to group objects in such a way that similar objects belong
the same group or cluster and dissimilar objects are included
in other clusters [1]. Clustering has been tackled by a lot of
proposals that can be categorized in partitioning, hierarchi-
cal, density-based, grid-based or model-based methods [2].
Similarly, clustering has been effectively applied to a wide
range of engineering and scientific disciplines such as biology,
medicine, computer vision or pattern recognition [2].

Multiple Instance Learning (MIL) [3] is considered an
extension of traditional learning that introduces more flexi-
bility to represent information. MIL has been widely applied
to tasks including text categorization, content-based image
retrieval, image annotation or drug activity prediction [4].
However, the most applications have been addressed from
supervised learning perspective. Concretely, the main dealt
task has been classification [4]. Thus, only a few clustering
methods based on MIL can be found in the bibliography
[5]–[9]. Due to the high heterogeneous space of search in
MIL, current clustering algorithms for MIL tend to get a local
optimum. To deal with this problem, in this paper we propose
several clustering methods based on Evolutionary Algorithms

(EAs) for MIL. Evolutionary algorithms, and more concretely,
Genetic Algorithms (GAs) [10], are stochastic optimization
methods based on natural selection and evolutionary process.
In this field, GAs have been applied to many optimization
problems finding optimal solutions. Among their applications
is clustering in traditional unsupervised learning, but, from our
knowledge, no proposals have been found for GAs applied to
MIL.

This work is focus on partitional clustering. Partitional
clustering algorithms generate a single partition of the data
with a specified or estimated number of non-overlapping
clusters based on the distance between the instances [1]. In
general, partitional clustering is iterative and hill climbing.
Further, the associated objective functions are highly nonlinear
and multimodal, so that it usually converges to local optimum.
In this context, GAs are presented as efficient proposals
which allow to increase the probabilities to reach the global
optimum [11]. Thus, this work adapts some of the more
representative genetic clustering algorithms in bibliography to
work in MIL. It also introduces a new evolutionary proposal
based on the CHC adaptive search [12]. In order to evaluate
the performance of evolutionary proposals, an experimental
study is carried out including non-genetic partitional clustering
algorithms.

This paper is organized as follow. In Section II, the related
work about clustering in MIL is presented. Section III briefly
presents the studied classic partitional clustering methods
and relevant definitions in the problem domain. Section IV
addresses the description of the developed GAs. In Section V,
the experimental results are studied. Finally, Section VI shows
the conclusions obtained and future work.

II. RELATED WORK

Multiple Instance Learning (MIL) was introduced by Di-
etterich et al. [3] as a form of learning where training
instances are grouped in unordered collections called bags.
This representation introduces an important flexibility on the
composition of the bags, the types of data distribution and the
relationships between instances of a bag. For that, this prob-
lem formulation has attracted much attention from scientific
community, especially in the recent years, when the amount
of available data has increased exponentially [4].

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

So far, MIL has been predominated addressed by weakly su-
pervised learning [4], with several consolidated techniques for
the classification task. In unsupervised learning, specifically in
clustering, there are several proposals that adapt well-know al-
gorithms by means of specific dissimilarity metrics for bags of
instances. Henegar et al. [5] introduce a partitional clustering
method based on an unsupervised version of Citation-kNN,
UC-kNN, which minimizes Silhouette index. Kriegel et al.
[6] propose MIEM-Clustering, an expectation-maximization
clustering for MIL based on Gaussian distribution of bags.
COSMIC [7] is a hierarchical density-based clustering that
also uses concept lattices. BAMIC [8] proposes the adaptation
of K-medoids algorithm but dealing with complete bags in-
stead of instances. To measure the distance between bags, it
uses the Hausdorff distance. Finally, Zhang et al. [9] introduce
M3IC-MBM, a clustering method based on maximization of
margin between bags with some relaxations of constraints like
the concave-convex procedure and the cutting plane method.

To the best of our knowledge, no clustering methods based
on GAs have been proposed for MIL. However, GAs have
been widely applied to clustering in traditional learning from
the early 2000s to present [11], enhancing the performance of
clustering in several complex tasks like text-mining, image
analysis or building of social networks. Among the first
proposals in the field, Krishna et al. [13] introduce Genetic K-
Means Algorithm (GKA), a GA where individuals are possible
partitions of the data and with a specific operator based
on K-means and a mutator focused on minimize the Total
Within Cluster Variation (TWCV). In the same line, Lu et
al. [14] propose FGKA, with several modifications centered
in reducing the computational time of GKA. Bandyopadhyay
et al. [15] propose another approach, GCUK, an algorithm
able to estimate the optimal number of clusters by minimizing
the Davies-Bouldin index, and whose individuals are possible
centroids of the clusters. Recently, new proposals have been
developed, like NK hybrid GA [16], that includes in a genetic
search a density based clustering with fixed K over N local
groups; or HG-Means [17], a Hybrid Genetic search for multi-
start K-Means focused on the scalability for large datasets.

In this paper, we propose an adaptation of the mentioned
classic GAs applied to partitional clustering by means of
the development of a specific distance metric and genetic
operators.

III. BACKGROUND

In this section, we introduce the adaptation of two classic
partitional clustering algorithms to MIL. These proposals are
used to evaluate the performance with respect to evolutionary
approaches. Firstly, it is specified the nomenclature and the
metric used to compute the dissimilarity between bags.

