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Abstract—Pressure drop prediction is critical to the design
and performance of cyclone separators as industrial gas cleaning
devices. The complex non-linear relationship between cyclone
Pressure Drop Coefficient (PDC) and geometrical dimensions
suffice the need for state-of-the-art predictive modelling meth-
ods. Existing solutions have applied theoretical/semi-empirical
techniques which fail to generalise well, and the suitability of
intelligent techniques has not been widely explored for the task
of pressure drop prediction in cyclone separators. To this end,
this paper firstly introduces a fuzzy modelling methodology, then
presents an alternative version of the Extended Kalman Filter
(EKF) to train a Multi-Layer Neural Network (MLNN). The
Lagrange dual formulation of Support Vector Machine (SVM)
regression model is also deployed for comparison purposes.
For optimal design of these models, manual and grid search
techniques are used in a cross-validation setting subsequent to
training. Based on the prediction accuracy of PDC, results show
that the Fuzzy System (FS) is highly performing with testing
mean squared error (MSE) of 3.97e-04 and correlation coeffi-
cient (R) of 99.70%. Furthermore, a significant improvement of
EKF-trained network (MSE = 1.62e-04, R = 99.82%) over the
traditional Back-Propagation Neural Network (BPNN) (MSE =
4.87e-04, R = 99.53%) is observed. SVM gives better prediction
with radial basis kernel (MSE = 2.22e-04, R = 99.75%) and
provides comparable performance to universal approximators.
Of the conventional models considered, the model of Shepherd
and Lapple ( MSE = 7.3e-03, R = 97.88%) gives the best result
which is still inferior to the intelligent models.

Index Terms—Cyclone, Pressure drop coefficient, Fuzzy sys-
tem, Support vector machine, Extended Kalman filter, Multi-
layer neural network, Cross-validation.

I. INTRODUCTION

Environmental pollution is a critical concern in many na-
tions of the world due to its adverse effect on nature, and
ultimately on lives. Many industrial activities release large gas
effluents with particulate contaminants which must be removed
before discharge.

Cyclone separators are industrial air pollution control de-
vices for separating entrained particles from carrier gas

streams before they are discharged. Besides the design sim-
plicity and cost effectiveness of these devices, the lack of
moving parts makes maintenance very cheap, and hence very
attractive to the industry [1]. Some industrial applications
include the removal of coal dust in power plants, removal of
saw dust in sawmills, as spray dryers, etc. However, cyclone
separators, like any other technology, require improvements to
enhance performance and thus promote a wider adoption and
with the deleterious effect of particulate pollution, it becomes
imperative to enhance the performance of pollution control
systems [2]. Numerous designs of cyclones exist which are in
use for different purposes such as the uniflow, straight-through
and reverse flow cyclones. However, the reverse flow cyclone
is more commonly used for industrial gas cleaning (Fig. 1).
Cyclones exploit the centrifugal force generated by the circular
spinning of the inlet gas stream at high speed to bring about
separation. This then causes the particulate solids to be thrown
to the cyclone walls, loose speed and subsequently fall to the
bottom where they are discharged. Besides particle collection
efficiency, pressure drop is another major performance metric
for performance evaluation in cyclones, which relates to the
energy of the inlet gas stream. To this end, accurate mathemati-
cal modelling of the complex relationship between the pressure
drop and cyclone dimensions is critical. Several approaches
exist in the literature to describe the effect of cyclone geometry
on pressure drop. These include: mathematical models [3];
theoretical or semi-empirical models (e.g., [4][5]); statistical
models (e.g., [6]); and Computational Fluid Dynamics (CFD)
simulations, (e.g., [7]).

