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Abstract—The Hunter Valley coal chain, located in New South
Wales, Australia, is one of the most complex supply chains in
the world. Coal orders are moved from the mines in the region
to the terminals using a specific, complex rail infrastructure.
These operations are scheduled by an experienced planning
team at the Hunter Valley Coal Chain Coordinator. In this
study, we propose an improved Genetic Algorithm to address
the train scheduling problem. Our model considers several real-
life operational constraints present in the coal supply chain
and includes the selection of trains from an available fleet.
Using a rail network with most of the real Hunter Valley
railway infrastructure, we evaluate the strategy on test instances
generated from actual train operations between 2017 and 2018.
The objective of our strategy is to minimize total travel times.
The algorithm was evaluated on instances with sizes between
60 and 180 jobs, and results show that the method can reach
high-quality solutions – i.e. similar or better than those being
currently used – in less than 2 minutes for the smaller instances,
and 20 minutes for the larger ones.

Index Terms—Train scheduling, genetic algorithm, optimisa-
tion, coal supply chain

I. INTRODUCTION

The Hunter Valley coal supply chain is one of the largest
in the world by volume exported. It comprises 3 terminals,
13 producers, 35 mines, 450 km of tracks and two train
fleet operators. Over 1800 vessels transit each year through
the Port of Newcastle, Australia, transporting approximately
180 million tons of coal. The Hunter Valley Coal Chain
Coordinator (HVCCC)1 is responsible for synchronizing all
coal chain operations, with a focus on maximizing transported
coal volumes, and minimizing overall costs.

To maximize throughput and keep the continuous operation
of the coal chain, train trips must be scheduled efficiently. A
train trip consists of an origin terminal, a destination load point
(generally located at a mine site) and a destination terminal.
Each vessel that arrives at a terminal requires one or more
specific types of coal, which must be sourced from the local

1https://www.hvccc.com.au

mines. When a loaded train arrives at the terminal, the coal is
placed on a stockyard and waits until the corresponding vessel
arrives so that the loading process can take place.

Currently, the schedule of train trips is performed manually
by a team of planners. The process is time-consuming and re-
quires considerable expert knowledge, making it very difficult
for less-experienced planners, and virtually non-reproducible.
Developing an efficient optimization algorithm to address that
task is a natural step towards a better operational environment.

In this study, we propose an extended iterative train schedul-
ing optimizer to compute feasible train trips in the context
of the Hunter Valley coal chain. Specifically, our strategy
extends the genetic algorithm proposed in [1] and presents
the following additional contributions:

1) A more efficient genetic algorithm to compute feasible
train schedules.

2) Train schedules are calculated without considering a
reference timetable, allowing higher flexibility.

3) Incorporation of train fleet constraints in the model.
4) Testing using HVCCC’s entire rail network and several

real-life instances extracted from historical train trips.
We organise the remainder of the paper as follows. In

Section II, we present a literature review, with an emphasis
on train scheduling and routing. Next, in Section III, we
discuss the Hunter Valley coal chain and present the problem
statement. We describe the algorithm in Section IV, followed
by the discussion about the experimental methodology and
computational results in Section V. We finish with the con-
clusions and future work in Section VI.

II. RELATED WORK

Scheduling is one of the most common tasks in any supply
chain, and refers to the time allocation of resources to meet
specific demands. Scheduling focuses on achieving specific
objectives while maintaining safe operations and observing
business constraints. The Train Scheduling Problem (TSCP)
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is a complex optimization problem that has been proven NP-
hard [2] [3]. Finding optimal solutions is rarely achievable in
large-sized instances. There are many variants of the problem,
based on specific characteristics, requirements, and problem-
specific constraints. The solution approach is highly dependent
on the features of the specific rail network. For example, highly
connected rail networks lead to both routing and scheduling
problems, since there are several possible paths between any
two nodes. On the other hand, in networks with tree topologies,
there is only one route between any two locations, so the
routing problem is eliminated. That is the case of the Hunter
Valley rail network, which has a single routing option between
each load point and a terminal.

The TSCP has been addressed under many different scenar-
ios, generating extensive literature. One of the first studies
was presented in [4], where the a single-track TSCP was
modeled as a mixed integer program. The author proposed a
branch-and-bound method to compute a timetable minimizing
total transit time. In the early 90’s, Jovanovic and Harker [5]
presented a nonlinear integer programming model, where the
goal was to minimize the deviation between actual schedule
and planned schedules. A branch-and-bound procedure was
implemented to generate feasible meet-pass train plans. The
problem variation that considers single- and double-tracks was
addressed by Carey [6] [7] via a decomposition method. The
author presented several node branching, variable fixing, and
bounding approaches to reduce the search space. Later, the
same author dealt with the scheduling and overtaking problems
of trains with different speeds on the single-track rail line in
[8].