A. Nomenclature

In this section, the specific nomenclature used in the prob-
lem domain is introduced. MIL datasets are composed of N
bags, named as U = {b1, ..., bN}. Each bag has a variable
number of instances m, such that bi = {x1i, ..., xmi} and

every instance of every bag in U is a vector of D dimensions
(the attributes of the instances in the MIL datasest), such that
xij = (y1ij , ..., yDij). The aim of the proposed algorithms
will be to form K clusters C = {C1, ..., CK}, being each one
a set of variable number of bags l, i. e. Ci = {b1i, ..., bli}.
Moreover, each Ci is represented by a centroid ci, which is
either a bag or an instance depending on the algorithm, and
all the centers are represented by c = {c1, ..., cK}. The size
of element sets is defined with the operator ||.
B. Hausdorff Distance

In MIL, every pattern is composed of a variable number
of instances, therefore the distance between patterns must be
based on this specification. Two main approaches for measur-
ing the dissimilarity between MI objects can be distinguished:
metrics which treat bags as point sets in a high-dimensional
space and those which treat them as instance distributions [18].
In this work, we focus on the first group. Specifically, we use
Hausdorff distance Hd, under which two bags are close to each
other when every instance in one is close to an instance of the
other. Closeness is defined through the underlying distance d
employed between instances, which in our case is Euclidean
distance, a widely used distance in this context [18]. Thus,
classic Hd uses the maximum mismatch between the instances
of the respective bags:

Hd(bi, bj) = max
xki∈bi

min
xlj∈bj

d(xki, xlj) (1)

C. BAMIC algorithm
BAMIC was proposed by Zhang and Zhou [8] as an

adaptation of the partitional clustering algorithm K-medoids. It
groups the bags in K disjoints groups. Firstly, for each cluster
k, a bag is chosen randomly as its centroid: ck = bi ∈ U being
i a random number in [1, N]. Secondly, the rest of bags are
assigned to its closest center, building the clusters up. Then,
for each Ck, the new center ck(next) is calculated as the bag
with the minimum average distance to the rest of bags in Ck.

ck(next) = arg min
bi∈Ck

∑
bj∈Ck,i6=j

1

|Ck|
Hd(bi, bj) (2)

If the new centers are the same bags than previous ones, i. e.
∀k ∈ [1,K] ck = ck(next), the algorithm has converged so it
finishes; if not, c(next) overwrites c and the algorithm repeats
the second and third steps.

D. MIKM algorithm
MIKM is an adaptation of the classic partitional clustering

algorithm K-means to MIL. Its main characteristic is that,
while it builds K partitions of bags, the centers of the clusters
are instances. Thus, firstly it randomly picks K bags of U ,
and, inside of each one of them, it picks one instance, to form
initial centers c. Secondly, each one of the bags are assigned
to its closest center, building the clusters up. Then, for each
Ck, new centroid ck(next) is calculated as the average of all
the instances contained by its bags:

ck(next) =
1

|Ck|
∑

bi∈Ck

1

|bi|
∑

xji∈bi

xji (3)

If the new centers are the same bags than previous ones, i. e.
∀k ∈ [1,K] ck = ck(next), the algorithm has converged and
finishes; if not, c(next) overwrites c and the algorithm repeats
second and third steps.

IV. EVOLUTIONARY MULTI-INSTANCE CLUSTERING

Classic partitional clustering methods are too sensitive to
initial points to build the clusters up [13]. This problem
also affects MIL, so in this paper we propose several MI
clustering methods based on GAs to avoid the stagnation in a
local optimum considering proposals with different individual
representations and genetic operators.

A. MIGKA algorithm

Multi-Instance Genetic K-Means algorithm (MIGKA) is
based on the proposal of Krishna and Murty [13] adapted
to MIL. The goal of this genetic MI clustering is to find
an optimal partition of the population in K given clusters,
maximizing the within-homogeneity of them. With this aim,
a population of individuals that code possible solutions is
crossed and mutated for generations. Below, the main char-
acteristics of the algorithm are introduced.

1) Individual representation: individuals are coded by
means of a chromosome with so many genes as bags are in the
dataset. Each gene takes the value of the cluster to which it
has been assigned. Thus, each individual is coded as a vector
of natural numbers si = [g1, ..., gN] where gi ∈ {1, ...,K}.

2) Initialization: the initial population is selected randomly.
Thus, each gene of each individual of the population is
initialized to a cluster number randomly selected from the
uniform distribution over the set {1, ...,K}.

3) Fitness: the fitness of each individual is based on the
homogeneity of the clusters that it codes. This is calculated
through a MIL version of the total within-cluster variation
(TWCV) [13] based on Hausdorff distance Hd (Section III-B).
First, centroids c are computed as the average of all the
instances contained by the bags in every Ck, see (3). Then,
the variation of each Ck is computed on its bags in relation to
its centroid ck, and the TWCV is obtained by adding all the
variations:

TWCVMI =

K∑
k=1

∑
bi∈Ck

Hd(bi, ck)
2 (4)

4) Parent selection: the well-known roulette selector is
used over the normalized fitness of the individuals. This
selector follows a probability proportional to the goodness of
the individual fitness.