Theoretical or semi-empirical mathematical models based
on physical descriptions and detailed understanding of gas
flow patterns and energy loss mechanisms in cyclones have
been developed by several researchers, such as the mod-
els of [4][8][9]. However, different simplifying assumptions
inherent in these models, and different physical principles
being exploited in the modelling can result in significant
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Fig. 1. Schematic of a reverse-flow cyclone separator

disparities between predictions and measurements. For exam-
ple, [10] stated that none of these models predicts pressure
drop accurately for a wide range of cyclone designs, and
pressure drop predictions of some models are twice the
measured values [11]. Computational Fluid Dynamics (CFD)
simulations provide a reliable method to examine the effect
of design changes on performance and provide an excellent
approach to modelling cyclones as they are able to predict
fluid flow patterns in great details [12]. However, CFD can
be computationally challenging particularly in solving the
complex mathematics of the famous Navier-Stokes equations
that result. While data-driven intelligent methods such as the
Artificial Neural Network (ANN) [13] and the Least Squares
Support Vector Machine (LS-SVM) [3] are promising and
have yielded superior modelling capabilities, there is still
ample room for improvements, specifically with the choice of
learning algorithm, network architecture and hyper-parameters
selection/optimisation.

The current state-of-the-art development is hinged on Arti-
ficial Intelligence (AI), and has motivated the need for data-
driven intelligent methods which can effectively extract useful
information from domain data for decision making. Thus,
towards an efficient design which minimises the pressure
drop of inlet gas stream through the separator for effective
gas cleaning, this study develops intelligent pressure drop
prediction models. Due to the complex non-linearity between
PDC and cyclone dimensions, existing approaches have not
provided good generalisation of pressure drop predictions,
thus motivating the need for improved neural and fuzzy PDC
predictions, which are especially suited to model complexities
and highly non-linear trends to arbitrary accuracy. Therefore,
this paper introduces a fuzzy model and a more effective
learning algorithm over the traditional Back-Propagation Neu-
ral Network (BPNN), for pressure drop prediction in cyclone
separators.

The aim of this paper is two-fold: first, to use the dataset

from the measurement of ninety-eight cyclone configurations
[10] to develop prediction models, and then to draw con-
clusions from the obtained models for the more suitable
approach (based on results) to pressure drop prediction in
cyclone separators. The paper is structured as follows: Section
II discusses the experimental methodology which include the
process of selecting the variables for building the prediction
models; Section III develops the mathematical models and
algorithms for the prediction models; Section IV presents
simulation results with discussion, and comparison of models
and finally, conclusions are presented in Section V.

II. EXPERIMENTAL METHODS

Selection of the right response and predictor variables for
cyclone modelling is critical to a successful prediction, and
the suitability of the consequent model for other purposes
will greatly depend on the variables used. Thus, it has been
shown that all dimensions of a cyclone separator in Fig. 1
affect its pressure drop to different extent [10], hence, seven
predictors form the inputs to the models, and the response
(output) variable in this case is the Pressure Drop Coefficient
(PDC) as presented in Table I.

A. Pressure Drop Coefficient (PDC)

The pressure drop, ∆P , is often expressed in terms of
PDC, which is a dimensionless quantity and a complex non-
linear function of cyclone geometrical dimensions (i.e., barrel
diameter (D), total cyclone height (H), vortex finder (De),
vortex finder length (S), inlet height (a), inlet width (b), height
of the cylindrical section (h), and the cone-tip diameter (B),
and operating conditions [13]:

∆P = PDC

(
υ2
i ρg
2

)
(1)

where υi (m/s) is the gas inlet velocity, and ρg (kg/m3) is
the gas density. To facilitate a more accurate determination of
PDC, all eight dimensions of the cyclone are critical as they
affect the pressure drop to different extent [13]. Thus, these
dimensions are typically characterised by D and expressed as
seven dimensionless geometric ratios as shown below [13]:
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Since PDC is a function of cyclone dimension ratios, as
shown in (2), it is not affected by operating conditions such
as the inlet gas flow rate, and should remain constant for
any cyclone configuration, irrespective of size, provided that
the dimension ratios remain the same. Thus, PDC can be
determined experimentally or theoretically for a particular
cyclone, but will be determined more accurately in this work
using data-driven techniques that take into account all the
geometrical dimensions of the cyclone, and able to generalise
well over a wide range of cyclone designs.