More recently, in the 2000’s, Zhou and Zhong [9] addressed
a double-track train scheduling problem with multiple objec-
tives. They implemented a branch-and-bound algorithm with
an effective dominance rule and a beam search procedure with
utility evaluation rules. The approach was evaluated using a
Beijing-Shanghai high-speed railroad case study. Caprara et al.
[10] developed a heavily-constrained mathematical model for
a fundamental train timetabling problem using a Lagrangian
heuristic. Later, Liu and Kozan [11] proposed a Blocking
Parallel-machine Job-shop Scheduling (BPMJSS) based ap-
proach for train scheduling problems. In the model, trains cor-
respond to jobs, single-track sections are equivalent to single
machines, multiple-track sections represent parallel machines,
and an operation is regarded as the movement/traversal of a
train across a section.

All the previous studies used mathematical models for the
problem, and either exact methods, or heuristics that allow
an optimality gap to be calculated. These approaches limit
the size of the instances that can be solved in short CPU
times, and sometimes the number and/or complexity of the
constraints included in the model. The next studies presented
use metaheuristics-based approaches – either entirely, or as one
component of the methodology. This allows them to address
more complex, larger problems, but at the cost of losing the
optimality guarantee (or the optimility gap).

Firstly, Dundar et al. [12] considered conflicts on a single-

track infrastructure and proposed a genetic algorithm to ad-
dress train scheduling with meet-pass conflicts. To evaluate
the algorithm, artificial neural networks were implemented as
a proxy to simulate the decision behaviour of train dispatchers,
reproducing their conflict resolutions strategies. Sama et al.
[13] dealt with the real-time problem of scheduling and routing
trains in a French railway network. The train routing problem
was formulated as an integer linear programming and solved
via an ant colony algorithm to generate a subset of routes.
The railway traffic problems receive as input the best subset
of routing alternatives and is solved using a mixed-integer
linear program. Recently, Xiao et al. [14] proposed a heuristic
approach based on a genetic algorithm and tabu search to
address a path-formulation of the block-to-train problem. The
model was evaluated on small instances and applied to a real
larger railroad sub-network in China. For a recent overview of
train scheduling problems and studies, we refer the reader to
the book published by Wang et al. [15]. Next, we present the
problem addressed in this work.

III. PROBLEM STATEMENT

Vessels that berth at the Port of Newcastle require specific
coal types and quantities to satisfy their particular orders.
Moving coal from mine to terminal requires planning, with
train schedules playing a critical part. Train schedules are
created daily by the planning team, allocating a suitable
combination of resources to complete the orders.

Figure 1 shows a simplified representation of the main
components of the coal chain. For a more detailed map of
the railway infrastructure, we refer the reader to the websites
of Port Waratah Coal Services2 and the HVCCC3. In the next
subsections, we describe relevant components of the supply
chain, definitions, constraints and objectives.

A. Railway infrastructure

The Hunter Valley rail network has a very particular tree
structure, which includes both double- and single-track sec-
tions. The mainline has dedicated up and down lines (i.e.
double track sections), starting at the terminals and extending
over 120 km inland. Sections outside the mainline are typically
single-track, and are used for both up and down traffic. This
configuration requires the use of passing loops, located at
regular intervals, to allow trains moving in opposite directions
to pass each other. Also, some areas of the rail network must
be shared with other traffic such as passenger and freight (other
than coal) trains. Along the mainline, however, typically there
are tracks in both directions dedicated to coal traffic only. Next,
we outline the key components of the rail network relevant to
this work:

Passing loops – Passing loops are sections of track that
enable trains travelling on the same line to overtake or meet-
pass each other. Loops allow a single-line track to carry trains
moving in opposite direction continuously. The coordination of
these types of events requires a significant amount of planning

2https://www.pwcs.com.au/what-we-do/the-coal-chain/
3https://www.hvccc.com.au/AboutUs/Pages/MapOfOperationsV3.aspx
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Fig. 1. The figure shows a diagram of the Hunter Valley coal chain showing a small subset of its components. Based on the demand, trains are scheduled to
travel through the rail network moving coal from load points to the terminals. Trains that have arrived at the terminal are unloaded, and coal is moved onto
specific stockpiles. Finally, vessels that are berthed are loaded with coal collected from corresponding stockpiles.

but guarantee that trains can keep moving without incidents
or delays.