5) Genetic operators: there are two operators to establish
a high selection pressure during a generation, since the search
space is very wide. They are based on Krishna and Murty
proposal [13]. Thus, these operators perform modifications
over random individuals (selected with a given probability)
of the group of parents selected previously. The first operator
performs a uniform mutation over individual genes, the next
one performs a one-step K-means algorithm over the cluster

assignation given by the individual. The details of the operators
are addressed below.
• Mutation. This operator modifies each gene gj of the

chromosome si of an individual with a given probability,
like the classic uniform mutation operator. However, the
modification is not uniformly random between clusters,
but with a probability based on the improvement of its
fitness F (si) with the change. Its steps are:

1) It calculates the fitness of k modified versions of
the selected individual, whose chromosome, s′i, is
equal to the previous one si but with gene gj = k
for every k ∈ {1, ...,K}. Then, the sum of all them
is calculated:

Ftotal(si) =

K∑
k=1

F (s′i) (5)

2) gj is reassigned to k with a probability following
a roulette approach. Thus, for each possible k it is
calculated the probability of setting:

P (gj = k) =
F (s′i)

Ftotal(si)
(6)

• KM operator. This operator performs a single-step K-
means algorithm over the solution given by the individual
to be mutated. Thus, the generational drift is reduced
increasing the GA converge possibilities. Given an in-
dividual si, the operator follow these steps:

1) It calculates the new centroids c(next) of the solu-
tion coded by si following (3).

2) Each gene gj is reassigned to closest ck(next) of
its corresponding bag.

3) It is checked if there is any empty cluster. If so, the
gene of the closest bag to its centroid is reassigned
to this cluster.

B. MIFGKA Algorithm

Multi-Instance Fast Genetic K-Means (MIFGKA) is based
on Lu et al. proposal [14] adapted to MI clustering. It is a
modification of MIGKA (see Section IV-A) with the aim of
reducing the convergence time. Although most characteristics
of MIFGKA are similar to those of MIGKA, the main differ-
ences to reduce computational time are the following:

1) Fitness: the fitness of each individual is calculated via
a modified version of TWCVMI based on the work of [14]
that we have called Fast TWCVMI (FTWCVMI). This is
not based in Hd like MIGKA (see Section IV-A3), but in
the average of the instances that compose a bag. Thus, it is
based on the variance definition. Firstly it is added the mean
squared point of every bag of the whole dataset U . Then, it
is subtracted the mean squared point of every cluster Ck as
follow:

FTWCMI =

N∑
i=1

D∑
d=1

∑
xji∈bi ydji

|bi|

2

−
K∑

k=1

∑
bl∈Ck

D∑
d=1

∑
xjl∈bl

ydjl

|bl|

2

|Ck|
(7)

2) Parent selection: one important difference of MIFGKA
with respect to MIGKA is that illegal individuals are allowed
in order to relieve the computational cost of correcting them.
However, they are highly penalized in the selection process
to minimize their probabilities to survive. Thus, although the
selection process is analogous to MIGKA, the fitness of an
individual F (si) is modified following the criterion [14]:

F (si) =

{
G(si)× Fmin, if si is illegal

1.5× Fmax − F (si), otherwise
(8)

where G(si) is the number of non-empty clusters presented
in the solution given by si, Fmin is the smallest fitness value
of the legal individuals in the current population, if they exist,
otherwise Fmin = 1, and Fmax is the maximum fitness value
encountered until the present generation.

3) Genetic operators: similar features to those of MIGKA
operators are followed (see Section IV-A5). However, the
implementation details of both genetic operators are different
to decrease their computational time.
• Mutation. This operator applies a uniform mutation to

the genes of an individual chromosome based on the
probability to improve its fitness. Thus, the probability
of changing a gene j in si to k (i.e. assigning a bag bj to
a cluster k) is given by the distance between bj and ck.
Further, illegal individuals must be considered, i. e. those
with any of their genes taking the value of some cluster,
which implies that cluster is empty. If a cluster is empty,
the distance between bags and it is defined as 0. Thus, a
bias is added to the mutation operation to avoid 0 division
and promotes the conversion of illegal individuals to legal
ones.

P (sij = k) =
1.5 · FarC(bj)−Hd(bj , ck) + 0.5∑K

l=1(1.5 · FarC(bj)−Hd(bj , cl) + 0.5)
(9)

where FarC(bj) = maxKk=1Hd(bj , ck) is the farthest
centroid from the bag.

• KM operator. This operator performs one iteration of K-
means algorithm over the solution given by the individual
to be mutated. It is equivalent to MIGKA version, but
without the conversion of illegal individuals to legal ones.

C. MIGCUK Algorithm

Multi-Instance Genetic Clustering for Unknown K
(MIGCUK) is based on the work of Bandyopadhyay
and Maulik [15] adapted to MI clustering. It follows a
different approach with respect to GAs previously presented.
Thus, it uses a representation of individuals based on
centroids. Further, it has the ability to automatically find an
optimal number of clusters within a given range. The main
characteristics of this GA are introduced following.

1) Individual representation: individuals represent the clus-
ters’ centroids. Since centroids are bags, the genetic individ-
uals are coded as integer arrays where each gene takes the
value of a bag index. In this case, the number of clusters for
every solution coded by an individual is variable in a given
range [Kmin,Kmax].