TABLE I
INPUT AND OUTPUT VARIABLES FOR THE CYCLONE

Input Output
Variables x1 x2 x3 x4 x5 x6 x7 z
Spec De/D a/D b/D S/D H/D h/D B/D PDC

III. MODEL DEVELOPMENT

A. Fuzzy system (FS)

The heart of a FS, as shown in Fig. 2, is the rule base
as it combines all other components to implement the rules
[14]. A fuzzy rule base is made up of conditional IF-THEN
statements:

<i : IF x1 is A
i
1 and · · · and xn is Ain, THEN

z is Bi (3)

where x = (x1, x2, · · · , xn)T ∈ U and z ∈ V comprise the
linguistic input and output variables, respectively, Aij and Bi

are fuzzy sets defined by membership functions over the input
and output universes of discourse, Uj and V, respectively, i =
1, 2, · · · , <, and < is the number of rules in the rule base.
The IF part of the rule i.e., x1 is Ai1 and · · · and xn is Ain,
is called the antecedent, while the THEN part i.e., y is Bi,
is called the consequent. This is a case of multi-input single-
output system. In depth studies on fuzzy logic and FS can be
found elsewhere, e.g., [14][15].

A FS is thus trained to learn a complex input-output
mapping from the geometrical measurements of ninety-eight
cyclones dataset in [10]. Depending on the type of inference
engine, fuzzifier, and defuzzifier used, different combinations
of these three modules can result in different FS, however, not
all of these combinations make much sense [14]. Here, a type
of FS is exploited, which is smooth and continuous, and able
to interpolate well between data points and therefore suitable
for the current purpose. Hence, a FS with rule base as in (3),
product inference engine, singleton fuzzifier, centre average
defuzzifier, and Gaussian membership functions, as shown in
(4), is a design choice.

g(x|θ) =

∑<
i=1 bi

∏n
j=1 exp(− 1

2 (
xj−cij
σi
j

)2)∑<
i=1

∏n
j=1 exp(− 1

2 (
xj−cij
σi
j

)2)
(4)

θ = [b1, · · · , b<, c11, · · · , c1n, · · · , c<1 , · · · ,
c<n , σ1

1 , · · · , σ1
n, · · · , σ<1 , · · · , σ<n ]T

where bi is the centre of the output fuzzy set for the ith rule,
cij is the centre point of the jth input membership function for
the ith rule, σij > 0 is the width (or spread) of the membership
function for the jth input and the ith rule, and θ is the design
vector. The FS (4) is designed when the system parameters in
θ are determined.

In practice, a FS is built from domain knowledge which
is encoded in IF-THEN rules. However, when such conscious
knowledge is not available, domain input-output data can be

Fig. 2. Schematic diagram of a fuzzy system

collected and used to generate the IF-THEN rules and subse-
quently to construct a type of FS such as in (4). Alternatively,
as is the case in this work, a FS structure is first defined, and
a suitable algorithm is used to design the system and from
which, the rule base can be reconstructed to give an intuitive
explanation of the designed FS.

B. Gradient descent learning

In order to successfully design (4) and construct a FS that
can interpolate well between data points, the gradient descent
algorithm is presented to tune all the parameters in θ. The aim
of gradient methods is to minimise the squared error, el, in
(5) for each training data pair, l, by choosing θ.

el =
1

2
[g(xl|θ)− zl]2 (5)

Thus, the gradient descent update law for the Gaussian input
centres, cij (i = 1, 2, · · · ,<, j = 1, 2, · · · , n), is given as

cij,t+1 = cij,t − λ
∂el
∂cij

∣∣∣∣∣
t

+ β(cij,t − cij,t−1) (6)

where the subscripts t + 1, t and t − 1 denote the future
and past values, λ > 0 is the learning rate, and β > 0 is the
momentum factor. Chain rule of calculus is applied to ∂el

∂cij
at

time t, making references to (4) and (5).