Load points – Load points are located near (or inside)
mines and are responsible for loading coal onto the trains.
While some load points are located just off the mainline,
connected through a single track section, others are found far
from the main line, requiring lengthy sections of tracks to
be traversed. Load points are typically located inside balloon
loops, which are sections of track where the two ends meet
at a common point, allowing trains to change direction and
return to the mainline. Trains are allowed to have wait times
at the load point before the loading process starts, and after it
is concluded. However, they cannot overtake other trains since
load points do not have parking facilities.

Dump stations – Trains carrying coal usually have either
side- or bottom-dumping wagons. The terminals’ dump sta-
tions in the Hunter Valley coal chain are configured for bottom
dumping. When trains reach a dump station, they slow down,
the doors on the base of the wagon open, and the coal falls
into steel containers, named hoppers. The coal is then fed onto
conveyors that move it towards the stockyards.

Additional facilities – Some rail loops have additional
facilities where train crews can change, and the locomotives
can receive provisions such as fuel, sand, and water. Also,
loops may have extra facilities for washing locomotives, and
for performing regular inspections and maintenance services.

B. Train scheduling model

In this subsection, we present the main elements of our
model, including inputs parameters, decisions variables, ob-
jective function and constraints.

Input parameters – Each instance of the train scheduling
problem in the context of the HVCCC receives the following
data as input:

1) Rail network: we represent the rail network as a graph
G(V,E), where V is the set of nodes and E corresponds
to the edges. There are three types of nodes: terminal,
load point, and passing loop. If a node represents a pass-
ing loop, it will contain information about the number of
parallel tracks and their lengths. For nodes representing
load points, the model considers the recharge time,
which indicates the time required to reset the equipment,
during which no trains can be loaded. Edges represent
sections connecting two nodes in the network and are
defined by a length, type (single- or double-track), the
number of tracks (up and down), and maximum traversal
speeds (up and down).

2) Jobs: a list of the jobs that need to be completed by a
train fleet. They contain origin terminal node, load point
node, destination terminal node, and the amount of coal
that must be transported (in tons). Each job also has a
ready time (i.e. the time when a job can be assigned to
a train).

3) Train fleet: defines the set of train models that can be
used to complete the jobs. Each train model is character-
ized by maximum speed when empty, maximum speed
when loaded, length, amount of coal that it can transport
(i.e. payload), and the number of trains of that model.

Decision variables – Given the input parameters, for each
job the method chooses a train from the train fleet and
computes the path for its trip. A path begins at a starting
terminal, goes to a load point and returns to a destination
terminal. Since the network has a tree structure, there is only
one possible path for each train, and thus routing decisions
are not part of the problem definition.

1) Trains: a suitable train for each job is selected from the
available fleet. A train can be reused once it finishes the
previous job, but cannot begin the next trip for at least 60
minutes, to account for provisioning and maintenance.



2) Speeds: the speed of each train in each section of its
path depends on several factors. For instance, maximum
speeds vary when trains are empty or loaded, to take into
account physical and safety restrictions imposed by the
rail authorities. In addition, when traversing a section,
the speed of the train cannot be less than half of the
maximum speed allowed.

3) Wait times: this refers to the wait time for each train in
each passing loop. If a decision to stop at a given passing
loop is made, that wait must be greater than 10 minutes,
to allow for engine restart operations and brake system
recharge. There is no limit for the maximum wait time.

Objective function – The objective is to minimize the
summation of travel times, which is computed as the interval
between the job ready time and the time the corresponding
train concludes its trip, arriving at the destination terminal.

Constraints – The scheduling problem is subject to several
constraints that reflect the operational environment of the
HVCCC.

1) Meet-pass: two trains cannot travel in opposite directions
within the same single-track section. In this model, sec-
tions represent tracks that do not have passing loops, and
passing loops are positioned between adjacent sections.
Double-track sections do not have meet-pass restrictions.

2) Overtaking: a train can overtake another one if and only
if the latter is parked in a passing loop.

3) Headway: trains travelling in the same direction must
maintain a 5-minute headway at all times.

4) Load points: All load points have a balloon loop topol-
ogy, and each balloon contains one load point. Only
one train can be loaded at a time in a load point. Load
points have a recharge time between consecutive loading
operations.

