
A Multi-Objective Genetic Programming
Hyper-Heuristic Approach to Uncertain

Capacitated Arc Routing Problems
Shaolin Wang, Yi Mei, Mengjie Zhang

Victoria University of Wellington,
School of Engineering and Computer Science,

PO Box 600, Wellington, New Zealand
Email: {shaolin.wang, yi.mei, mengjie.zhang}@ecs.vuw.ac.nz

Abstract—The Uncertain Capacitated Arc Routing Problem
(UCARP) is a very important problem which has many real world
applications. Genetic Programming Hyper-heuristic (GPHH),
which can automatically evolve effective routing policies, is
considered as a promising technique that can handle UCARP
effectively. However, GP-evolved routing policies are often very
complex and hard to be understood and trusted by human
users. In this paper, we aim to improve the interpretability
of the GP-evolved routing policies by reducing the size of the
GP-evolved routing policies since smaller routing policies tend
to be easier to understand. We propose a new Multi-Objective
GP (MOGP) to optimise the performance (total cost) and size
simultaneously. One main challenge is that the size is much easier
to be optimised than the performance. Thus, the population
tends to be biased to the small but poor routing policies and
quickly lose the ability of exploration. To address this issue,
we propose a MOGP approach with α dominance strategy (α-
MOGP) which can balance the tradeoff between performance
and individual size. The experimental results showed that α-
MOGP could obtain much smaller routing policies than the
state-of-the-art single-objective GPHH, without deteriorating the
performance. Compared with traditional MOGP, α-MOGP can
obtain a much better and more widespread Pareto front.

I. INTRODUCTION

The Capacitated Arc Routing Problem (CARP) [1] is a
traditional combinatorial optimisation problem, which has
been proved to be NP-hard [2]. To better reflect the reality,
Uncertain Capacitated Arc Routing Problem (UCARP) [3] was
proposed. One of the main challenges in UCARP is Route
failures. A Route failure occurs when the actual demand of
an edge that needs to be served exceeds the expected demand.
The remaining capacity of the vehicle becomes insufficient to
serve the edge. The vehicle has to go back to the depot to refill
and come back again. This leads to a considerable recourse
cost.

Traditional optimisation approaches, such as mathematical
programming [1] and evolutionary algorithms [4], are not
directly applicable to UCARP since they cannot deal with
route failures effectively. Typically, they try to optimise a
robust solution beforehand. However, it is hard to optimise a
single robust solution that is suitable for all the environments.
The pre-planned solution must be re-optimised when route
failures occur. Traditional optimisation approaches can hardly

adjust the solutions effectively on-the-fly due to their high
computational cost.

Routing policy [5] is considered as a promising technique
that can handle the uncertain environment in UCARP ef-
fectively. Comparing with other solutions optimisation ap-
proaches, using a routing policy does not need to optimise
a solution beforehand. It can respond to the uncertain envi-
ronment immediately. A routing policy works as a heuristic
that helps a vehicle to determine which task to serve once
it becomes idle [5]. It can construct different solutions based
on different environments. There are some manually designed
routing policies (Path Scanning [4]) based on some existing
constructive heuristics.

Many factors can affect the effectiveness of the manually
designed routing policy, such as the scenario, the objective(s),
and the graph topology [6]. In response to this issue, Genetic
Programming Hyper-heuristic (GPHH) approaches have been
applied to UCARP to automatically evolve routing policies
[7], [8], [9], [10]. However, the routing policies evolved by
GPHH are usually too complex to interpret.

The interpretability of the GP-evolved routing policies can
be improved by reducing the complexity of the individuals. An
intuitive measure for complexity is the size, i.e. the number
of nodes in the GP tree since smaller routing policies tend to
be easier to interpret. In this paper, we propose a novel multi-
objective GPHH, which optimises the performance (total cost)
and the individual size of the routing policy simultaneously.

The main challenge for optimising both the performance
and the individual size using multi-objective GP is that the
size is much easier to be optimised than the performance. It is
much easier to generate routing policies with small size than
with good performance. As the evolutionary process continues,
the population will be filled up with small (but poor) routing
policies gradually. However, the evolutionary process requires
large routing policies to maintain the ability of exploration.
To handle the above issue, Bleuler [11] summarises two basic
strategies, using a bias against small individuals and increasing
the diversity in the population. Besides that, Bleuler [11]
propose a Strength Pareto Evolutionary Algorithm 2 (SPEA2)
algorithm to deal with the issue further. However, to our

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

preliminary work, SPEA2 does not work well in UCARP
since it is hard to maintain the diversity of the population
in a dynamic and stochastic problem. The population will still
be taken over by small individuals. α dominance strategy [12]
has the potential to handle the above issue of one objective is
much easier to optimise than the other since it sets tradeoff
rates between objectives in the dominance area.

In this paper, we aim to evolve more compact and inter-
pretable routing policies by using the MOGP approach with α
dominance strategy (α-MOGP). We expect that the α-MOGP
approach can deal with the issue of losing the ability of
exploration while the size is much easier to be optimised
than the performance. On the other hand, we expect that it
can evolve more compact and interpretable routing policies
and achieve comparable performance as the routing policies
evolved by the current state-of-the-art GPHH. Specifically, this
paper has the following research objectives:

1) Develop a novel α-MOGP to evolve interpretable and
effective routing policies for UCARP;

2) Investigate the effects of different adaption schemes for
α parameter;

3) Verify the efficacy of α-MOGP by comparing with
SimpleGP and other MOGP algorithms.

