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Abstract—The ever increasing demand for computing re-
sources has led to the creation of hyperscale datacentres with
tens of thousands of servers. As demand continues to rise, new
technologies must be incorporated to ensure high quality services
can be provided without the damaging environmental impact
of high energy consumption. Virtualisation technology such as
network function virtualisation (NFV) allows for the creation
of services by connecting component parts known as virtual
network functions (VNFs). By optimising the placement and
routing of VNFs this technique can be used to maximally utilise
available datacentre resources, to maintain a high quality of
service whilst minimising energy consumption. Current research
on this problem has focussed on placing VNFs and considered
routing as a secondary concern. In this work we argue that
the opposite approach, a routing-led approach is preferable. We
propose a novel routing-led algorithm and analyse each of the
component parts over a range of different topologies on problems
with up to 16000 variables and compare its performance against
a traditional placement based algorithm. Empirical results show
that our routing-led algorithm can produce significantly better
solutions to large problem instances on a range of datacentre
topologies.

Index Terms—Network Function Virtualisation, Multi-
Objective Optimisation, Routing-Led VNF Placement.

I. INTRODUCTION

The internet and the services it has enabled have changed
how we work [1], travel [2], socialise [3] and even how
we engage with politics [4], government [5] and the rest of
society [6]. The infrastructure that provides these services is
invisible to most people. One critical part of this infrastructure
is the datacentre which provide the computing power needed
to provide services. Demand for datacentre resources has
increased year-on-year and this trend is expected to continue
[7]. New technology such as augmented and virtual reality
[8], the internet of things [9] and smart cities [10] may have
further positive impacts on society and businesses but will
demand more from the underlying infrastructure. Existing
techniques cannot meet these new demands without significant
and damaging environmental impacts [11]. Instead, we must
develop solutions that can efficiently use existing resources to
allow for the continued development of high quality services

whilst minimising the energy consumption of the datacentres
that provide them.

Resolving these two conflicting objectives requires a com-
prehensive solution that integrates recent hardware and soft-
ware innovations. Innovations in the structure of the datacentre
aim to improve its scalability. These techniques include new
network topologies, the arrangement of switches and servers
that allow servers to communicate with each other, that facil-
itate the addition of equipment to the datacentre. Innovation
is also occuring at the software level. Previously, common
tasks such as firewalls and deep packet inspection would
be executed by specialised equipment known as network
functions. In a virtualised datacentre these tasks are provided
by Virtual Network Functions (VNFs), software running on
virtual machines. VNFs can be created, moved and destroyed
far faster than physical hardware.

In a modern virtualised datacentre, a service is provided by
placing and connecting sequences of VNFs to form a service.
The quality of a service (QoS) is determined by metrics such
as latency - the expected time for a packet to traverse the
service - and packet loss - the proportion of packets that do
not complete the service due to an overuse of certain servers
or switches. The QoS of each service must be maximised
whilst also minimising the datacentre energy consumption. A
solution to this problem defines the placement of VNFs and
routes between VNFs to form a set of services that meet these
conflicting objectives simultaneously. This is known as the
VNF placement problem (VNFPP) and has been shown to be
NP-Hard [12].

Due to the NP-Hardness of the problem, and the very high
number of servers in modern datacentres, several heuristic
and metaheuristic solutions have been proposed [12]–[21].
Typically, these approaches place a set of VNFs and then find
routes between VNFs. These algorithms implicitly optimise
routes by finding improving placements. In this work we
categorise these approaches as placement-led optimisation
techniques. However, key metrics such as latency, packet loss
and energy are often minimised by using the shortest, least
congested routes available [21]. Hence we should allow the
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routes to dictate the placement. We categorise these as routing-
led optimisation of the VNFPP.

To be able to solve large scale problems, a routing-led
algorithm must be able to efficiently find nearby servers that
can accommodate each VNF in the service. Some existing
works can be classified as routing led. Some use knowledge
of the structure of the graph to simplify placement [21], [22]
which prevents the solution from solving arbitrary graphs.
Others have considered all possible servers and selected the
most suitable [18], [19] but this strategy is unsuitable for large
datacentres. The work by Goureb et al [20] considered three
possible routes between the first and last VNFs of a service
and placed VNFs only on these routes. This does not guarantee
a VNF will be placed when there is a server with sufficient
capacity.