5) Contractual constraints: due to contractual agreements
between members of the coal chain, there are limitations
on the train models that can travel from particular load
points to specific destination terminals. To model that, a
list of constraints is used, with each constraint containing
three elements: train model, load point, and destination
terminal. Those elements indicate a combination that is
not allowed under current agreements, thus limiting the
candidate trains that can complete specific jobs.

Train scheduling solution – In this study, a solution
corresponds to a set of train schedules (one per job). Each
train schedule specifies the speed of the train in each section of
the railway network and the wait times during the trip. Trains
are chosen from a fleet of available train models. High-quality
solutions will exhibit short travel times, fewer and shorter wait
times and, of course, all constraints will be respected.

IV. GENETIC ALGORITHM

The proposed algorithm is a greedy, iterative Genetic Al-
gorithm (GA). It is an extended version of the algorithm
presented in [1] that includes train fleet management, thus
allowing the selection of specific train models to complete

jobs. Genetic algorithms are population-based optimization
strategies. While these methods are not guaranteed to find
an optimal solution, a well-designed GA can compute high-
quality solutions within short CPU times. Next, we present the
main characteristics of the GA implemented in this study.

Representation – A solution is represented as an array of
integers, which are mapped to the train’s speed in each path
section. The value si,j corresponds to the speed of the train
selected for job i at section j of its path. For example, if
the minimum and maximum speeds are 40 and 75 km/h, the
integer values would be {0, 1, ..., 7} = {40 km/h, 45 km/h,
..., 75 km/h}, as train speeds are defined in 5 km/h intervals
in our tests.

Population – The population of individuals is structured
as a hierarchical, ternary tree, with recombination happening
between parent and child nodes, only. This structure has been
used in several works since 2001 [16] and is very efficient as it
induces a parallel evolution behaviour in the branches of the
three. This structure has performed better than unstructured
populations (with the same number of individuals) in other
problems such as the Travelling Salesman Problem [17]. For
more information about the effect of population structures in
evolutionary algorithms, we refer the reader to a recent survey
of the area [18]. In our tests, the population size was 13
individuals, corresponding to a ternary tree with three levels.

Recombination and mutation – Recombination between
two solutions uses the Uniform Crossover strategy. In this
procedure, the value in each position of the offspring solution
is inherited from the same position in one of the parents,
at random. After crossover, we apply mutation to minimize
premature convergence of the population. To do so, each value
in the offspring goes through mutation with a 5% probability
of increasing train speed by one step and a 5% probability of
decreasing train speed by one step (i.e. 5 km/h).

Offspring acceptance – Any offspring with a better fitness
value than one of its parents replaces the least fit parent. The
method rejects an offspring solution if its fitness value is worse
(or the same) than both parents. This strategy puts significant
evolutionary pressure in the process, but that is counteracted
by the strong mutation policy.

Fitness – The fitness of a solution is calculated using the
speeds encoded in its chromosome. Starting from the first job,
and all the way to the last one, the schedule is calculated
with the trains travelling at their corresponding speeds for
each section, immediately loading at the load point, and then
returning to the destination terminals. This procedure will
likely produce an infeasible schedule, and we solve those with
a greedy feasibilization method, which we will describe soon.
The fitness itself is the inverse of the objective function value,
presented in Section III-B.

The pseudocode of the GA is presented in Algorithm
1. The algorithm is greedy in the sense that it works by
scheduling a subset of the jobs in each iteration, using a
sliding window approach. The procedure begins by building
an initial population of individuals (Algorithm 1, line 3) using
one of the two available speed profiles. The speed profile



parameter allows one to select either Only Train Speeds
(OTS), or Train & Section Speeds (TSS). The OTS profile
uses only the maximum speeds defined in the train fleet (i.e.
unloaded and loaded maximum speeds) to build a schedule,
ignoring the section speeds. The TSS profile, on the other
hand, combines train speeds and section traversal speeds,
choosing the maximum speed that a train can travel based
on both constraints.

The method then creates the tree-structure population to
store the solutions (Algorithm 1, line 4). A feasible solution
is computed using the procedure COMPUTESCHEDULE (see
Algorithm 2). It generates feasible train schedules for the
jobs in the set Jw, which represents the jobs being currently
scheduled for a window size w. The procedure receives a
list of jobs to be completed and computes a set of candidate
train models that can perform those trips. The train model
chosen is that with the most trains available at a given
ready time. If no train is available, the procedure selects the
earliest possible train based on previous schedules. Next, the
method computes the train’s path including a detour to perform
refueling operations if that is a requirement for the selected
train (Algorithm 2, lines 5–7).