II. BACKGROUND

A. Uncertain Capacitated Arc Routing Problem

A UCARP instance can be described as a connected graph
G(V,E). There are a set of vertices V and edges E in
the graph. A subset of edges ER ⊆ E, denoted as tasks,
are required to be served by the vehicles. Deadheading cost
dc(e), which is a positive random value, indicates the cost of
traversing an edge e ∈ E. Each task, an edge that needs to be
served, has a positive random demand d(eR) which represents
the demand to serve and a positive serving cost sc(eR) which
represents the cost to serve the task. Each vehicle has a
capacity Q. The goal is to minimise the total cost of serving
all the tasks. There is a depot v0 ∈ V . Each vehicle must start
at v0 and finish at v0, the edges that the vehicle goes along
are denoted as a route, and the total demand of a route cannot
exceed the capacity Q of the vehicle.

There are many random variables in a UCARP instance.
Each of the random variables can have different samples. Ac-
cordingly, a UCARP instance may contain different samples.
In a UCARP instance, each random variable (i.e. task demand
and deadheading cost) has a realised value. For example, the
actual demand of a task is unknown until the vehicle finishes
serving it, and the actual deadheading cost of an edge is
unknown until the vehicle finishes traversing over the edge.

Due to the uncertain environment, there are two kinds of
failures, Route failure and Edge failure, that may occur during
the serving process. Route failure occurs when the remaining
capacity of the vehicle is insufficient for the actual demand of
a task. A recourse operator can repair it. A typical recourse
operator is that the vehicle goes back to the depot to refill and
come back to the failed task to complete the remaining service.

Edge failure occurs when the edge in the route becomes
infeasible suddenly. Edge failure can be repaired by finding
the shortest path (e.g., Dijkstra’s algorithm) under the current
situation.
S = ({S.R(1), . . . , S.R(m)}, {S.D(1), . . . , S.D(m)}) can

be a representation of a UCARP instance sample solution.
Each S.R, such as S.X(1), is a route represented as a set of
vertex sequences. For example, S.R(k) = (S.r

(k)
1 , . . . , S.r

(k)
Lk

)
represents the kth route. Each S.D is a continuous vector, each
number in the vector refers to the workload has been served
for this edge. Specifically, S.D(k) = (S.d

(k)
1 , . . . , S.d

(k)
Lk−1)

(S.d(k)i ∈ [0, 1]) refers to the fraction of demand that has been
served along the route S.R(k). For example, if S.d(3)5 = 0.5,
then (S.r

(3)
5 , S.r

(3)
6) is a task and 50% of its demand is served

at position 5 of the route S.R(3).

B. Related Work
Many studies have been made on dealing with CARP,

including Integer linear programming model [1], Tabu search
[13], [14], [15] approach CARP, Genetic Algorithm [16],
Memetic Algorithms [4], [17], [18], ant colony schema [19],
ant colony optimization [20]. All these effort make great
contributions to CARP. However, they cannot apply to UCARP
directly since they are not able to deal with the route failure
effectively.

There are two main types of approaches for solving UCARP,
the proactive approaches [21], [22], [23] and the reactive
approaches [7], [8], [9]. The proactive approaches aim to
find robust solutions that are expected to handle all the
possible realisations of the random variables. On the other
hand, reactive approaches mainly use GPHH to evolve routing
policies which construct the solution gradually in real-time.

GPHH approaches have been applied to solve UCARP
effectively. Weise et al. [24] first proposed a GPHH for
UCARP with a single vehicle and examined its performance.
The result showed that routing policies evolved by GPHH
could outperform manually designed routing policies. Liu et
al. [7] proposed a novel and effective meta-algorithm to filter
irrelevant candidate tasks during the decision-making process.
To better reflect the reality, the model was extended from
single-vehicle to multiple-vehicle version by Mei et al. [9].
Then the solution can be generated with multiple vehicles
on the road simultaneously. To further improve the GPHH,
MacLachlan et al. [8] proposed a novel task filtering method
and an effective look-ahead terminal.

The interpretability of the evolved routing policies is also
an important aspect for the routing policies evolved by GPHH.
It can guarantee the confidence of the users while using them.
However, to our best knowledge, most of the current GPHH
approaches cannot achieve satisfactory interpretability. The
main reason of why routing policies evolved by GPHH is hard
to interpret is that GP tends to generate large trees. Thus, tree
size control can be a good approach to reduce the structural
complexity of GP so that we can improve the interpretability of
routing policies evolved by GPHH. Therefore, it is important
to find a good way to control tree size.

There are two commonly used approaches to control tree
size. The first one is Tree size or depth limitation [25],
[26]. The second one is using a penalty term [27], which
penalize those trees with a larger size, in the fitness function.
However, both of them cannot handle it perfectly. For the tree
size limitation approach, it is not very easy to predefine a
reasonable limit for size or depth and maintain the diversity
near the root node [28]. For the penalty term approach, it is
also challenging to predefine the weights of the penalty term,
and a linear weighted sum of two objectives prefers individuals
that perform very well in one of the objectives rather than
individuals that perform fair well in both objectives when the
trade-off surface is concave [29].

Multi-objective optimisation (MO) approach is considered
as a more effective approach to control the tree size [28].
The multi-objective optimisation approach not only does not
need to predefine any aggregation functions to combine those
objective values but also obtain a set of solutions which
can satisfy different objectives. Multiple multi-objective op-
timization approaches [28], [30], [31] can be applied to
control tree size. However, there is one issue that the size
is much easier to optimise than the performance. This leads
to premature convergence to small individuals [29], [32]. It is
difficult to deal with the above issue using traditional EMO
algorithms. Bleuler [11] summaries two basic strategies, using
a bias against small individuals [33], [34] and increase the
diversity in the population [35], [29], [36], to deal with the
above issue. Besides that, a Pareto-based strategies [28] was
applied to GP for a even-parity problem. However, SPEA2
[11] does not work well in UCARP since it is difficult to
maintain the diversity of the population in a dynamic and
stochastic problem. It cannot prevent small individuals from
taking over the entire population. The problem can also be
partially addressed by Preference-Based EMO approach [37],
[38]. To our knowledge, the basic idea of Preference-Based
EMO approach is to find solutions in some specific regions.
Thus, we can only get a small portion of the Pareto front in
the“preferred region”. However, we aim to cover the entire
Pareto front as much as possible in this paper.