∂el
∂cij

= el,t
∂g(xl|θt)
∂µi(xl, t)

∂µi(x
l, t)

∂cij
(7)

so that
∂g(xl|θt)
∂µi(xl, t)

=
bi,t − g(xl|θt)∑<
i=1 µi(x

l, t)
(8)

and
∂µi(x

l, t)

∂cij
= µi(x

l, t)

(
xlj − cij,t
(σij,t)

2

)
(9)

Substituting (8) and (9) into (7) and plugging the result into
(6) gives the update equation for the input Gaussian centres,
where

µi(x
l, t) =

n∏
j=1

exp

−1

2

(
xlj − cij,t
σij,t

)2
 (10)



TABLE II
STATISTICAL SUMMARY OF THE 98 CYCLONES DATASET [10]

De/D a/D b/D S/D H/D h/D B/D PDC
Min 0.25 0.113 0.067 0.39 1.158 0.501 0.14 2.3
Mean 0.428 0.630 0.211 0.891 3.283 1.189 0.342 23.268
Standard dev. 0.1104 0.2618 0.0936 0.4289 2.0956 0.6729 0.1498 32.8858
Max 0.667 1.0 0.4 3.052 10.97 3.5 1.0 155.3

Similarly, the gradient update laws for bi and σij can be
obtained. Here, only the number of rules, <, in the rule
base needs to be set before learning begins, while the system
parameters in θ are initialised to some values and tuned to
optimum in the course of training. In gradient descent learning,
it is necessary to ensure that learning converges before training
is finished, thus, longer epochs might be required to achieve
this, or the network error is compared to some pre-specified
error goal during training and if sufficiently small, training is
finished.

C. Multi-Layer Neural Network (MLNN)

The MLNN in Fig. 3 is a three-layer perceptron network.
The output, Om+1

i , of any hidden neuron of layer m + 1 is
given by

Om+1
i = fm+1

i


Sm∑
j=1

wm+1
i,j amj + bm+1

i

 ;

m = 0, 1, 2, · · · ,M − 1 (11)

where M is the last layer of the network, fm+1
i is the

transfer function of the ith neuron of the (m + 1)th layer,
amj is the output of jth neuron of layer m, and bm+1

i is the
bias term associated with the ith neuron of the (m+1)th layer.
The designation wi,j is interpreted as the weight connection
from input j to neuron i. In a multi-layer feedforward network,
the output of the previous layer becomes the input to the next
layer, hence, for the considered two-layer network (excluding
the input layer which is just a pass in layer) of Fig. 3, the input
vector, x, is vectorised, x = [x1, · · · , x7]T , and the overall
network equation (12) can be constructed, where the input to
the last layer is obtained from (11) and the last layer output
equation is obtained by setting m = M − 1 in (11).

g = f2
1


S1∑
j=1

w2
1,j .f

1
j

{
R∑
r=1

w1
j,rx(r) + b1j

}
+ b21

 . (12)

where R is the dimension of x which is seven in this case,
and x(r) is the rth element of x.

D. Neural weight learning

The learning of a neural network involves the determination
of the non-linear mapping

gt = Γ(xt,w) (13)

where the subscript t denotes the current time instance,
and weight vector, w, is composed of the parameters to be

Fig. 3. A three-layer neural network architecture with seven inputs, S hidden
neurons and one output neuron

learned. The mapping error, et, is the difference between the
target output, zt, and the network output, gt, i.e., et = zt− gt,
and the goal of learning is to find w which minimises some
specified performance criterion. To achieve this, a state-space
representation of (13) is first written as

wt+1 = wt + rt

dt = Γ(xt,wt) + et,
(14)

where wt is a stationary process with identity state tran-
sition matrix driven by process noise rt, and et is the mea-
surement noise. Since Γ(.) is a non-linear neural network in
this case, it cannot be used directly in the EKF algorithm.
Instead, the partial derivatives with respect to network weights
are computed and at each time instance t, these derivatives are
evaluated at the current predicted state (weight estimate) which
are then used in the EKF equations.