This paper proposes a novel metaheuristic to tackle the
VNFPP at scale on arbitrary graphs. Our major contributions
are as follows:
• We evaluate three strategies to select suitable servers in

a scalable routing-led placement algorithm
• We propose a routing-led genetic algorithm approach to

the VNFPP that uses these strategies to optimise large
scale problems

• We compare our algorithm against a representative
placement-led algorithm and evaluate their effectiveness
on multiple network topologies with up to 16,000 servers.

The remainder of this paper is organised as follows. Section
II reviews the current work on the VNFPP and on comparable
metaheuristics in particular. Section III provides a formal
definition of the VNFPP and the multiobjective formulation
used in this work. Section IV describes the genetic algorithm
and operators considered in this work including alternative
server location strategies. In Section V the effectiveness of
each component of the algorithm is tested and our solution
is evaluated against a comparable placement-led approach.
Finally, Section VI concludes this paper and outlines some
potential future directions.

II. LITERATURE REVIEW

The VNF placement problem requires solving two problems
simultaneously: VNFs must be placed and routes must be
found to form services.

In many works linear programming techniques have been
used [23]–[30] to solve both of these problems simultaneously.
However, current implementations can only consider prob-
lem instances with hundreds of servers. For larger problem
instances heuristic and metaheuristic approaches are more
suitable. The work by Luizelli et al [12] proposed to com-
bine Variable Neighbourhood Search (VNS) with a linear
programming solver. VNS selects a subset of variables that
are considered by the linear programming solver whilst the
other variables remain fixed. This approach solves the largest
problem instances we are aware of in the literature but it is
still time consuming requiring 10,000 seconds (~2.5 hours) to
solve a problem instance with 1000 servers. Cao et al [13] used
NSGA-II [31] and MOGA [14] with a binary matrix solution

representation which represented both placement and routing
instructions. In this solution representation most of the search
space is infeasible and hence custom initialisation and repair
operators were used to repair invalid solutions.

Some works do not consider the routing directly and instead
consider it as a function of the placement. Leivadeas et al [15]
use a Tabu search metaheuristic to place each VNF. The
shortest routes between VNFs in a service are then used.
Similarly, Rankothge et al [16] considered problems with up
to 400 VNFs, using a Genetic Algorithm with problem specific
operators to place VNFs and a depth first search heuristic to
find routes between VNFs in a service. In [17], Jiang et al used
a local search heuristic to find improving solutions that only
require one VNF migration. A greedy search heuristic then
considers new positions for the VNF and favours positions that
can be accessed with low congestion routes. In each of these
works, the placement determines the routing. The algorithm
implicitly optimises routes by finding improving placements.

An alternative approach is to allow the routing to decide
the placement of VNFs. One way to apply this principle is
to represent the possible placements of VNFs as nodes in a
multistage graph where each edge has some cost assigned to
it determined by the route between the two current and next
VNF. A solution to the problem is a path through the graph.
Bari et al [18] first proposed this representation and used
a dynamic programming heuristic to solve VNFPP problem
instances, aiming to minimise the ‘traffic forwarding cost’
calculated based on the distance between two nodes and the
quantity of traffic that was sent between them. Lange et al [19]
used the same representation and costs with the Pareto Sim-
ulated Annealing algorithm and modified the neighbourhood
generating step. In their variant, neighbouring solutions are
generated by probabilistically exploring the multistage graph
with a greater chance of selecting paths that minimise cost.
Notably, both of these works consider every possible server at
each step. On large problems with many servers this can be a
time consuming operation.

More recently, Gouareb et al [20] utilised a similar routing
led approach in their work. The authors assumed the starting
and end points of the service are fixed and found the three
shortest routes between these two points. They then optimise
the placement of the VNFs for each service whilst ensur-
ing they can only be placed on nodes on these paths. Our
earlier work on the VNF Placement Problem used a similar
approach [21]. We utilised the layout of the fat tree topology
to have a greater likelihood of placing VNFs on the nearest
servers. However, this technique is topology specific and will
not apply to arbitrary graphs.