To address the above issues, we aim to propose a novel
Multi-Objective Genetic Programming approach using α-
dominance strategy (α-MOGP) which uses performance and
size as two objectives. Besides that, α-MOGP is expected to
avoid premature convergence to small individuals so that we
can have compact and effective routing policies.

III. MULTI-OBJECTIVE GENETIC PROGRAMMING USING
α-DOMINANCE STRATEGY

A. α-dominance strategy

Comparing with traditional single objective GPHH ap-
proach, MOGP uses Pareto dominance criteria to evaluate the
fitness of individuals. α-dominance strategy [12] is a more
general form of traditional dominance. The basic idea of α-
dominance is to set tradeoff rates between objectives. For
example, we have two solutions, A and B, with two objectives,
obj1 and obj2. f(A) = (a1, a2) and f(B) = (b1, b2). When

using traditional Pareto-dominance, if a1 < b1 and a2 > b2, A
and B are nondominated. However, A might dominate B when
using α-dominance strategy. For a problem to minimize all
objectives. If a feasible solution x dominates another solution
x′ using α-dominance strategy. The problem can be formulated
as follows.

min(f1(o), f2(o), f3(o), ..., fm(o)), (1)

si(x, x
′) ≤ 0, ∀i ∈ {1, 2, 3, ...,m}, ∧ (2)

si(x, x
′) < 0, ∃i ∈ {1, 2, 3, ...,m} (3)

where

si(x, x
′) = fi(x)− fi(x′) +

1...m∑
j 6=i

αij(fj(x)− fj(x′)) (4)

There is one thing that needs to be noticed that traditional
dominance is a special form of α dominance while all αij

equal to 0.
In our problem, we expect that a solution with medium size

and good performance will not be dominated by a solution
with extremely small size but poor performance. Thus, we
modified Eq. 3 as follows.

ssize(x, x
′) = fs(x)− fs(x′) + αs(fp(x)− fp(x′)) (5)

sperf (x, x
′) = fp(x)− fp(x′) + αp(fs(x)− fs(x′)) (6)

where fs(x) refers to the size of the individual x. fp(x) refers
to the performance of the individual x. αs equals to α (all the
α value mentioned later in the paper) and αp equals to 0.

Figure 1 shows the change of the dominance area while
α value increasing in our problem. We can see that three
solutions (red dot, blue dot and green dot) are nondominated
while α equals to 0. But, the red dot dominates the blue dot
when α equals to 10. While α equals to 100, the green dot is
also dominated by the red dot.

(a) α = 0 (b) α = 10 (c) α = 100

Fig. 1: The dominance area with different α value

One of the main problems of the α-dominance strategy is
that it is quite challenging to identify a proper α value that
can perfectly balance the tradeoff between different objectives
during the evolution process. For our problem, while the α
value increase, the population will be biased to performance,
and the population will be biased to size while the α value
decrease. Since the bias to different objectives can change
during the evolutionary process, we examine the behaviour of

three different adaptation schemes, linear, sigmoid and cosine,
for the α value. Linear scheme will decrease at a constant rate.
Sigmoid scheme will decrease slowly in the early stage and
decrease rapidly in the middle stage and then back to slowly
at the final stage. Cosine scheme will repeat the process of
increasing and decreasing. The three adaption scheme curves
are shown in Fig. 2. The formulas for all three schemes are

Fig. 2: Three adaption scheme curves.

shown as follow.

flinear(x) = C +
−C ∗ x

50
(7)

fsigmoid(x) = C ∗ 1

1 + ex−25
(8)

fcosine(x) =
C

2
∗ (cos(π ∗ x

10
) + 1) (9)

where C is a sufficiently large constant which is 99999999 in
this paper.

B. Overall Framework

The basic idea of α-MOGP is using α-dominance strategy
to replace the traditional Pareto-dominance. The α-dominance
strategy is combined with tournament selection as α tour-
nament selection. After evaluating each routing policy, α
tournament selection will be applied to select parent indi-
viduals from the old population. The parent individuals will
be used to breed new population. The, crossover, mutation
and reproduction, operators will be applied in the breeding
process. The pseudocode of the α-MOGP approach is shown
in Algorithm 1. Given the number of generations G. Each
routing policy is evolved using a different training subset
randomly sampled from the training set Ttrain (line 4).

The α tournament selection uses the α dominance to select
the parents. Specifically, it first randomly selects T individuals,
and then select the best one among them in terms of α
dominance. If there are multiple non-dominated individuals,
the first one identified during the comparison is selected. The
pseudocode of the α Tournament Selection method is shown
in Algorithm 2.

Algorithm 1: The overall framework of α-MOGP.
Input: Training set Strain, number of generations G
Output: A set of non-dominated routing policies RP

1 initialise the population pop;
2 g = 0;
3 while g < G do
4 randomly sample a training subset S ′ ⊆ Strain;
5 evaluate pop using S ′;
6 while |pop′| < popsize do
7 Breed pop′ using parent selection (Algorithm

2) and genetic operators;
8 g = g + 1;
9 end

10 pop = pop′;
11 update the α value;
12 end
13 return the non-dominated routing policies in pop;

Algorithm 2: The α tournament selection approach
Input: size of Tournament T , random select method

random rp which random select a routing
policy from population, α-dominance strategy
method α− dominates using Eq. (2,3)

Output: best routing policy
1 t= 1;
2 best = random rp;
3 for t < T do
4 rp = random rp;
5 if rp α− dominates best then
6 best = rp;
7 end
8 t = t+ 1;
9 end

10 return best;

TABLE I: The terminal set in the experiments.