1) Recursive EKF algorithm: For EKF implementation,
the neural network weight connections including the con-
nections from input to hidden, and hidden to output lay-
ers, are coalesced in a single state vector as a lin-
ear array. Thus, for the network of Fig. 3, the corre-
sponding Kalman state vector would be written as w =
[w1

1,1, · · · , wS,R, b11, · · · , b1S , w2
1,1, · · · , w2

1,S , b21]T . Algo-
rithm 1 presents the EKF recursive equations which comprise
two steps: prediction and correction. The prediction step forms
the predictor for the next observation, and the result is the a
priori estimate at time t, while the correction step updates the
a priori estimate from the prediction with new information
arriving at time t. This result is the a posteriori estimate.



Algorithm 1 EKF equations
Initialisation:
ŵ0 = E[w]
P0 = E[(w − ŵ0)(w − ŵ0)T ]

for t = 1 : Ns do . Loop over training samples
. Prediction/time update

ŵt|t−1 = ŵt−1

Pt|t−1 = Pt−1 + Q

. Correction/measurement update
Kt = Pt|t−1Ht(R+ HT

t Pt|t−1Ht)
−1

ŵt|t = ŵt|t−1 + Kt(zt − Γ(xt, ŵt|t−1))
Pt|t = (I−KtH

T
t )Pt|t−1

In Algorithm 1, Q is the process noise covariance, R
is the measurement noise variance, Ht is the first order
linearisation of Γ(.), evaluated at the current weight estimate,
i.e.,Ht = ∂Γ(.)

∂w

∣∣∣
wt

, P forms the error covariance of the net-

work weights, and t|t− 1 denotes the estimate at time t using
the available information up to and including the time instance
t− 1.

To begin the recursion, w(0) is defined by a Gaussian dis-
tribution with N (w̄(0),P(0)), where w̄(0) and P(0) capture
any a priori knowledge about the network weights. However,
where such knowledge is not available, w̄(0) can be initialised
from a random distribution and P(0) = µI, where µ is a large
number, e.g., 104.

E. Support Vector Machine (SVM)

SVM, first identified by [16], was originally developed
to solve classification problems, but has found application
in function approximation/regression as well (see [17]). To
configure SVM for regression, the linear ε-insensitive loss
function (15) is introduced, and the goal here is to find a
function g(x) that deviates from the true response by no
greater than ε for each training instance, and be as flat as
possible.

Lε =

{
0 if |z − g(x)| ≤ ε
|z − g(x)| − ε otherwise

(15)

Equation (15) means that if the regression error resides
within the ε-tube, the loss is taken to be zero. If otherwise,
the loss is equal to the difference between the regression
error and ε, where ε specifies the desired approximation
accuracy. SVM regression problems are easily solved in their
Lagrange dual formulation, and to obtain the dual formula for
ε-insensitive support vector regression, non-negative Lagrange
multipliers, α and α∗, are assigned to each training instance,
x, and the Karush-Kuhn-Tucker (KKT) first order conditions
for optimality are applied. A dual problem results which finds
α and α∗ that maximises the following quadratic objective
function:

max
α,α∗

− 1

2

Ns∑
i=1

Ns∑
j=1

(αi − α∗i )(αj − α∗j )x′ixj−

ε

Ns∑
i=1

(αi + α∗i ) +

Ns∑
i=1

zi(αi − α∗i )

subject to :
Ns∑
t=1

(αi − α∗i ) = 0

0 ≤ αi ≤ C
0 ≤ α∗i ≤ C

(16)