Most existing work on the VNF placement problem is
limited to solving small scale problem instances. Scalable
heuristic and metaheuristic approaches that consider the place-
ment directly have been proposed which implicitly optimise
routes between VNFs. Existing routing-led solutions to the
VNF placement problem require fixed starting or end points
and use techniques that have not been shown to scale to large
problems. This work provides a scalable routing-led solution to



0

1

2

3

4
5

6
7 8

9
10

11

12

13

14

15

16171819

(a) Dcell1 with 4 port switches [32]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Fat Tree with 4 port switches [33]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(c) Leaf-Spine with 6 port switches [34]

Switches

Servers

Fig. 1: Common datacentre topologies

the VNF placement problem without the limitations of earlier
works.

III. PROBLEM FORMULATION

In the VNF placement problem, the network is represented
as a graph, G = (N,E) where N denotes the set of network
nodes and E represents the set of links connecting the nodes.
The node in the graph can be either a physical network
device, e.g. switches, router, gateway, or a server capable of
running virtual machines. Let Si be the ith server in the
topology. Multiple VNFs form a service chain to provide
a service. Let Vi,j denote the jth VNF in the ith service
chain. Multi-path routing strategies, e.g. equal-cost multi-path
routing (ECMP), are used in datacentre networks to improve
transmission efficiency and reliability. Let a path be a sequence
of graph nodes connected by edges. A solution to the VNF
placement problem is an assignment of VNFs to server nodes
and a collection of paths for each service. Let P k

Vi
be the

kth path of the ith service in the solution. Let ASi
denote

the VNFs assigned to the ith server. Finally, let CSi be the
available capacity of the ith server and CVi,j be the required
capacity of the jth VNF of the ith service.

The placement and routing parts of the solution are con-
nected by their constraints: (1) the required capacity of the
VNFs assigned to a server cannot exceed the available capacity
and (2) an instance of each VNF in the service must be visited
in the route. Formally these constraints can be defined as:

1)
∑
∀v∈Ai

Cv ≤ CSi

2) ∀v ∈ Vi,∃s ∈ P k
Vi

s.t. As ⊇ v

Several models exist to evaluate the quality of a solution
to the VNFPP. In this work we will use a queueing theory
model proposed in [21] and extended in [35] that estimates the
expected latency and packet loss of each service and the total
energy consumption of the datacentre. As these objectives can

conflict, we formulate this as a multi-objective optimisation
problem with three objectives: the average service latency, the
average service packet loss and the total energy consumption
of the datacentre.

IV. ROUTING-LED OPTIMISATION OF THE VNFPP

A routing-led optimisation of the VNFPP aims to place
sequential VNFs of a service on nodes with short paths
between them. In this work, we design a set of operators to be
used with multiobjective genetic algorithm algorithms. We first
design a solution representation and operators that optimise
the placement of the first VNFs of each service. Next we
propose three routing-led server selection strategies that use
information about the network topology to place the remaining
VNFs in each service. Finally we find a set of routes between
the VNFs for a service based on the ECMP routing protocol
to form a complete solution.

A. Service Origin Operators

The building block hypothesis of genetic algorithms [36] in-
dicates that good solutions are constructed from good ‘building
blocks’ and hence dependent components should be exchanged
during crossover. In the VNFPP, a single service can maximise
its expected service quality by selecting paths that are not
being utilised by other services. However, due to limited
datacentre resources and energy concerns, it is not typically
possible for each service to have dedicated resources. Further,
it is likely for two services that start from close servers will use
the same nodes and hence share resources. Good solutions to
the VNFPP will minimise resource conflicts between services
whilst balancing service quality and energy consumption.
We should therefore design our solution representation and
operators so that the distance between services is maintained
during crossover.



In hierarchical networks such as the Fat Tree or Leaf-Spine
datacentre topologies (see Fig. 1) servers can be encoded
as a string whilst maintaining the relative distances between
servers. However, this only applies to a subset of topologies.
For example there is no string encoding of the Dcell represen-
tation that maintains the relative distances between all servers.
Variable length string (VLS) representations and operators also
use strings to encode solutions but are designed to find and
exchange related groups of variables during optimisation [37].
Rather than specifying a suitable solution representation for
each topology a VLS representation may find suitable groups
of services during the optimisation.

As we are considering a range of topologies, we experiment
with both of these solution representations. In the fixed length
string representation, each server is represented by an array
that contains the ID of the services that should originate
from there. In the VLS representation, each character is a
tuple of the service ID and the server ID it should originate
from. For a fair comparison we use similar genetic operators
for both representations: single point crossover and uniform
mutation for the fixed length string representation and messy
crossover [37] for the VLS. Uniform initialisation is used in
both cases. Server IDs are assigned as shown in Fig. 1. Notably
this arrangement of IDs ensures some distance information is
maintained in the fixed length string representation.