Terminal Description

CR cost from the depot to the current location
CFH cost from the candidate task to the current location
CFD cost from the head node of the task to the depot
CFR1 cost from the closest other route to the candidate task
CTT1 the cost from the candidate to its closest remaining task
CTD cost from the depot to the candidate task
DC the deadheading cost of the candidate task

DEM expected demand of the candidate task
DEM1 demand of unserved task that closest to the candidate task
FULL fullness (served demand over capacity) of the vehicle
FRT fraction of unserved tasks
FUT fraction of unassigned tasks
RQ remaining capacity of the vehicle

RQ1 remaining capacity of the closest other route to the candidate task
SC cost of serving the candidate task

C. Individual Representation

In α-MOGP, each routing policy is essentially represented
as an arithmetic priority function. The priority function is

TABLE II: The mean and standard deviation for HV of the compared algorithms in test process. For each method, (+), (-) and
(=) indicates it is significantly higher (better) than, lower (worse) than, and comparable with NSGA-II (the first parentheses)
and SPEA2 (the second parentheses).

Instance NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

Ugdb1 0.9071(0.0252) 0.8645(0.0408) 0.9378(0.0258)(+)(+) 0.9389(0.0356)(+)(+) 0.9427(0.0263)(+)(+) 0.9423(0.0292)(+)(+)
Ugdb2 0.9153(0.0154) 0.8894(0.0355) 0.9399(0.0199)(+)(+) 0.9395(0.0281)(+)(+) 0.9572(0.0121)(+)(+) 0.9423(0.0175)(+)(+)
Ugdb8 0.9142(0.0228) 0.8625(0.0466) 0.9395(0.0333)(+)(+) 0.9404(0.0302)(+)(+) 0.9505(0.0195)(+)(+) 0.9427(0.0251)(+)(+)

Ugdb23 0.8889(0.0206) 0.8738(0.0259) 0.9303(0.0198)(+)(+) 0.9295(0.0376)(+)(+) 0.9416(0.0186)(+)(+) 0.9341(0.0247)(+)(+)
Uval9A 0.9756(0.0052) 0.9577(0.0178) 0.9838(0.0037)(+)(+) 0.9781(0.0159)(+)(+) 0.9853(0.0115)(+)(+) 0.9811(0.0084)(+)(+)
Uval9D 0.919(0.0174) 0.8528(0.053) 0.9508(0.012)(+)(+) 0.9393(0.0324)(+)(+) 0.9581(0.0121)(+)(+) 0.948(0.0215)(+)(+)
Uval10A 0.9736(0.0067) 0.9534(0.0161) 0.9861(0.0097)(+)(+) 0.9832(0.0112)(+)(+) 0.9905(0.0047)(+)(+) 0.9859(0.0117)(+)(+)
Uval10D 0.9302(0.0238) 0.8986(0.0325) 0.9643(0.0123)(+)(+) 0.9518(0.0411)(+)(+) 0.9724(0.0106)(+)(+) 0.963(0.0138)(+)(+)

TABLE III: The WDL table for the pairwise comparisons
between the algorithms in terms of HV.

Approach NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

NSGA-II 0-8-0 0-0-8 8-0-0 8-0-0 8-0-0 8-0-0
SPEA2 8-0-0 0-8-0 8-0-0 8-0-0 8-0-0 8-0-0

TS-GPHH 0-0-8 0-0-8 0-8-0 0-8-0 6-2-0 0-8-0
α-MOGP-l 0-0-8 0-0-8 0-8-0 0-8-0 5-3-0 0-8-0
α-MOGP-s 0-0-8 0-0-8 0-2-6 0-3-5 0-8-0 0-5-3
α-MOGP-c 0-0-8 0-0-8 0-8-0 0-8-0 3-5-0 0-8-0

a combination of the state features, such as the cost from
the current location to the candidate task, and the current
remaining capacity of the vehicle. For example, if the priority
function is “CFH + DEM”, as shown in Fig. 3, then the
priority function tends to select the tasks that are closer to the
current location and have smaller demand. The routing policy
works as a decision maker during the solution construction
process. Normally, each vehicle can only serve one task at one
time. The routing policy is applied to each unserved task to
determine the priority of each unserved task once one vehicle
becomes idle. The vehicle will go to serve the task with best
priority value. When all the tasks have been served, the routes
that the vehicle went through will be returned as the solution
constructed by the routing policy.

Fig. 3: A representation of GP tree.

D. Fitness Evaluation

To evaluate the fitness of a routing policy, we need know
the size and performance of a routing policy. Given a routing
policy rp, we can easily calculate the size(rp) by counting the
number of nodes in rp. The performance need to be calculate
based on the average quality (i.e. total cost) of the routes that
it returns. Specifically,

perf(rp) =
1

|S|
∑
s∈S

tc(rp, s), (10)

where S is a set of instance samples, |S| is the number
of instance samples. tc(rp, S) stands for the total cost of
the solution obtained by rp on sample s. The solution is
constructed based on a simulation process which is commonly
used in UCARP literature [10], [26].

In Algorithm 1, we randomly re-sample a subset of training
instances for the fitness evaluation (lines 4). Such instance
rotation has been commonly used in other studies [7], [40],
[41] and has been demonstrated to be able to improve the
generalisation of the evolved solutions.