2) Initialization: initial population is selected randomly but
with some conditions. Thus, each gene of an individual is
initialized to bag index in the range [1, N], or alternatively, it
can take an invalid value indicating that this possible centroid
will be ignored. In this process, two conditions have to be
checked to create valid individuals:

1) The number of valid centroids is greater than Kmin.
2) There are no repeated indexes in genes that code the

current clusters.
3) Fitness: the fitness of each individual is calculated

using the Davies-Bouldin index [19] adapted to MIL. For
each cluster, similarities between it and all other clusters are
computed, then it averages the maximum similarities of all the
clusters as following:

DBMI =
1

K

K∑
k=1

max
l,l 6=k

1
|Ck|

∑
bi∈Ck

Hd(bi, ck) +
1
|Cl|

∑
bj∈Cl

Hd(bj , cl)

Hd(ck, cl)

(10)
The distance between bags and centroids is measured with the
Hausdorff Distance Hd (Section III-B).

4) Parent selection: like in previous described proposals,
the selection is carried out by the roulette selector.

5) Genetic operators: during a generation, crossover and
mutation operations are performed over the selected parents.
The details of these operators are addressed below:
• Crossover. Given two individuals previously selected in

the population. This operator applies one-point crossover
between them to produce two new individuals. Thus, a
random point is selected and genes to the right of it are
swapped between the two parent chromosomes.

• Mutation. Giving an individual to mutate si, this oper-
ator changes each gene with a given probability. Thus,
the centroid changes to close bags in the dataset. This
closeness is defined as 1/4 of the number of bags (N).
Specifically, the new value of a gene gj ∈ si is generated
randomly with a variation of [0.25N − gj , 0.25N + gj].

D. CHCMIC Algorithm

CHC for Multi-Instance Clustering (CHCMIC) is a new
proposal developed in this work. It is based on the application
of the adaptive search of CHC [12] to the problem of MI
clustering. CHC is a classic GA proposed by Esthelman in
1991. It stands out because of its combination of diversification
and high convergence. Its diversification is given by incest
prevention in the parent selection and population restart when
it is stagnant. While the algorithm high convergence is given
by its elitist selection as well as the preservation of best
individuals in population restart. These characteristics make
CHC an appropriate approach to address the wide space of
search of multi-instance clustering. The main features of our
proposal are addressed below:

1) Individual representation: each individual is a integer
array where each gene correspond to a bag and the value that
it takes is the cluster to which the bag is assigned. See Section
IV-A1 for more details.

a) Initialization: the population is generated randomly
like in MIGKA and MIFGKA. See Section IV-A2 for more
details.

2) Fitness: it is used the Davies-Bouldin index based on
the Hausdorff distance to measure similarities between bags,
defined previously in Eq. (10).

3) Parent selection: the main characteristic of CHCMIC
is its incest prevention, i.e. only sufficiently dissimilar indi-
viduals can be crossed to produce the offspring. Thus, incest
prevention is measured with a threshold d based on Hamming
distance. Two individuals have to be at a higher distance than
d to be crossed. d is a threshold that adapts itself to the state
of the search: if during a generation no crossing can be made,
d decreases in one unit, so in the next generation, the needed
Hamming distance between two parents will be less restrictive.
The initial value of d is set automatically depending on the
length of the chromosome, or what is the same, the number
of bags in the dataset N . Specifically, d = 1/4N [12].

4) Population restart: another important feature of
CHCMIC is the population restart when the search is stagnant.
This happens when the incest prevention threshold d reaches 0
value. Then, the n best individuals founded are kept to the next
generation and the rest of population is regenerated randomly.
Specifically, we set n = 10. With this process, on the one
hand it is kept the elitist generation and, on the other hand,
diversity in the population is promoted.

5) Genetic operators: three operators perform changes over
the population. Firstly, the offspring is generated by means of
the crossover between selected parents. Then, the mutation
operator and the KM operator previously defined in MIGKA
are also applied over the population in order to promote
the selective search. The details of these operators are the
following:
• Crossover. The operator takes two parents to produce two

offspring using the one-point crossover previously defined
on Section IV-C5.

• Mutation. This operator applies a uniform mutation over
each gene of the individual with a given probability.
The value of the gene changes randomly following a
distribution of how the change improves the individual
fitness. For more details, it can be seen Section IV-A5.

• KM operator. This operator performs a single-step K-
means algorithm over the solution given by the individual
to be mutated. The aim of this operator is to reduce
the generational drift by increasing the possibilities of
convergence. For more details, it can be seen Section
IV-A5.

V. EXPERIMENTAL STUDY

The experimentation carried out compares the performance
of both evolutionary and classic proposals of MI clustering
in different MIL problems. This section presents datasets,
parameters configuration, validation metrics and results.