B. Server Selection Strategies

To evaluate a solution, the remaining VNFs in the service
must be placed. Each VNF should be placed on the nearest
available server with sufficient capacity. This operation must
be efficient as it will be performed many times per solution
evaluation. We evaluate three different approaches to this
problem a simple breadth first search algorithm, a cached
variant which stores information on distance and a novel
spanning tree based strategy.

1) Simple BFS: A breadth first search (BFS) will progres-
sively consider the closest nodes. The search procedure can
stop as soon as a server is found with enough capacity and
has a worst case time complexity of O(|N |+ |E|).

2) Cached BFS: A BFS will expand the same servers many
times during optimisation. Instead a BFS can be performed
from every server before the optimisation begins and the
sequence of nearest servers can be stored for each server. This
has a preprocessing time complexity of O((|N | + |E|) · |S|)
operations and a memory complexity of O(|S|2). Subsequent
operations have a worst case time complexity of O(|S|).

3) Spanning Tree Search: On very large networks executing
a BFS for every service is wasteful and the preprocessing
time and memory requirements of the ‘Cached’ algorithm
may be very high. We propose an alternative technique that
combines the simple search and cached approaches to find
feasible solutions quickly with lower preprocessing time and
memory complexity.

In this technique the network topology graph is first con-
verted into a spanning tree ST . A table is constructed for each
node in the spanning tree which tracks the distance to, and the

Algorithm 1 Update spanning tree search tables

1: procedure UPDATE(ST, start, capacity)
2: let Q be a queue
3: label start as discovered
4: Q.enqueue((start,start,capacity, 0))
5: while Q is not empty do
6: (v, p, c, d)← Q.dequeue()
7: v.rowFor(p).cap ← c . Set row capacity
8: v.rowFor(p).dist ← d . Set row distance
9: find the best (b) and second best (s) rows in v

10: if the best row has changed then
11: for n in ST .adjacentEdges(v) do
12: if n is discovered then
13: continue
14: label n as discovered
15: if n = b.edge then
16: Q.enqueue(n, v, b.cap, b.dist+1)
17: else
18: Q.enqueue(n, v, s.cap, s.dist+1)

19: else if the second best row has changed then
20: if b.edge is not discovered then
21: label b.edge as discovered
22: Q.enqueue(n, v, s.cap, s.dist+1)

capacity of, the nearest server with sufficient capacity. The
tables are initialised by performing a BFS from each server
over the spanning tree. When a node is added to the search
front, the algorithm checks whether the source server is better
than the server currently recorded for the current edge and
updates the edge if this is true. If a table is not updated the
search does not need to propagate to the children of the node.
This has a worst case time complexity of O((|N |+ |E|) · |S|).

To place a VNF the placement algorithm greedily takes the
nearest edge with sufficient capacity. As a spanning tree is
fully connected and has no loops, exactly one edge for each
node will lead to a server with the maximum capacity and
each edge will lead to a distinct server. Additionally, as the
algorithm always takes steps towards the closest server, the
placement step will never revisit a node. Hence it is clear that
the algorithm will always find a server that can accommodate
the current VNF if such a server exists.

Once a VNF has been placed we must update all tables
that reference the changed server to correct their capacity. To
do so we propagate information on the current best server
the node is aware of from the changed node to adjacent nodes
recursively. Similar to the construction process we can perform
this efficiently with a BFS as a node must only propagate
information if its best or second best row was changed as a
result of the update. As the ‘best’ server for a table has the
highest capacity and is the closest, tables can have different
best nodes which minimises the number of updates needed. In
particular, most messages will not propagate past the graphs



TABLE I: Time taken preprocessing, preparing a solution for evaluation and total for 10,000 solutions

|S| Preprocessing (s) Mean Solution Preparation (ms) Total for 10000 Solutions (s)
Cached Spanning Simple Cached Spanning Simple Cached Spanning

420 0.00 0.00 0.07 0.02 0.14 0.69 0.20 1.38
930 0.00 0.00 0.17 0.05 0.29 1.71 0.52 2.94