IV. EXPERIMENTAL STUDIES

To evaluate the proposed approach, we test them on a
number of UCARP instances which are commonly used in
UCARP literature [7], [8], [9], [10]. For the sake of con-
venience, we denote the α-MOGP with different adaption
schemes as follows: α-MOGP-linear (α-MOGP-l), α-MOGP-
sigmoid (α-MOGP-s) and α-MOGP-cosine (α-MOGP-c) . α-
MOGP-l adjust the α value based on a linear adaption scheme.
α-MOGP-s adjusts the α value based on a sigmoid adaption
scheme. α-MOGP-c adjusts the α value based on a cosine
adaption scheme. We compare these three algorithms with the
SimpleGP [9], which evolves a single routing policy using
GPHH, Two-stage GPHH [39], which apply single-objective
GPHH in the first stage and multi-objective GPHH in the
second stage, and some other traditional MOGP algorithms,
such as NSGA-II [30] and SPEA2 [11].

A. Experiment Setup
We select 8 commonly used UCARP instances to evaluate

the performance of the proposed approach. The problem size
varies from 22 tasks and 5 vehicles (small) to 97 tasks and
10 vehicles (large). Thus, we can examine the effectiveness
of the proposed methods in different problem scenarios. In
the training phase, routing policies are trained based on the
training set Strain. There are 5 training samples during the
evaluation and they are re-sampled each generation (Algorithm
1 line: 4). In the test phase, the routing policy will be tested
on an unseen test set Stest, which contains 500 test samples
that can avoid testing bias.

Commonly used function set {+,−,×, /,min,max}. The
“/” operator is protected divide which returns 1 if divided by
0, are applied in the experiments. The terminal set is shown
in Table I.

TABLE IV: The mean and standard deviation for IGD of the compared algorithms in test process. For each method, (+), (-) and
(=) indicates it is significantly lower (better) than, higher (worse) than, and comparable with NSGA-II (the first parentheses)
and SPEA2 (the second parentheses).

Instance NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

Ugdb1 0.0972(0.0205) 0.1316(0.0373) 0.0835(0.028)(+)(+) 0.0786(0.0375)(+)(+) 0.0733(0.021)(+)(+) 0.0729(0.0284)(+)(+)
Ugdb2 0.1619(0.0078) 0.1806(0.0277) 0.112(0.0252)(+)(+) 0.1197(0.023)(+)(+) 0.105(0.0218)(+)(+) 0.1212(0.0214)(+)(+)
Ugdb8 0.0748(0.0198) 0.1205(0.0406) 0.0672(0.0306)(+)(+) 0.0778(0.0448)(=)(+) 0.0466(0.0169)(+)(+) 0.0676(0.041)(+)(+)

Ugdb23 0.1376(0.0171) 0.1487(0.0225) 0.0909(0.0203)(+)(+) 0.083(0.0421)(+)(+) 0.0717(0.0177)(+)(+) 0.0791(0.0366)(+)(+)
Uval9A 0.1018(0.0215) 0.1194(0.0237) 0.0548(0.0154)(+)(+) 0.0608(0.0195)(+)(+) 0.0568(0.025)(+)(+) 0.0499(0.0194)(+)(+)
Uval9D 0.1403(0.02) 0.195(0.0507) 0.0767(0.0194)(+)(+) 0.0742(0.0387)(+)(+) 0.0713(0.0191)(+)(+) 0.0696(0.0319)(+)(+)
Uval10A 0.1029(0.0196) 0.1332(0.0282) 0.0635(0.016)(+)(+) 0.0619(0.0167)(+)(+) 0.0647(0.0189)(+)(+) 0.0593(0.0232)(+)(+)
Uval10D 0.0751(0.0198) 0.098(0.0275) 0.0507(0.0226)(+)(+) 0.0645(0.0509)(+)(+) 0.0331(0.0131)(+)(+) 0.0543(0.0251)(+)(+)

TABLE V: The WDL table for IGD on all 8 instances in W-
D-L format for each compared approach.

Approach NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

NSGA-II 0-8-0 0-0-8 8-0-0 7-1-0 8-0-0 8-0-0
SPEA2 8-0-0 0-8-0 8-0-0 8-0-0 8-0-0 8-0-0

TS-GPHH 0-0-8 0-0-8 0-8-0 1-7-0 3-5-0 2-6-0
α-MOGP-l 0-1-7 0-0-8 0-7-1 0-8-0 3-5-0 1-7-0
α-MOGP-s 0-0-8 0-0-8 0-5-3 0-5-3 0-8-0 0-6-2
α-MOGP-c 0-0-8 0-0-8 0-6-2 0-7-1 2-6-0 0-8-0

The population size for all the compared algorithms is
1000. Besides that, the total number of generations for all the
compared algorithms set to 50. For the initialisation, ramp-
half-and-half initialisation is used. The ratio of crossover to
mutation to reproduction is 0.8 : 0.15 : 0.05. For all α-MOGP
algorithms, the α-tournament selection size is 7. For NSGA-II,
the tournament selection size is 2 which is a common setting
for NSGA-II. For SPEA2, the tournament selection size is 7
which is a common setting for SPEA2. For SimpleGP, the
tournament selection size is 7 which is commonly used in
UCARP experiments. The maximal depth is 8, which has
been commonly used in previous studies (e.g., [7]). Elitism
size for all compared approaches is 10 except NSGA-II and
SPEA2. There is no elitism parameter for NSGA-II and
SPEA2 approaches.

We use Evolutionary Computation Java (ECJ) package [42]
to implement all the algorithms. The result is collected based
on 30 independent runs for each algorithm on each UCARP
instance.