The KKT conditions allow each training point to be classified
into support vector types. For non-linear regression problems
as is the case in this paper, (16) is kernelised by replacing
the linear dot product x′ixj with a non-linear kernel function,
G(xi,xj), such as the radial basis function. Thus, the approx-
imate prediction function for the SVM regression problem is
written as:

g(x) =

Ns∑
t=1

(αt − α∗t )G(xt,x) + b (17)

IV. EXPERIMENTAL METHODOLOGY, RESULTS AND
DISCUSSION

A. Cyclone dataset

The cyclone dataset [10] is composed of the measurements
of pressure drop for ninety-eight different cyclones gathered
from different literature sources. Each cyclone measurement
data is composed of seven geometrical dimensionless ratios,
and the corresponding PDC. The decision to include a cyclone
data in the dataset was based on certain four criteria being met
(see [10]). Due to the small dataset available, cross-validation
is employed for effective training and generalisation of the
intelligent models.

Each column of Table II shows the statistics of each
variable. It is observed from the table that there is a large
difference in the order of magnitudes between the variables,
and Eu is noticeably widely dispersed and its mean cannot be
said to be representative of the central value considering the
range of the data. A more informative and graphical approach
to viewing the distribution of the data is with a box and
whisker plot. Fig. 4 shows the box plot for each variable, rep-
resenting information from a five-number summary: minimum
value, first quartile, median, third quartile and the maximum
value. The red horizontal lines in the boxes denote the median
values, the ends of the boxes represent the lower and upper
quartiles, and the whiskers are the two lines outside the
boxes, extending to the maximum and minimum observations.
The data are mostly skewed as the medians cut the boxes
into two unequal parts, and the statistics of the variables are
significantly different from one another. S/D, h/D and Eu have
significant number of outliers as indicated by the ’+’ symbols.
De/D, S/D and h/D have data that are more condensed (closer
together) around the larger values (De/D and S/D have a couple
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Fig. 4. Statistical distribution of the cyclone dataset

of points with same values as the median/upper quartile since
these two coincide), b/D and Eu are more condensed around
the smaller values of the variables. H/D, a/D and B/D are
roughly symmetrical about their medians.

B. Data pre-processing

The dataset obtained from [10] and described in the previous
section, is the only comprehensive experimental dataset on
cyclone that was put together from different literature sources,
and is used in the present study for pressure drop prediction
through intelligent modelling. To facilitate effective training
of the intelligent models, each variable in the dataset is first
normalised in the range of [0, 1] according to (18) due to the
large difference in the order of magnitude, and subsequently
randomly divided into 80% (≈ 78 samples) training and 20%
(≈ 20 samples) testing sets.

zn =
zi − zmin

zmax − zmin
(18)

where zn is the normalised value of the observed variable,
zi is the actual variable, zmin and zmax are the minimum
and maximum values, respectively, of the observed variable.
Both the input and output variables are subjected to the
normalisation procedure.

To convert simulation results back to the original scale,
de-normalisation is performed using the same normalisation
procedure in (18). The processing function essentially becomes
an integral part of the models.

C. Hyper-parameters selection/optimisation

Selection of the training parameters (see Table IV) is a
critical one. A too small learning rate may result in a long
training time and leaning may get stuck, while a value too
large achieves faster convergence but may give rise to sub-
optimal model parameters. Although an exhaustive search for
the learning rate is not considered here, a momentum factor
has been introduced to compensate for a sufficiently slow
learning rate, and a typical value of 0.01 is sufficiently small

Fig. 5. Procedure used for models development

to this end. More so, the number of rules for the FS is
manually tuned with V -fold cross-validation to prevent over-
fitting. The value of V has been selected based on the common
default V = 10 and considering the small dataset used, this
value is considered appropriate for the subsequent analysis. In
a V -fold cross-validation experiment, the original sample is
randomly divided into V folds, where a single fold is used
for independent testing and the other V − 1 folds are used to
train the model. This process is repeated V times, with each
of the V folds being used exactly once for testing. The cross-
validation error is the average mean squared error (MSE) on
the V testing folds. Thus, < = 29 rules is found optimal. Thus,
given a total of 29 rules, the first rule in the rule base can be
written as IF x1 is A1