Dcell 8190 373.00 0.00 1.76 0.62 2.09 17.55 379.22 20.90
17556 3586.00 0.00 3.99 1.19 4.69 39.88 3597.86 46.94
33306 — 1.00 8.06 — 9.30 80.61 — 93.97
74256 — 5.00 21.68 — 22.96 216.83 — 234.60

432 0.00 0.00 0.27 0.02 0.10 2.70 0.21 1.00
1024 0.00 0.00 1.14 0.05 0.23 11.37 0.53 2.34

Fat Tree 8192 209.00 0.00 35.75 0.76 2.16 357.48 216.56 21.64
16000 1361.00 0.00 83.99 1.17 3.55 839.86 1372.65 35.54
27648 — 0.00 168.30 — 6.93 1682.96 — 69.31
65536 — 2.00 403.05 — 18.88 4030.51 — 190.80

392 0.00 0.00 0.16 0.02 0.09 1.58 0.19 0.86
1152 0.00 0.00 0.67 0.06 0.26 6.66 0.63 2.59

Leaf-Spine 8192 111.00 0.00 12.26 0.60 1.93 122.59 117.00 19.30
15488 717.00 0.00 36.93 1.16 3.86 369.25 728.62 38.61
32768 — 0.00 143.32 — 9.74 1433.18 — 97.40
64082 — 1.00 503.74 — 22.39 5037.42 — 224.87

central nodes, the nodes which minimise the greatest distance
to all other vertices [38]. Due to its distance to other nodes,
a central node will hold a reference to the best servers in the
datacentre. Hence an update will only propagate past the node
if it was from one of the best servers in the datacentre. In
the worst case, placement will traverse the diameter of the
spanning tree. If an update does pass a central node all tables
will need to be updated as all tables will hold a reference to
the changed server. Hence the worst case time complexity for
the expansion is O(d+ |N |+ |E|) where d is the diameter of
the network. Pseudocode for the update step is given in Alg.
1.

C. Routing

To simplify the generation of solutions, the expansion step
outputs a sequence of VNF placements but does not dictate
how packets should be routed between them. As in ECMP,
we split traffic over the set of shortest routes between nodes.
This information can be stored efficiently by creating a set
of condensed routing tables for each node in the datacentre
topology. Each node stores the range of server IDs that are
on the shortest path of each edge. A server ID can appear in
multiple ranges if multiple shortest routes exist. The set of
paths for the solution can be found by recursively following
the instructions in the routing tables.

V. PERFORMANCE EVALUATION

Each algorithm was evaluated on three popular datacentre
topologies: Fat Tree [33], Leaf-Spine [34] and Dcell [32]. Each
of these datacentre topologies were designed for different use
cases. The Fat Tree topology is designed to allow for equal

bandwidth on all routes in large datacentres using commodity
switches. The Leaf-Spine topology is intended for datacentres
with high inter-server traffic. The Dcell topology is designed
to be robust against failures. Fat Tree and Leaf-Spine are
hierarchical datacentre topologies whilst Dcell is a server
centric topology. Groups of 12 tests were run in parallel using
a CPU with 12 threads and 6 cores with a 3.4GHz base clock
and 32Gb of RAM.

A. Server Selection Strategies

To evaluate the efficiency of each server selection strategy
1000 different solutions were generated for each network
topology at six different scales from ∼400 servers to ∼70,000
servers. Services were added to each problem instance until
at least 60% of available capacity was required to place all
services. The average preprocessing and processing times are
listed in Table I. The largest instances of the test problem for
the ‘cached’ selection strategy required more memory than
was available for testing and have been ommitted.

As the cached strategy does not directly use the network
topology after preprocessing, solution preparation time is
comparable over each datacentre topology. Additionally the
cached technique places services 4-5x faster than the other
strategies. However, on large scale problems the preprocessing
step is resource intensive, in particular memory intensive,
which makes it unsuitable for large problem instances.