A. Datasets
MIL has been applied successfully on numerous and inter-

esting applications in different domains. In this study, several

TABLE I
DATASETS INFORMATION

Dataset Bags Attributes Instances Avg.bag
size

Positive Negative Total

Musk1 47 45 92 166 467 5.17
Musk2 39 63 102 166 6598 64.69
MutAtoms 125 63 188 10 1618 8.61
MutBonds 125 63 188 16 3995 21.25
MutChains 125 63 188 24 5349 28.45
ImgElephant 100 100 200 230 1391 6.96
ImgTiger 100 100 200 230 1220 6.10
ImgFox 100 100 200 230 1320 6.60
EastWest 10 10 20 24 213 10.65
WestEast 10 10 20 24 213 10.65

datasets belonging to different domains are used [4]: drug
activity prediction, molecules mutagenicity, content-based im-
age retrieval and the well-known East–West challenge. The
most representative information attending to number of bags,
instances, attributes and classes is specified in Table I.

According to the study of Cooper and Milligan [20], at-
tribute values have been normalized in order to avoid mis-
leading in calculating the distance between bags when the
attributes ranges are different. Thus, given the dth attribute of
the ith instance in the jth bag, ydij , the normalization applied
because of its high performance is Z5 [20]. It is defined as:

Z5(ydij) =
ydij −minydkl∈U (ydkl)

maxydkl∈U (ydkl)−minydkl∈U (ydkl)
(11)

B. Experimental setup

All algorithms have been developed using Java language.
On the one hand, classic partitional methods, BAMIC and
MIKM, have been implemented from the WEKA data mining
tool [21]. On the other hand, genetic clustering methods have
been developed using JCLEC software [22].

A specific study of parameters has been carried out for
each algorithm due to its particularities, such as, individual
representation, genetic operators and computational time, but
keeping a fair comparison by performing the same number of
evaluations for every GA. The specific parameters of evolu-
tionary clustering proposals are detailed in Table II. Moreover,
K value is a parameter used for all proposals and it represents
the number of clusters to form. As, in all datasets is known
the number of classes, K has been set to number of classes
of each dataset.

Finally, as algorithms are stochastic, experiments have been
repeated with 15 different seeds and results shown their
average.

C. Validation metrics

To evaluate and compare the experimental results, both
internal validity criteria metrics (i.e. how well the clustering
results are based on information intrinsic to data) and external
validity criteria metrics (i.e. how well the clustering results
match some prior knowledge about the data) are considered.

TABLE II
EVOLUTIONARY ALGORITHM PARAMETERS

MIGKA MIFGKA MIGCUK CHCMIC

Population size 150 150 150 150
Generations number 150 150 150 150
Mutation probability 0.8 0.8 0.3 0.8
Gene mutation probability 0.7 0.7 0.7 0.7
KM operator probability 0.2 0.2 - 0.2
Crossover probability - - 0.2 -

For internal validation, several of the most representative
indexes in the field [19] are studied. These metrics have been
adapted to MIL, which is denoted by the subscript MI:
• Silhouette index. It validates the clustering performance

based on the pairwise difference of between-cluster and
within-cluster distances. Thus, it relates the minimal
mean distance between a bag bi and all the bags in the
rest of clusters and the mean distance between bi and all
other bags in its cluster. It is a metric to maximize. It is
defined as following:

SMI =
1

K

K∑
k=1

1

|Ck|
∑

bi∈Ck

ExtMI(bi)− IntMI(bi)

max(ExtMI(bi), IntMI(bi))
(12)

where

ExtMI(bi) = min
l,l 6=k

1

|Cl|
∑
bj∈Cl

Hd(bi, bj) (13)

IntMI(bi) =
1

Ck − 1

∑
bj∈Ck,j 6=i

Hd(bi, bj) (14)

• Davies-Bouldin index. It considers both compactness
and separation of formed clusters. It has been defined
previously in (10). It is a metric to minimize.

• S Dbw index. It considers density to metric the inter-
cluster separation. The basic idea is that, for each pair of
cluster centers ci and cj , at least one of their densities
should be larger than the density of their midpoint uij .
The index is the summation of this separation and the
intra-cluster compactness. It is a metric to minimize. It
is defined as following:

S DbwMI = ScatMI(K) +DenMI(K) (15)

where

ScatMI(K) =
1

K

K∑
i=1

||σ(Ck)||
||σ(U)||

(16)

DenMI(K) =
1

K2 −K

K∑
i=1

K∑
j=1
j 6=i

∑
bk∈Ci∪Cj

Hd(bk, ui,j)

max(
∑

bl∈Ci

Hd(bl, ci),
∑

bm∈Cj

Hd(bm, cj))

(17)

In order to study external validation, it is used a confusion
matrix with real classes as rows and clusters as columns. Thus,
the cluster with more bags of one specific class is assigned
to that class. From this, it can be followed the classification
approach of true positives (TP), true negative (TN), false
positive (FP) and false negative (FN).

In this work, several of the most representative external
validation metrics are included [23]. These metrics have been
adapted to MIL, which is denoted by the subscript MI:
• Rand index. It counts the pair-match between classes and

clusters. It is a metric to maximize. It is specified below:

RIMI =
TP + TN

TP + FP + TN + FN
(18)

• Entropy. It computes the bag probability of cluster k to
belong to the class i. It is a metric to minimize. It is
specified below:

EMI =
K∑

k=1

|Ck|
N

(
−

I∑
i=1

pik log(pik)

)
(19)

• F1 measure. It combines the precision Pr = TP/(TP +
FP) and the recall Re = TP/(TP + FN) of the
clustering. It is a metric to maximize. It is specified
below:

F1MI =
2RePr

Pr +Re
(20)

D. Comparative study

This section presents and discusses experimental results.
Both internal and external validity measures are considered for
comparing classical and evolutionary partitional MI clustering
algorithms. Statistical tests are used to evaluate the perfor-
mance.