B. Results and Discussions

We use two commonly adopted measures for multi-objective
optimisation, i.e. hyper-volume (HV, the larger the better) and
Inverted Generational Distance (IGD, the smaller the better).
The Wilcoxon rank sum test with a significance level of 0.05
is used to verify the performance of the proposed approaches.
Each +, − and = in parentheses refer the Wilcoxon rank sum
test significance. The first parentheses refer to the Wilcoxon
rank sum test significance between compared algorithms and
NSGA-II. The second parentheses refer to the Wilcoxon
rank sum test significance between compared algorithms and
SPEA2.

Table II shows the mean and standard deviation of HV of
the compared algorithms. It can be seen that all α-MOGP
algorithms significantly outperforms NSGA-II and SPEA2 on

all instances. This indicates the effectiveness of the proposed
α-MOGP. To make further comparison, we also make a
pairwise comparison between the algorithms. Table III shows
the pairwise comparison results between the algorithms. In
the table, each entry represents the comparison result between
the column algorithm and the row algorithm. The entry is
formatted in W-D-L format. W (L) indicates the number of
instances where the column approach performs significantly
better (worse) than the row approach. D indicates the number
of instances where the two approaches showed no significant
difference.

From the table, we can see that all α-MOGP algorithms can
generate better Pareto fronts than NSGA-II and SPEA2. Also,
α-MOGP-s performs best among all α-MOGP algorithms
and TS-GPHH. It is significantly better than α-MOGP-l on
5 instances and significantly better than α-MOGP-c on 3
instances. It can also generate better Pareto fronts than TS-
GPHH. We can see that it perform significantly better than
TS-GPHH on 6 out of 8 instances. Besides that, it does
not perform significantly worse on any instance than other
algorithms.

Table IV shows mean and standard deviation of IGD of
compared algorithms. It can be seen that α-MOGP-l out-
performs NSGA-II on 7 out of total 8 instances. Besides
that, all other α-MOGP algorithms and TS-GPHH outperform
NSGA-II on all instances. It is clear to see that all compared
algorithms can outperform SPEA2 on all instances. This is
consistent with HV. We also make a pairwise comparison on
each algorithm on IGD, and the results are shown in Table
V. In the table, each entry represents the comparison result
between the column algorithm and the row algorithm. The
entry is formatted in W-D-L format. W (L) indicates the
number of instances where the column approach performs
significantly better (worse) than the row approach. D indicates
the number of instances where the two approaches showed
no significant difference. The result is consistent with HV, all
compared algorithms can obtain better front than NSGA-II and
SPEA2, and α-MOGP-s performs best among all α-MOGP
algorithms.

Performance is still the primary objective of this study.
Thus, we take the routing policies with the best performance
from every front to compare the mean performance and size for
all compared algorithms. The result is shown in Table VI and

TABLE VI: The mean and standard deviation for test performance (total cost) of the compared algorithms. For each method,
(+), (-) and (=) indicates it is significantly lower (better) than, higher (worse) than, and comparable with SimpleGP.

Instance SimpleGP NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

Ugdb1 355.47(14.83) 373.2(9.8)(-) 389.15(15.56)(-) 356.4(10.7)(=) 354.8(12.0)(=) 358.4(10.6)(=) 354.6(12.5)(=)
Ugdb2 371.72(7.67) 392.8(6.5)(-) 404.08(15.62)(-) 372.0(9.1)(=) 370.2(7.9)(=) 370.8(6.4)(=) 370.5(7.0)(=)
Ugdb8 463.34(54.3) 476.3(15.1)(-) 509.82(29.91)(-) 452.0(23.0)(=) 441.1(10.8)(+) 448.9(12.7)(=) 443.7(11.2)(+)

Ugdb23 252.47(3.11) 260.2(2.9)(-) 262.35(3.66)(-) 253.0(3.3)(=) 250.5(2.2)(+) 252.0(3.1)(=) 251.1(2.7)(=)
Uval9A 335.13(3.8) 351.3(6.0)(-) 371.24(19.77)(-) 336.7(4.6)(=) 336.0(3.7)(=) 336.4(3.4)(=) 336.3(3.8)(=)
Uval9D 478.14(16.68) 522.7(17.4)(-) 586.58(51.35)(-) 480.7(10.1)(=) 474.2(11.9)(=) 479.3(13.4)(=) 474.8(12.2)(=)

Uval10A 439.41(5.97) 460.0(7.0)(-) 481.59(16.89)(-) 442.0(10.9)(=) 440.5(3.9)(=) 440.9(4.4)(-) 439.7(4.0)(=)
Uval10D 620.91(7.97) 668.9(24.0)(-) 699.8(32.83)(-) 624.2(8.6)(=) 619.6(8.4)(=) 622.2(10.0)(=) 617.5(10.4)(+)

TABLE VII: The mean and standard deviation for size of routing policies of the compared algorithms.

Instance SimpleGP NSGA-II [30] SPEA2 [11] TS-GPHH[39] α-MOGP-l α-MOGP-s α-MOGP-c

Ugdb1 74.6(23.84) 10.0(3.99) 8.4(5.18) 30.53(18.02) 27.67(15.97) 17.33(11.98) 27.87(15.27)
Ugdb2 71.93(23.79) 6.93(3.13) 5.73(3.22) 38.33(19.8) 28.07(14.12) 26.53(13.27) 29.0(14.08)
Ugdb8 65.47(24.33) 7.07(3.08) 5.6(4.49) 42.27(36.62) 51.67(19.03) 30.87(13.97) 41.6(22.49)