In contrast, the simple strategy is significantly affected by
the choice of network topology. The simple selection strategy
is able to solve large problem instances on the Dcell network
topology in an acceptable amount of time but is an order
of magnitude slower on both hierarchical topologies. As the



TABLE II: Mean hypervolume for each algorithm after 10000 evaluations

|S| Placement Led Fixed Length String Variable Length String
IBEA NSGA-II MOEA/D IBEA NSGA-II MOEA/D IBEA NSGA-II MOEA/D

420 † 0.298 † 0.298 † 0.300 0.755 0.766 0.742 † 0.706 † 0.699 † 0.691
Dcell 930 † 0.302 † 0.303 † 0.301 0.745 0.751 † 0.725 † 0.715 † 0.709 † 0.708

8190 † 0.337 † 0.337 † 0.337 0.733 0.739 † 0.728 0.742 † 0.728 0.737

432 † 0.419 † 0.417 † 0.403 0.661 0.667 † 0.639 † 0.621 † 0.602 † 0.606

Fat Tree 1024 † 0.457 † 0.457 † 0.453 0.695 0.701 † 0.670 † 0.670 † 0.651 † 0.658
8192 † 0.511 † 0.511 † 0.511 0.728 0.734 † 0.719 0.734 † 0.711 0.726
16000 — — — 0.749 0.749 † 0.740 † 0.741 † 0.717 † 0.733

392 † 0.597 † 0.593 † 0.573 0.823 0.832 0.813 † 0.784 † 0.756 † 0.764

Leaf-Spine 1152 † 0.573 † 0.574 † 0.571 0.804 0.809 † 0.778 † 0.777 † 0.752 † 0.768
8192 † 0.562 † 0.562 † 0.562 0.779 0.784 † 0.768 0.781 † 0.749 † 0.767
15488 — — — 0.791 0.792 † 0.778 † 0.785 † 0.740 † 0.772

The highest mean hypervolumes before rounding are highlighted. † Denotes highlighted result is significantly better than the
best value according to a Wilcoxon’s ranked sum test, P < 0.05. * Indicates which setting was used for significance tests
where multiple best values exist.

simple selection strategy will stop as soon as it finds a server
with sufficient capacity it benefits from densely connected
server centric topologies where most steps will lead to a server.
On hierarchical topologies such as Leaf-Spine and Fat Tree a
BFS originating from a server will visit all switches in the
network before it considers most of the servers.

The spanning strategy produces consistent results across
each topology and can efficiently scale to large problem
instances. However, it underperforms when compared to the
cached strategy on smaller problems. As the spanning strategy
must perform a BFS to update node tables after placing each
VNF, its performance is comparable to the simple server
selection strategy on problems with densely connected servers
such as the Dcell. However, on hierarchical problems the
spanning strategy can stop earlier more often as it is likely
to stop at a central node.

As the preprocessed datacentre topology can be used for
many tests, the cached selection strategy may be a suitable
choice for small problem instances, problems where many
function evaluations will be used or situations with very large
amounts of resources. The simple strategy may be a good
choice for placement algorithms designed to solve server
centric topologies. For general purpose problems the spanning
tree algorithm produces consistently good results and can scale
to large problem instances.

B. Routing-Led Optimisation

The routing-led algorithms were next evaluated against a
representative placement-led one. To provide a fair compari-
son, genetic operators were selected that are similar to those
used in the fixed length string (FLS) routing-led algorithm.
In the initialisation step, the initial solutions are placed as
in the FLS initialisation operator but the remaining VNFs
are assigned to subsequent servers in the string. The same
mutation and crossover operators are used for the placement-

led algorithm as in the routing-led algorithms. Without a
repair mechanism the placement-led algorithm, mutation and
crossover rarely generate feasible solutions. A repair mecha-
nism is applied that moves VNFs on overfilled servers to the
nearest server in the string that can accommodate it. Paths are
constructed as in the FLS operators but VNFs are selected by
their distance in the string.

Each algorithm was used to solve 30 problem instances for
each datacentre topology at different scales. The operators
were used with the multiobjective evolutionary algorithms:
NSGA-II [31], IBEA [39], and MOEA/D [40]. For each
problem instance a set of services was generated that require at
least 60% of the available capacity. In both the FLS and VLS
representation, the cached server selection strategy was used to
prepare a solution. The hypervolume (HV) metric was used to
compare the overall results. As larger networks will host more
services and hence use more energy we consider the expected
energy contribution of each service rather than the total energy
in the HV calculation. The nadir and utopian points were
estimated using the worst and best values for each objective
for all solutions and all objectives were normalised before
calculating the HV. Table II shows the mean hypervolume
from 30 problem instances after 10,000 iterations and Table III
shows the execution time, excluding preprocessing. Memory
constraints prevented the problem for being run on larger
problem instances. Results on the largest instances of the Dcell
and for the larger instances for the placement-led algorithm are
not available as these tests did not terminate in an acceptable
amount of time.