1 and x2 is A1
2 and · · · and x7 is A1

7

THEN z is B1, where A1
1 · · · A1

7 and B1 are linguistic values
defined by Gaussian functions whose parameters c11 · · · c17, µ1

1

· · · µ1
7 and b1, are available in θ. Similarly, the remaining 28

rules are constructed and the rule base is recovered. Linguistic
inputs can be partitioned into a number of linguistic values
(e.g., small, large) depending on the application and domain
knowledge. However, in this work, partitioning is not given
importance as the number of rules is optimally determined to
achieve sufficient regression accuracy.

Furthermore, the number of hidden neurons, Nh, influences
the performance of neural networks. Several rules of thumb
exist in the literature to fix the size of the hidden layer with
each resulting in different values on the same application
(an indeterminate situation), and none of which guarantees
optimality in any one application. Thus, the search for hidden
neurons is an optimisation problem. Applying the same pro-
cedure, Nh = 14 with hyperbolic tangent neurons. The search
for optimal SVM parameters employs a grid search technique
with 10-fold cross-validation for the regularisation parameter,
C, the radial basis kernel scale factor, Ks, and ε. Optimal



search for these parameters is performed in the range of C
= [0.001, 1000], Ks = [0.001, 1000] and ε = [1e-04, 8.24].
And the optimal values found are 1000, 2.154 and 3.82e-03,
respectively.

D. Model training

The optimal models, based on the parameters obtained
previously, are trained on the entire dataset used for cross-
validation, i.e., all the V -folds are put together to design the
final prediction models and the abilities of the trained models
to generalise on unseen future data are determined on the
remaining 20% testing set, held out for independent testing
purposes. Fig. 5 sets out the training/testing procedure used
in this work. Prior to training, the choice of initial parameters
is critical to the success of gradient descent algorithms. The
closer the initial values are to the optimum, the higher the
chance of converging on the optimum. Thus, FS parameters
are initialised with the first < training instances, i.e., cij(0) =
xij,0, bi(0) = zi,0, and σij(0) = [max(xij,0 : i = 1, 2, · · · ,<)
– min(xij,0 : i = 1, 2, ...,<)]/<, where i = 1, 2, · · · <,
j = 1, 2, · · · , n. The neural network weight, w(0), on the
other hand is drawn from a random distribution in the [0, 1]
range and P (0) = 1e4I. Ideally, w(0) = 0 is appropriate,
random initialisation did produce much better response in this
application.

To confirm the generalisation ability and robustness of the
AI models, which are needful for determining the prediction
accuracies of the models, Fig. 6 and Table III present the
results on the testing samples. Generally, gradient descent-
based learning is easy to converge on a shallow local mini-
mum. However, by integrating cross-validation, the optimised
FS and BPNN models are improved and hence generalise
well on test data, with correlation coefficient (R) values of
0.9970 and 0.9953, respectively. Despite the improvements,
the EKF-based learning results in a slightly better prediction
performance over the gradient descent both in terms of MSE
and R, and thus deserves popularisation. SVM models on the
other hand are not considered universal approximators, but
have yielded results comparable to fuzzy and neural model
architectures, where the SVM parameters have also been
optimally determined via cross-validation for fair comparison.
Experiments also reveal that the SVM performance is compa-
rably low when the kernel is polynomial (MSE = 1.3e-03, R
= 98.52%) or linear (MSE = 1.4e-02, R = 82.1%). Thus, the
radial basis kernel is found suitable for the SVM in this work
with R = 0.9975. On the overall, slight improvement could
make the difference in practice, and the EKF-MLNN provides
the superior performance on the prediction of PDC to this end.
That said, the choice of learning algorithm matters in training
an AI model, and is worth the test with different learning
algorithm, especially when high precision is of paramount
importance.