As mentioned before, simply using a solution’s speeds on
each path section will likely produce infeasible schedules. Our
algorithm removes infeasibilities by checking each section
in the train’s path for conflicts with other trains (Algorithm
2, lines 8–21), and eliminates these infeasibilities using the
procedure REMOVEINFEASIBILITIES (Algorithm 3).

REMOVEINFEASIBILITIES starts by checking loading in-
feasibilities, i.e. if the train is loading at the same time as

Algorithm 1 Pseudo-code of the genetic algorithm for the
train scheduling problem with train fleet management.
Input: rail network G, set of jobs J , train fleet T , population size ps, job

window size w, probability of crossover Prc, probability of mutation
Prm, speed profile sp

Output: train schedule SJ

1: SJ ← ∅
2: Jw ← GETJOBWINDOW(J,w) . List of jobs to be scheduled in the

next iteration
3: P ← INITPOPULATION(G, J, T, ps, sp) . Initializes population with a

speed profile
4: TP ← UPDATEPOPULATIONTREE(P ) . Hierarchical structure
5: Jc ← ∅ . List of jobs completed is empty
6: while Jw 6= ∅ do
7: Pc ← CROSSOVER(TP , Jw, P rc)
8: P ∗ ← MUTATION(Pc, Jw, P rm)
9: COMPUTESCHEDULE(Si),∀Si ∈ P ∗ . Calculates the fitness of the

offspring solutions
10: if P 6= P ∗ then . If the population has changed
11: TP ← UPDATEPOPULATIONTREE(P ∗)
12: else
13: P ← RESTARTPOPULATION(G, J, P ∗) . Resets the population
14: TP ← UPDATETERNARYTREE(P )
15: end if
16: SJ ← SJ ∪ GETSCHEDULES(TP , Jw) . Updates the list of

schedules
17: Jc ← Jc ∪ Jw . Updates the list of jobs completed
18: Jw ← GETJOBWINDOW(J − Jc, w) . Gets additional jobs to

schedule
19: end while
20: return SJ . Returns the train schedules

Algorithm 2 Pseudo-code to COMPUTESCHEDULE
Input: train fleet T , individual I , set of jobs Jw , speed step s
Output: a set of schedules SJw

1: SJw ← ∅ . Starts with no schedules calculated
2: for each job j ∈ Jw do
3: time← GETREADYTIME(j)
4: Sj ← ∅ . Schedule of job j is reset
5: Tj ← SELECTAVAILABLETRAIN(j, T )
6: UPDATEINITIALSPEEDS(I, Tj) . Based on train speed profile
7: Pj ← GETPATH(j, Tj) . Includes refueling detour if Tj needs it
8: for each section e ∈ Pj do
9: ADDENTRYTIMEEDGE(Sj , e, time) . Calculates the entry time

in section e
10: ht← GETDISTANCE(e)/(SPEED(j, e) ∗ s) . Time for the head

of the train to traverse section e
11: tt← ht+ GETLENGTH(Tj)/(SPEED(j, e) ∗ s) . Time for the

tail to traverse section e
12: time← time+ ht . Updates the current time of the job
13: ADDEXITTIMEEDGE(Sj , e, time)
14: ndest ← GETDESTINATIONNODE(e)
15: if ISLOADPOINT(ndest) then . Adds the loading time
16: time← time+ GETLOADTIME(ndest)
17: end if
18: SETMAKESPAN(Sj , time) . Sets the makespan of job j
19: REMOVEINFEASIBILITIES(j, e, Tj) . Removes infeasibilities

from the schedule (Algorithm 3)
20: SJw ← SJw ∪ Sj . Updates the list of jobs already scheduled
21: end for
22: end for
23: return SJw

another at the same load point, or if the recharge time is
being violated. To remove loading infeasibilities, the algorithm
iteratively adds wait times at the load point node (Algorithm
3, lines 1–3).

Then, the procedure checks for other conflicts, i.e. meet-
pass in single tracks for trains travelling in opposite directions,
and headway distance for trains going in the same direction.
Every time the approach finds a conflict (Algorithm 3, line 4),
the method increases the wait time before entering the current
section until the conflict is removed.

At this point, three problems might arise. First, having an
additional train stopping at a given passing loop might violate
its capacity, and in this case, the algorithm moves the wait
time to one of the previous passing loops (Algorithm 3, lines
9–10). Second, while adding wait times might eliminate an
existing conflict, the strategy might create other conflicts in
the later stages of the schedule. Finally, another issue is that
adding wait times in the first phase of the trip, i.e. from a
terminal to load point, might create load point infeasibilities.
That triggers the flagging of an additional check for conflicts
(Algorithm 3, line 17).