In all instances the routing-led algorithms significantly out-
performed the placement-led algorithm. These results support
the argument that routes should lead the placement of VNFs.
Placing VNFs in a routing-led strategy increases the chance
that the VNFs in each service are near to each other. A
placement-led strategy does not have this benefit and requires



TABLE III: Mean execution time (s) for each algorithm and 10000 evaluations

|S| Placement Led Fixed Length String Variable Length String
IBEA NSGA-II MOEA/D IBEA NSGA-II MOEA/D IBEA NSGA-II MOEA/D

420 † 14 † 15 † 20 † 8 7 † 10 † 8 6 † 10
Dcell 930 † 63 † 67 † 98 * 22 22 † 32 † 24 22 † 38

8190 † 9577 † 11073 † 16437 2826 † 4093 † 4295 † 3726 3054 † 6544

432 † 36 † 43 † 47 † 9 * 7 † 16 † 9 7 † 13

Fat Tree 1024 † 143 † 172 † 144 † 23 21 † 54 † 25 20 † 50
8192 † 6461 † 6209 † 5542 555 † 717 † 1526 † 630 460 † 1734
16000 — — — † 2983 † 4229 † 4799 † 2696 † 2650 † 7009

392 † 19 † 23 † 25 † 7 * 5 † 11 † 7 5 † 10

Leaf-Spine 1152 † 115 † 123 † 102 22 21 † 48 † 25 23 † 48
8192 † 3972 † 3925 † 3547 476 † 744 † 1174 † 634 451 † 1671
15488 — — — † 2161 † 3082 † 3630 † 2209 † 1591 † 6607

The lowest mean times are highlighted. † Denotes highlighted result is significantly better than the best value according to a
Wilcoxon’s ranked sum test, P < 0.05. * Indicates which setting was used for significance tests where multiple best values
exist.

the evolutionary algorithm to improve routes via improving
placements.

Notably the FLS representation significantly outperformed
the VLS representation. As a string representation can still
maintain some information on the distance between servers, it
is likely that the FLS may result in good initial building blocks
for the crossover. In comparison, the uniform initialisation
used for the VLS does not reflect the relationship between
servers immediately.

Results from Table III show the routing-led algorithm strat-
egy was significantly faster than the placement-led strategy
in this instance. As the placement-led algorithm has not been
optimised for this problem it is not a fair comparison. How-
ever, the routing-led algorithms are three orders of magnitude
faster than other metaheuristics that have considered problems
of this scale in the literature (22-38 seconds vs 10,000 seconds
for problems with ~1000 servers [12]) and the problems
considered are significantly larger than ones in the literature so
far. As the field has not yet converged on a problem definition
for the VNFPP it is not possible to compare the quality of
solutions directly.

Notably, Dcell requires an order of magnitude longer to
optimise than other topologies. It is possible that this is due to
the arrangement of the topology information in memory. The
Fat Tree and Leaf-Spine topologies can be laid out in memory
such that nearby servers in the topology are also near to each
other in memory. This is not true for a Dcell topology as a one
dimensional representation cannot fully capture information
on the distance between servers (as discussed with respect to
strings in Section IV). As a result, memory accesses in the
Dcell topology are less predictable than memory accesses in
hierarchical topologies. This factor should be considered in
the design of future models and metaheuristics.

VI. CONCLUSIONS AND FUTURE WORK

Existing metaheuristic works on the VNF placement prob-
lem typically aim to place VNFs without considering the
datacentre topology. An alternative approach places VNFs in
a service so that they are joined by short routes. We classify
this group of algorithms as routing-led techniques. Existing
works that meet this classification require fixed starting and
ending locations or only worked for specific topologies. In this
work we proposed a new routing-led optimisation algorithm
that does not have these limitations. The algorithm was tested
against multiple topologies with datacentres containing up
to 16,000 servers and 1000s of services. The routing-led
algorithm was found to be significantly faster and produce
better results than a comparable placement based algorithm
on all test instances and shown to scale to problems much
larger than have previously been considered.

The algorithm is able to solve large scale problem instances
efficiently on most of the topologies considered. Future work
could consider cache-friendly or cache oblivious evaluation
techniques to allow the optimisation process to efficiently
solve large scale graphs with unpredictable memory accesses.
Additionally alternative solution representations that may bet-
ter capture information on service quality should be consid-
ered.
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