To ensure that the learned weights converge, Figs 7 and
8 show the weight learning curves for the EKF and gra-
dient descent training, respectively. EKF stabilises at the
143rd epoch and after which, learning only proceeds very
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Fig. 6. Comparison of the AI models for PDC prediction

TABLE III
MODELS’ TESTING PERFORMANCE

FS EKF-MLNN SVM BPNN
R 0.9970 0.9982 0.9975 0.9953
MSE 3.97e-04 1.62e-04 2.22e-04 4.89e-04

slowly, while gradient descent requires much longer epochs
to converge to the result obtained. The back-propagation used
here is based on the momentum gradient descent algorithm,
and comparing EKF to back-propagation, the following are
observed: i) BPNN takes longer epochs (about 10 times longer
than that of EKF-MLNN) to converge, ii) 21 hidden neurons
are optimal for BPNN to achieve the mapping accuracy as
compared to 14 needed by EKF-MLNN, iii) EKF, however, re-
quires more parameters to be tuned/initialised to get excellent
result. However, if higher prediction accuracy is desired, the
experiment herein has shown that EKF-trained MLNN could
reach an R value of 0.9982, and thus the model of choice. But
trade-offs might be necessary in practice.

E. Comparison with theoretical, semi-empirical and multi-
regression models

The EKF-MLNN model is compared to conventional cy-
clone pressure drop models developed by [4][5][6]. It is
clear from Fig. 9 that EKF-MLNN clearly outperforms the
conventional theoretical, semi-empirical and multi-regression
models, and the smallest MSE in Table V is about 45 times
larger than that of MLNN. The model of Shephered & Lapple
[4] is surprisingly better than others in terms of MSE and R
values because this model does not take into account the effect
of all cyclone dimensions. However, this may be attributed
to the nature of the data used for testing. It is noteworthy

TABLE IV
MODELS’ PARAMETERS AND SIMULATION VALUES

FS MLNN SVM
λ = 0.01 R = 1.1 C = 1000
β = 0.72 Q =1e-03I Ks = 2.154
< = 29 Nh = 14 ε = 3.82e-03
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TABLE V
PERFORMANCE OF CONVENTIONAL MODELS TO EKF-MLNN

MSE R
Casal and Martinez-Benet[6] 1.23e-01 0.9441
Shepherd and Lapple[4] 7.3e-03 0.9788
Stairmand[5] 1.4e-02 0.9399
EKF-MLNN 1.62e-04 0.9982

that none of the conventional models considered matches the
accuracy of any of the intelligent methods.

V. CONCLUSION

This article proposes three methods to improve the pres-
sure drop prediction of cyclone separators. Models hyper-
parameters are first determined manually and by grid search
(for SVM) in a V -fold cross-validation setting to prevent
over-fitting. The obtained optimal models are subsequently

trained and validated on previously unseen data and results
show that EKF learning of MLNN performed best, and the
R value could reach 0.9982, thus deserving popularisation in
the future. Furthermore, the EKF and the back-propagation
algorithm are compared and EKF is shown to be better in
terms of early convergence, smaller hidden layer size and
prediction accuracy. In comparison with conventional pressure
drop models, this work shows that all AI models are able
to achieve a maximum reduction error of about 99% on
testing samples, and thus able to predict pressure drop more
accurately over a wide range of cyclone designs. Notable
limitations of the developed AI models are that adequate
performance is only guaranteed in the range of dimension
ratios for which they have been trained, and EKF is only
guaranteed to achieve first-order (Taylor series) accuracy. It
is envisaged that future work will use the best performing
pressure drop model developed in this work and an efficiency
model, in a multi-objective optimisation framework, to design
an optimal cyclone geometrical configuration that achieves
a suitable compromise between two conflicting objectives:
minimum pressure drop and maximum efficiency.
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