Ugdb23 71.8(25.22) 8.27(3.66) 8.6(4.53) 31.13(19.5) 47.53(26.57) 33.07(24.67) 43.27(24.64)
Uval9A 56.93(18.27) 9.73(4.65) 8.53(4.83) 30.6(13.72) 28.4(14.79) 26.07(14.04) 30.6(12.68)
Uval9D 69.27(29.46) 10.33(4.85) 7.53(6.15) 42.67(19.31) 58.0(29.24) 37.0(22.18) 49.87(20.02)
Uval10A 60.47(18.59) 8.07(3.47) 4.53(4.54) 24.07(10.86) 19.27(9.74) 15.73(6.0) 23.6(12.99)
Uval10D 65.33(14.35) 8.93(3.46) 9.2(5.18) 35.0(21.22) 47.67(23.7) 34.13(17.92) 45.73(21.52)

Table VII, respectively. Table VI shows the mean and standard
deviation of test performance of the compared algorithms.
Wilcoxon rank sum test with a significance level of 0.05 is
used to compare each approach with SimpleGP. From Table
VI, one can see that both NSGA-II and SPEA2 perform worse
than SimpleGP since they cannot handle the challenge of
premature convergence on smaller individuals. All α-MOGP
algorithms can obtain a comparable result with SimpleGP.
Especially, both α-MOGP-l and α-MOGP-c perform signif-
icantly better than SimpleGP on 2 out of 8 instances.

Table VII shows the mean and standard deviation of size
of the compared algorithms. All the compared approaches can
evolve much smaller routing policies than SimpleGP. This is as
expected since we use size as an objective. The result indicates
that using size as an objective can reduce routing policy size
effectively. There is one thing that needs to be noticed that
both NSGA-II and SPEA2 achieves much smaller size on all
instances than other algorithms. This is because either NSGA-
II or SPEA2 has the problem of premature convergence to
small individuals which will lead to poor performance (shown
in Table VI).

Overall, the proposed α-MOGP can generate better Pareto
fronts than NSGA-II, SPEA2 and TS-GPHH. Besides that, it
can achieve much smaller rule size than SimpleGP with com-
parable performance. Primarily, with proper adaption scheme,
it can obtain better performance.

C. Further Analysis
To analyse the routing policies evolved by α-MOGP, we

picked one of the best performing routing policies from α-
MOGP-s for Ugdb1 as an example. The routing policy evolved
by α-MOGP-s, denoted as RP1, is shown in Eq. 11.

RP1 = max(S1, S2) (11)

where

S1 = DC ∗ CFH + CTT1 (12)

S2 =
DEM1

DC − CFR1
(13)

From S1, we can observe that the policy tends to select
the tasks with smaller CFH (close to the current place) and
smaller CTT1. From S2, one can see that the policy tends to
select the tasks with smaller DEM1. Thus RP1 tends to select
the tasks close to current place or the tasks that their closest
task has a small demand.

We have also analysed the final Pareto front. One interesting
observation is that a large amount of small and good routing
policies contains the same building block “DC * CFH”. The
final Pareto front contains a large number of individuals
with one single terminal. Another interesting observation is
that most of the single-terminal individuals are “CFH”. This
indicates that “CFH” is critical for build small and good
individuals.

V. CONCLUSIONS

The primary purpose of this paper is to improve the in-
terpretability of the routing policies evolved by GPHH for
UCARP by optimising the performance and size simultane-
ously. To this end, this paper proposes a simple yet effective α-
MOGP approach, and apply it with different adaption schemes
that are used to adaptively adjust α value. The experimental re-
sults showed that with a proper adaption scheme, the proposed
α-MOGP approach could evolve much smaller routing policies
without losing the test performance. This also indicates that
our newly proposed approach can deal with the issues in the
multi-objective optimisation while one objective is much easier
to optimise than other objectives. Especially, size is much
easier to optimise than performance in UCARP. In the future,

we will consider self-adaptive α value adjustment to improve
the ability to balance the tradeoff among each objective.

REFERENCES

[1] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[2] S. Wøhlk, “A decade of capacitated arc routing,” in The vehicle routing
problem: latest advances and new challenges. Springer, 2008, pp. 29–
48.

[3] Y. Mei, K. Tang, and X. Yao, “Capacitated arc routing problem in un-
certain environments,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[4] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problems,” Annals of Operations Research,
vol. 131, no. 1-4, pp. 159–185, 2004.

[5] U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic and
stochastic vehicle routing problems,” International Journal of Produc-
tion Research, vol. 54, no. 1, pp. 215–231, 2016.

[6] J. Jacobsen-Grocott, Y. Mei, G. Chen, and M. Zhang, “Evolving
heuristics for dynamic vehicle routing with time windows using genetic
programming,” in IEEE Congress on Evolutionary Computation. IEEE,
2017, pp. 1948–1955.

[7] Y. Liu, Y. Mei, M. Zhang, and Z. Zhang, “Automated heuristic design
using genetic programming hyper-heuristic for uncertain capacitated
arc routing problem,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2017, pp. 290–297.

[8] J. MacLachlan, Y. Mei, J. Branke, and M. Zhang, “An improved genetic
programming hyper-heuristic for the uncertain capacitated arc routing
problem,” in Australasian Joint Conference on Artificial Intelligence.
Springer, 2018, pp. 432–444.

[9] Y. Mei and M. Zhang, “Genetic programming hyper-heuristic for multi-
vehicle uncertain capacitated arc routing problem,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion. New
York, NY, USA: ACM, 2018, pp. 141–142.

[10] Y. Liu, Y. Mei, M. Zhang, and Z. Zhang, “A predictive-reactive approach
with genetic programming and cooperative co-evolution for uncertain
capacitated arc routing problem,” Evolutionary Computation, 2019.

[11] S. Bleuler, J. Bader, and E. Zitzler, “Reducing bloat in gp with multiple
objectives,” in Multiobjective Problem Solving from Nature. Springer,
2008, pp. 177–200.