Once the schedule for the current train becomes feasible, the
method proceeds to the next job, until all jobs in the current
window have been scheduled. Then, the window is moved to
the next set of unscheduled jobs and the GA starts again (but
now with all previously scheduled jobs fixed).

V. EXPERIMENTS

Several computational experiments were conducted to eval-
uate the scheduling algorithm. The method itself was imple-
mented in Java, and was tested on individual machines in the



Algorithm 3 Pseudo-code to REMOVEINFEASIBILITIES
Input: a job j, a section e, a train Tj

Output: feasible train schedule
1: while CHECKLOADINGCONFLICTS(j, Tj) do . Load point capacity

violation
2: INCREASEWAITTIME(j, e, Tj) . Increases wait time at section e
3: end while
4: if CHECKCONFLICTS(j, e) then . Infeasibility found
5: do
6: INCREASEWAITTIME(j, e, Tj) . Increases wait time at section e
7: if CHECKPASSLOOPCONFLICTS(j, e, Tj) then . Pass loop

capacity violation
8: REMOVEWAITTIME(j, e, Tj) . Removes wait time at that

pass loop
9: e← GETPREVIOUS(e) . Moves to a previous pass loop

10: INCREASEWAITTIME(j, e, Tj) . Increases wait time at the
previous pass loop

11: end if
12: infeasible← false
13: for each section e∗ ∈ GETPATH(j) and e∗ > e do
14: if CHECKCONFLICTS(j, e∗) or . Checks for new conflicts

ahead along the path
15: CHECKPASSLOOPCONFLICTS(j, e∗, Tj) or
16: CHECKLOADINGCONFLICTS(j, Tj) then
17: infeasible← true
18: end if
19: end for
20: while (infeasible) . Repeat while schedule is infeasible
21: end if

University of Newcastle’s Research Computing Grid, which
consists of computers with Intel® Xeon® CPU E5-2698 v3
@ 2.30 GHz processors with 128 Gb of RAM in total.

A. Computational results

The network representation used in the tests is similar to
the real Hunter Valley railway network infrastructure except
for the sub-networks found inside the terminals. The network
is composed of 3 terminals, 37 load points, two refuelling
stations, 174 intermediate stations and 259 sections (i.e. a
graph with 216 nodes and 259 edges). In addition, passing
loops along the network can only hold one train, and there is
no capacity limit for passing loops located at the terminals.

The job instances were created using real HVCCC train
operations conducted between January 2017 and August 2018.
From them, we extracted 9,000 complete cycles containing the
required data to generate our experimental train scheduling
instances. We evaluated the genetic algorithm with instances
containing 60 to 180 jobs (i.e. 1 to 3 days of operations), in
increments of 30 jobs. Based on the results obtained in the
study presented by Mendes et al. [1], we set the population
size to 50, and the jobs window size was set to 5.

The details of the train fleet is another input given to the
method. We employ the same train fleet definition that is
currently used on simulation tools developed by HVCCC’s
modelling team. The fleet is composed of 13 different train
models. To evaluate our train fleet assignment procedure, we
execute experiments with different fleet sizes, ranging from
25% to 100% of the real numbers (Table I).

In the experiments, after finishing a journey at a terminal,
trains cannot begin a new journey before their recharge time
is completed – that time was set to 1 hour. Also, refuelling

operations are required whenever a train has traveled more
than 100 km.

Table II shows the results of the genetic algorithm using
the OTS profile and Table III shows the results using the TSS
profile. Regarding the train fleet sizes, as expected, smaller
fleets have a negative impact on the average makespan, in
general. However, there appears to be an excess of trains in the
system. Reducing the fleet to 50% affects the makespan only
slightly (i.e. less than 10% increase). In that case, it would
be worthy investigating whether the system can handle an
increase in the current frequency of 60 train departures per
day. It is likely that the train fleet can support such increase,
but the network capacity might induce bottlenecks in other
parts of the system.

The average, shortest and longest train trip values do not
change substantially with the number of jobs and train fleet
sizes. Therefore, one can conclude that the system has excess
capacity running at a rate of 60 departures per day. Moreover,
when there are not enough trains available, jobs just take
longer to start – but when a train starts its trip, it faces low
levels of congestion along its path. The average makespan
increases, but proportionally to the number of jobs, which is
the expected (and desired) result.