Attending to internal validation metrics (Table III), GAs
usually obtain better results than classic partitional MI clus-
tering algorithms. Concretely, CHCMIC tends to reach the
best results for all metrics, specifically DBMI and S DbwMI

indexes. Thus, it obtains more compact, differentiated and
dense clusters than the rest of approaches. Regarding to
Silhouette index, results are not so conclusive: while CHCMIC
obtains the best average results, the differences with respect
other algorithms are more reduced. If the rest of evolutionary
proposals are evaluated, there is no a clear tendency compared
to classic approaches. The results of the Friedman’s test for
internal evaluation, including the Friedman’s statistics and
the p-values are shown in Table V. Ranking assigned for
Friedman’s test (see Table IV) shows that CHCMIC obtains
the lowest ranking for all measures, indicating that it is the
best proposals for the most datasets. In DBMI and S DbwMI

indexes, the Friedman’s test rejects the null hypothesis and,
therefore, it determines that significant differences exist in
the performance of the algorithms at 99% confidence, so
the Shaffer’s post-hoc test was also performed. Significant
differences among algorithms for these measures at 99%
confidence level are shown in Figure 1. CHCMIC performs
significantly better than BAMIC and other proposals being
the control algorithm in metrics considered.

Attending to external validation metrics (Table VI), similar
results can be found. Again, CHCMIC usually reaches the best
values for the different metrics in the most datasets. The results
of the Friedman’s test for external evaluation including the
Friedman’s statistics and the p-values are shown in Table VIII.
Ranking assigned for Friedman’s test (see Table VII) shows

TABLE III
RESULTS FOR INTERNAL VALIDATION METRICS

BAMIC MIKM MIGKA MIFGKA MIGCUK CHCMIC

Musk1
SMI 0.1656 0.1519 0.1597 0.0381 0.1156 0.1715
DBMI 2.4735 2.0318 2.5041 4.4574 2.9341 2.0035
S DbwMI 0.8856 0.7577 0.8558 0.9586 0.8839 0.8008

Musk2
SMI 0.1545 0.1754 0.1717 0.0239 0.1081 0.1448
DBMI 3.3703 2.1625 2.5934 5.0817 3.9003 2.0819
S DbwMI 0.8699 0.8163 0.8226 0.9616 0.8641 0.8489

MutA
SMI 0.5610 0.2114 0.5678 0.2226 0.1677 0.6043
DBMI 10.9839 18.8995 10.4630 12.7672 21.5018 8.6559
S DbwMI 0.9952 1.0328 0.9940 0.9770 0.9948 1.0065

MutB
SMI 0.1085 0.1326 0.3003 0.1743 0.0956 0.2912
DBMI 21.2972 22.2912 15.2224 21.9042 20.7270 8.7337
S DbwMI 1.0306 1.0235 1.0121 0.9942 0.9994 0.9985

MutC
SMI 0.0938 0.1301 0.0636 -0.0355 0.1265 0.2484
DBMI 6.7666 6.6140 8.6407 6.8004 19.9563 4.6057
S DbwMI 0.9733 1.0028 0.9450 0.9547 1.0160 0.9724

ImgE
SMI 0.0208 0.0103 0.0178 0.0083 0.0271 0.0139
DBMI 9.0270 9.1321 9.5317 12.1334 10.6597 6.9825
S DbwMI 1.0114 0.9985 0.9949 1.0006 1.0145 0.9961

ImgT
SMI 0.0091 0.0283 0.0372 0.0418 0.0467 0.0280
DBMI 13.1027 6.4840 6.2685 5.2874 7.2043 4.8710
S DbwMI 1.0105 0.9979 0.9994 0.9809 1.0331 0.9749

ImgF
SMI 0.0353 0.0510 0.0296 0.0550 0.0789 0.0339
DBMI 6.7059 6.1328 6.6835 7.2814 6.2654 5.5788
S DbwMI 1.0084 1.0129 1.0101 1.0196 1.1205 1.0044

EastW
SMI 0.0160 0.0829 0.0468 0.0661 0.0111 0.1189
DBMI 5.3412 4.8629 6.7544 3.2563 6.6069 3.7951
S DbwMI 1.0320 0.9566 0.9821 0.8954 1.0178 0.9365

WestE
SMI 0.0160 0.0829 0.0469 0.0661 0.0280 0.1122
DBMI 5.3412 4.8629 6.7730 3.2563 6.9294 3.8603
S DbwMI 1.0320 0.9566 0.9821 0.8954 1.0040 0.9371

that CHCMIC obtains the lowest ranking for all measures,
indicating that it is the best proposals for most datasets. In
Rand index and Entropy metrics, the Friedman’s test rejects
the null hypothesis and, therefore, it determines that significant
differences exist in the performance of the algorithms at 95%
confidence, so the Shaffer’s post-hoc test was also performed.
Significant differences among algorithms for these metrics at

TABLE IV
FRIEDMAN’S AVERAGE RANKINGS FOR INTERNAL VALIDATION METRICS

BAMIC MIKM MIGKA MIFGKA MIGCUK CHCMIC

SMI 4.0 3.2 3.3 4.1 3.9 2.5
DBMI 3.8 3.2 3.8 4.1 4.9 1.2
S DbwMI 4.8 3.4 2.8 2.9 4.8 2.3

TABLE V
FRIEDMAN’S TEST RESULTS FOR INTERNAL VALIDATION METRICS

Metric p-value Statistic

SMI 0.3658 5.4286
DBMI 0.0004 22.5140
S DbwMI 0.0062 16.2290

TABLE VI
RESULTS FOR EXTERNAL VALIDATION METRICS

BAMIC MIKM MIGKA MIFGKA MIGCUK CHCMIC

Musk1
RIMI 0.5304 0.5000 0.5348 0.5174 0.5674 0.5152
EMI 0.9942 0.9995 0.9941 0.9965 0.9704 0.9957
F1MI 0.5057 0.3658 0.4279 0.4448 0.6453 0.4373

Musk2
RIMI 0.5725 0.5863 0.5373 0.5667 0.5569 0.6588
EMI 0.9503 0.9572 0.9585 0.9361 0.9219 0.9243
F1MI 0.4179 0.3259 0.3625 0.3438 0.4080 0.3828

MutA
RIMI 0.6915 0.6649 0.6957 0.5904 0.5862 0.6872
EMI 0.8901 0.9123 0.8859 0.8741 0.8703 0.8962
F1MI 0.8027 0.7953 0.8060 0.7425 0.6196 0.8051

MutB
RIMI 0.6596 0.6553 0.6702 0.6266 0.6170 0.6840
EMI 0.9169 0.9165 0.8880 0.9070 0.8451 0.8892
F1MI 0.7949 0.7915 0.7669 0.7666 0.6460 0.8081

MutC
RIMI 0.6543 0.6585 0.6596 0.6596 0.6106 0.6702
EMI 0.9138 0.9163 0.9182 0.9169 0.9121 0.9116
F1MI 0.7910 0.7941 0.7895 0.7949 0.7154 0.8013

ImgE
RIMI 0.5522 0.5860 0.5260 0.5870 0.5550 0.6900
EMI 0.9918 0.9570 0.9974 0.9679 0.9832 0.8870
F1MI 0.5283 0.5430 0.5218 0.5065 0.5956 0.6555

ImgT
RIMI 0.5150 0.5540 0.5290 0.5380 0.5170 0.5750
EMI 0.9993 0.9880 0.9959 0.9926 0.9978 0.9789
F1MI 0.5611 0.4750 0.5133 0.4474 0.6012 0.4473

ImgF
RIMI 0.6250 0.6250 0.6230 0.6120 0.5920 0.7470
EMI 0.9540 0.9459 0.9545 0.9599 0.9453 0.7775
F1MI 0.6073 0.5929 0.6066 0.5548 0.4155 0.7854

EastW
RIMI 0.6400 0.5400 0.5700 0.5500 0.6500 0.6300
EMI 0.9221 0.9885 0.9822 0.9481 0.8825 0.8553
F1MI 0.7063 0.3747 0.4935 0.1818 0.7156 0.4103

WestE
RIMI 0.6400 0.5400 0.5800 0.5500 0.5700 0.6200
EMI 0.9221 0.9885 0.9749 0.9481 0.9797 0.8798
F1MI 0.5238 0.6619 0.6249 0.6898 0.5219 0.7205

95% confidence level are shown in Figure 2. CHCMIC is
the control algorithm for all metrics considered and performs
significantly better than MIKM and other proposals.

TABLE VII
FRIEDMAN’S AVERAGE RANKINGS FOR EXTERNAL VALIDATION METRICS

BAMIC MIKM MIGKA MIFGKA MIGCUK CHCMIC

RIMI 3.25 3.95 3.45 4.05 4.40 1.90
EMI 4.00 4.50 4.30 3.80 2.40 2.00
F1MI 2.70 4.10 3.70 4.40 3.70 2.40

TABLE VIII
FRIEDMAN’S TEST RESULTS FOR EXTERNAL VALIDATION METRICS

Metric p-value Statistic

RIMI 0.0465 11.2570
EMI 0.0083 15.5430
F1MI 0.1149 8.8571

These results show promising results of CHCMIC for all
evaluation metrics considering both other evolutionary pro-
posals adapted to MIL and classic approaches. Nevertheless,
there are no a conclusive results for all GAs showing that MI

1 2 3 4 5

CHCMIC

MIKM

MIGKA

BAMIC

MIFGKA

MIGCUK

(a) DBMI index

2 3 4 5

CHCMIC

MIGKA

MIFGKA

MIKM

MIGCUK

BAMIC

(b) S DbwMI index

Fig. 1. Critical distance for internal metrics of Shaffer’s procedure. 99% conf.