The GA can compute feasible train schedules in less than 2
minutes on instances with 60 jobs. For 180 jobs, the method
took 15-20 minutes to find good solutions. It is important
to notice that CPU times depend on the amount of overlap
between train trips. That is, conflicts between train schedules
need only to be checked for trains currently travelling in the
network. Trains that have already completed their trips do not
add to the complexity of the problem.

In addition to makespan and average trip times, one useful
way to evaluate the results of the algorithm is to compare

TABLE I
THE TABLE SHOWS THE DETAILS OF THE TRAIN FLEET USED IN THE

EXPERIMENTS. EACH ROW INDICATES A SPECIFIC TRAIN MODEL AND THE
NUMBER OF TRAINS AVAILABLE PER MODEL. THE TRAINS ARE OWNED BY

FOUR RAIL HAULAGE OPERATORS: PACIFIC NATIONAL (PNT), AURIZON
(AZN), FREIGHTLINER AUSTRALIA (FLA), AND SOUTHERN SHORTHAUL
RAILROAD (SSR). ON THE RIGHT-HAND SIDE, WE HAVE THE NUMBER OF
TRAINS AVAILABLE FOR THE JOBS UNDER DIFFERENT FLEET SIZES – 25%,

50%, 75%, AND 100% OF THE REAL NUMBERS.

Train Length Payload Number of trains
model (meters) (tonnes) 100% 75% 50% 25%
FLA92 1,400 9,200 8 6 4 2
PNT91 1,380 9,100 8 6 4 2
PNT86 1,300 8,600 4 3 2 1
PDT86 1,300 8,600 3 2 1 0
AZN86 1,300 8,600 10 7 5 2
AZN80 1,200 8,000 5 3 2 1
PNT79 1,200 7,900 12 9 6 3
PNT68 1,000 6,800 2 1 1 0
PNT41 610 4,150 4 3 2 1
FLA42 630 4,150 2 1 1 0
SSR39 600 3,900 3 2 1 0
PNT33 500 3,300 2 1 1 0
PNT22 300 2,200 2 1 1 0



TABLE II
RESULTS OF THE GA USING THE OTS PROFILE. THE TABLE PRESENTS
THE RESULTS OF THE GENETIC ALGORITHM FOR DIFFERENT SIZES OF

INSTANCES AND TRAIN FLEETS. THE FIRST THREE COLUMNS OF RESULTS
REPORT AVERAGE, FASTEST AND SLOWEST TRAVEL TIMES. THE TABLE
ALSO REPORTS THE AVERAGE MAKESPAN FOR THE EACH COMBINATION

OF JOBS/FLEET SIZE, AND THE CPU TIMES.

Jobs / Average Fastest Slowest Average CPU
fleet size trip trip trip makespan time

(%) (hh:mm) (hh:mm) (hh:mm) (hh:mm) (sec)
60 / 100 14:12 5:06 22:08 115:33 76.2
60 / 75 14:12 5:05 21:59 111:25 72.1
60 / 50 14:10 5:04 21:55 117:06 69.4
60 / 25 13:59 5:03 21:07 142:31 56.4

90 / 100 14:21 4:47 22:51 167:05 201.2
90 / 75 14:19 4:47 22:35 167:50 196.1
90 / 50 13:54 4:47 21:40 175:46 152.7
90 / 25 14:02 4:47 21:43 211:19 150.3

120 / 100 14:24 4:37 23:24 228:22 456.5
120 / 75 14:15 4:36 23:14 234:05 384.1
120 / 50 14:11 4:36 23:04 238:08 368.6
120 / 25 13:56 4:37 22:04 284:03 322.3

150 / 100 14:26 4:29 23:51 286:03 759.0
150 / 75 14:12 4:29 23:36 295:06 690.8
150 / 50 14:18 4:30 23:20 288:38 673.2
150 / 25 13:56 4:29 22:27 347:48 598.3

180 / 100 14:20 4:32 23:43 341:36 1161.8
180 / 75 14:16 4:32 23:45 344:22 1158.3
180 / 50 14:19 4:30 23:43 371:35 1090.1
180 / 25 14:06 4:32 22:58 416:22 1082.4

travel times from the terminals to specific load points and back.
In Figure 2, we show a comparison between the distribution
of those times for each load point. There are three sources
of data: the scheduled trips (the values estimated in the
scheduling planning phase by HVCCC’s planners), and the
GA with the two speed profiles (OTS and TSS). The blue
boxes refer to the scheduled trips, and the orange and green
boxes refer to the GA with OTS and TSS profiles, respectively.
As mentioned before, the scheduled data was collected from
trips between January 2017 and August 2018, directly from
HVCCC’s database. Out of the 37 load points, only 19 are
shown in Figure 2, as they represent those with complete data
– many entries in the database had errors or missing values,
and those 19 were the load points with the most trustful results
over the 20-month interval.