1 2 3 4 5

CHCMIC

BAMIC

MIGKA

MIKM

MIFGKA

MIGCUK

(a) RandMI index

2 3 4 5

CHCMIC

MIGCUK

MIFGKA

BAMIC

MIGKA

MIKM

(b) EntropyMI measure

Fig. 2. Critical distance for external metrics of Shaffer’s procedure. 95% conf

clustering is a complex field that should be addressed with
specific methods beyond adaptation of traditional clustering
techniques. A more exhaustive study with more datasets and
algorithms could confirm the excellent performance of specific
GAs in this field.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a first adaptation to MIL of three
classical GA applied to partitional clustering. Moreover, a
novel approach is presented, CHCMIC, that applies the adap-
tive search and the population restart to genetic MI clustering.
These algorithms are compared with classical approaches for
partitional clustering. CHCMIC results are promising, as it ob-
tains the best balance between internal and external validation
metrics showing the relevance of GA in this field.

As future work, a more exhaustive study with more datasets
and MI clustering methods should be carried out. Thus, more
proposals beyond partitional clustering could be developed, as
well as more MI-based dissimilarity metrics in order to extend
the obtained conclusions.

VII. ACKNOWLEDGMENT

Authors gratefully acknowledge the financial subsidy pro-

-vided by Spanish Ministry of Science and Innovation and the
European Fund of Regional Development under the Project
TIN2017-83445-P.

REFERENCES

[1] M. N. Murty, P. J. Flynn, and A. K. Jain, “Data Clustering: A Review,”
ACM Computing Surveys, vol. 31, p. 60, 1999.

[2] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algo-
rithms,” Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[3] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artificial In-
telligence, vol. 89, no. 1-2, pp. 31–71, 2002.

[4] F. Herrera, S. Ventura, R. Bello, C. Cornelis, A. Zafra, D. Sánchez-
Tarragó, and S. Vluymans, Multiple Instance Learning. Springer, 2016.

[5] C. Henegar, K. Clément, and J. D. Zucker, “Unsupervised multiple-
instance learning for functional profiling of genomic data,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 4212 LNAI,
2006, pp. 186–197.

[6] H. P. Kriegel, A. Pryakhin, M. Schubert, and A. Zimek, “COSMIC:
Conceptually specified multi-instance clusters,” in Proceedings - IEEE
International Conference on Data Mining, ICDM, 2006, pp. 917–921.

[7] H.-p. Kriegel, A. Pryakhin, and M. Schubert, “An EM-Approach
for Clustering Multi-Instance Objects,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2006, pp. 139–148.

[8] M. L. Zhang and Z. H. Zhou, “Multi-instance clustering with applica-
tions to multi-instance prediction,” Applied Intelligence, vol. 31, no. 1,
pp. 47–68, 2009.

[9] D. Zhang, F. Wang, L. Si, and T. Li, “Maximum margin multiple
instance clustering with applications to image and text clustering,” IEEE
Transactions on Neural Networks, vol. 22, no. 5, pp. 739–751, 2011.

[10] D. E. Goldberg, “Genetic algorithms in search, optimization, and ma-
chine learning,” Choice Reviews Online, vol. 27, no. 02, pp. 27–0936–
27–0936, 1989.

[11] A. José-Garcı́a and W. Gómez-Flores, “Automatic clustering using
nature-inspired metaheuristics: A survey,” Applied Soft Computing Jour-
nal, vol. 41, pp. 192–213, 2016.

[12] L. J. Eshelman, “The CHC Adaptive Search Algorithm: How to Have
Safe Search When Engaging in Nontraditional Genetic Recombination,”
Foundations of genetic algorithms, vol. 1, pp. 265–283, 1991.

[13] K. Krishna and M. Narasimha Murty, “Genetic K-Means Algorithm K.”
IEEE Transactions on Systems, Man and Cybernetics, vol. 29, no. 3, pp.
433–439, 1999.

[14] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. J. Brown, “FGKA: A fast
genetic K-means clustering algorithm,” in Proceedings of the ACM
Symposium on Applied Computing, 2004, pp. 622–623.

[15] S. Bandyopadhyay and U. Maulik, “Genetic clustering for automatic
evolution of clusters and application to image classification,” Pattern
Recognition, vol. 35, no. 6, pp. 1197–1208, 2002.

[16] R. Tinós, L. Zhao, F. Chicano, and D. Whitley, “NK Hybrid Genetic
Algorithm for Clustering,” IEEE Transactions on Evolutionary Compu-
tation, vol. 22, no. 5, pp. 748–761, 2018.

[17] D. Gribel and T. Vidal, “HG-MEANS: A scalable hybrid genetic
algorithm for minimum sum-of-squares clustering,” Pattern Recognition,
vol. 88, pp. 569–583, 2019.

[18] V. Cheplygina, D. M. Tax, and M. Loog, “Multiple instance learning
with bag dissimilarities,” Pattern Recognition, vol. 48, no. 1, pp. 264–
275, 2015.

[19] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu, “Understanding
and enhancement of internal clustering validation measures,” IEEE
Transactions on Cybernetics, vol. 43, no. 3, pp. 982–994, 2013.

[20] M. C. Cooper and G. W. Milligan, “A study of standardization of
variables in cluster analysis,” Journal of Classification, vol. 5, no. 2,
pp. 181–204, 1988.

[21] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.

[22] S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervás, “JCLEC:
A Java framework for evolutionary computation,” Soft Computing,
vol. 12, no. 4, pp. 381–392, 2008.

[23] M. Rezaei and P. Franti, “Set matching measures for external cluster
validity,” IEEE Transactions on Knowledge and Data Engineering,
vol. 28, no. 8, pp. 2173–2186, 2016.