The distribution of travel times generated by the two GA-
based methods is very similar, and in most cases slightly
better than the scheduled ones, which indicates that the model
is reflecting the constraints and properties present in the
real network. The planning team at HVCCC currently uses
a proprietary, software-based integrated planning system to
create a 24 hour (60 jobs) schedule. The process requires
approximately 8 hours and a team of three people. The GA
approach completes the same task in a fraction of the time,
with similar or better results.

VI. CONCLUSIONS

This study addressed a train scheduling problem faced by
the Hunter Valley Coal Chain Coordinator and proposed a
genetic algorithm to compute feasible train schedules.

The scheduling problem is complex and more constrained
compared to others found in the literature. The genetic al-
gorithm generates solutions by assigning a train speed for
each network section, with the infeasibilities being eliminated
through a greedy procedure that adds wait times at passing
loops. The method also selects trains for jobs from an available
train fleet. The strategy is very efficient, with high-quality
solutions being found in less than 2 minutes for smaller
instances, and less than 20 minutes for larger ones. The method
was tested on a large set of test instances generated using
historical data from the HVCCC. The results are positive,
with the distribution of travel times generated by the genetic
algorithm being slightly better than the scheduled ones. That
indicates that the model is reflecting the conditions present in
the real network.

Additional constraints can be added to the method in the
future. Among those, constraints to model rail maintenance
operations are a prime candidate. Typically, maintenance ac-
tivities are scheduled events, but they can also be triggered due
to unexpected disturbances such as extreme weather conditions
and accidents. Another path for future research is the inclusion
of constraints on resources located at the terminals. Each
terminal has a very particular infrastructure and a railway sub-
network that trains need to traverse, usually at low speeds,
to perform unloading operations. The inclusion of such con-
straints will generate more realistic schedules that can be
used by HVCCC’s modelling team to make more accurate
planning, strategic and operational decisions. Finally, another
potential extension is to consider additional objectives (e.g.
dwell times, operational costs and coal throughput). In this
case, the problem might require a multi-objective optimization
strategy, which will pose a series of new challenges.

TABLE III
RESULTS OF THE GA USING THE TSS PROFILE. SIMILARLY TO TABLE II,
THIS TABLE PRESENTS THE RESULTS OF THE GENETIC ALGORITHM FOR

DIFFERENT SIZES OF INSTANCES AND TRAIN FLEETS.

Jobs / Average Fastest Slowest Average CPU
fleet size trip trip trip makespan time

(%) (hh:mm) (hh:mm) (hh:mm) (hh:mm) (sec)
60 / 100 13:43 4:52 22:00 107:17 68.5
60 / 75 13:47 4:49 21:58 108:15 67.1
60 / 50 13:41 4:46 21:37 110:39 64.1
60 / 25 13:30 4:48 20:54 139:23 54.6
90 / 100 13:51 4:37 22:21 162:03 173.8
90 / 75 13:52 4:36 22:34 163:42 167.2
90 / 50 13:51 4:33 22:17 166:18 160.1
90 / 25 13:36 4:35 21:35 202:54 141.3

120 / 100 13:58 4:26 23:20 217:33 362.4
120 / 75 13:54 4:24 23:08 220:37 366.5
120 / 50 13:53 4:23 23:10 214:51 347.7
120 / 25 13:36 4:24 22:07 267:37 308.6

150 / 100 13:58 4:15 23:39 275:25 669.6
150 / 75 13:48 4:14 23:23 271:41 612.2
150 / 50 13:53 4:14 23:13 276:55 626.2
150 / 25 13:37 4:23 22:29 334:53 577.3

180 / 100 12:44 3:59 22:28 324:41 841.3
180 / 75 13:24 4:08 23:14 319:40 940.5
180 / 50 13:33 4:16 23:14 336:29 991.5
180 / 25 13:30 4:20 22:36 405:44 989.5



Fig. 2. This figure shows a comparison of trip times distribution per destination load point. Nineteen load points are shown, and are ordered from closest to
farthest from the terminals. The blue box plots correspond to the scheduled data from HVCCC real-world operations, prepared by the company’s planning
team. The orange and green box plots correspond to the GA using the OTS and the TSS profiles, respectively. Note that the GA trips generally have a similar
time distribution, or are slightly better than the scheduled ones.
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