[12] K. Ikeda, H. Kita, and S. Kobayashi, “Failure of pareto-based moeas:
Does non-dominated really mean near to optimal?” in Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.
01TH8546), vol. 2. IEEE, 2001, pp. 957–962.

[13] R. W. Eglese and L. Y. Li, “A tabu search based heuristic for arc routing
with a capacity constraint and time deadline,” in Meta-Heuristics.
Springer, 1996, pp. 633–649.

[14] A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the
capacitated arc routing problem,” Operations research, vol. 48, no. 1,
pp. 129–135, 2000.

[15] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Computers & Operations Research,
vol. 35, no. 4, pp. 1112–1126, 2008.

[16] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “A genetic algorithm for
the capacitated arc routing problem and its extensions,” in Workshops on
Applications of Evolutionary Computation. Springer, 2001, pp. 473–
483.

[17] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neigh-
borhood search for capacitated arc routing problems,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 1151–1166, 2009.

[18] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[19] P. Lacomme, C. Prins, and A. Tanguy, “First competitive ant colony
scheme for the carp,” in International Workshop on Ant Colony Opti-
mization and Swarm Intelligence. Springer, 2004, pp. 426–427.

[20] K. F. Doerner, R. F. Hartl, V. Maniezzo, and M. Reimann, “Applying ant
colony optimization to the capacitated arc routing problem,” in Interna-
tional Workshop on Ant Colony Optimization and Swarm Intelligence.
Springer, 2004, pp. 420–421.

[21] G. Fleury, P. Lacomme, and C. Prins, “Evolutionary algorithms for
stochastic arc routing problems,” in Workshops on Applications of
Evolutionary Computation. Springer, 2004, pp. 501–512.

[22] J. Wang, K. Tang, and X. Yao, “A memetic algorithm for uncertain
capacitated arc routing problems,” in 2013 IEEE Workshop on Memetic
Computing (MC). IEEE, 2013, pp. 72–79.

[23] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the distri-
bution algorithm with a stochastic local search for uncertain capacitated
arc routing problems,” IEEE Transactions on Evolutionary Computation,
vol. 20, no. 1, pp. 96–109, 2016.

[24] T. Weise, A. Devert, and K. Tang, “A developmental solution to (dy-
namic) capacitated arc routing problems using genetic programming,” in
Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 2012, pp. 831–838.

[25] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to
genetic programming. Lulu. com, 2008.

[26] S. Wang, Y. Mei, and M. Zhang, “Novel ensemble genetic program-
ming hyper-heuristics for uncertain capacitated arc routing problem,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 2019, pp. 1093–1101.

[27] J. R. Koza and J. R. Koza, Genetic programming: on the programming
of computers by means of natural selection. MIT press, 1992, vol. 1.

[28] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic
programming: Reducing bloat using spea2,” in Proceedings of the
Congress on Evolutionary Computation. IEEE, 2001, pp. 536–543.

[29] E. D. De Jong, R. A. Watson, and J. B. Pollack, “Reducing bloat and
promoting diversity using multi-objective methods,” in Proceedings of
the 3rd Annual Conference on Genetic and Evolutionary Computation.
Morgan Kaufmann Publishers Inc., 2001, pp. 11–18.

[30] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International conference on parallel problem solving from
nature. Springer, 2000, pp. 849–858.

[31] F. Zhang, Y. Mei, and M. Zhang, “Evolving dispatching rules for multi-
objective dynamic flexible job shop scheduling via genetic programming
hyper-heuristics,” in Proceedings of IEEE Congress on Evolutionary
Computation. IEEE, 2019, pp. 1366–1373.

[32] W. B. Langdon and J. Nordin, “Seeding genetic programming popula-
tions,” in European Conference on Genetic Programming. Springer,
2000, pp. 304–315.

[33] A. Ekárt and S. Z. Nemeth, “Selection based on the pareto nondomi-
nation criterion for controlling code growth in genetic programming,”
Genetic Programming and Evolvable Machines, vol. 2, no. 1, pp. 61–73,
2001.

[34] L. Panait and S. Luke, “Alternative bloat control methods,” in Genetic
and Evolutionary Computation Conference. Springer, 2004, pp. 630–
641.

[35] Y. Bernstein, X. Li, V. Ciesielski, and A. Song, “Multiobjective parsi-
mony enforcement for superior generalisation performance,” in Proceed-
ings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.
04TH8753), vol. 1. IEEE, 2004, pp. 83–89.

[36] E. D. De Jong and J. B. Pollack, “Multi-objective methods for tree size
control,” Genetic Programming and Evolvable Machines, vol. 4, no. 3,
pp. 211–233, 2003.

[37] L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina, “A preference-
based evolutionary algorithm for multi-objective optimization,” Evolu-
tionary computation, vol. 17, no. 3, pp. 411–436, 2009.

[38] K. Deb and J. Sundar, “Reference point based multi-objective optimiza-
tion using evolutionary algorithms,” in Proceedings of the 8th annual
conference on Genetic and evolutionary computation. ACM, 2006, pp.
635–642.

[39] S. Wang, Y. Mei, J. Park, and M. Zhang, “A two-stage genetic program-
ming hyper-heuristic for uncertain capacitated arc routing problem,” in
2019 IEEE Symposium Series on Computational Intelligence (SSCI).
IEEE, 2019, pp. 1606–1613.

[40] F. Zhang, Y. Mei, and M. Zhang, “A two-stage genetic programming
hyper-heuristic approach with feature selection for dynamic flexible
job shop scheduling,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2019, pp. 347–355.

[41] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved dis-
patching rules for complex shop floor scenarios: a genetic programming
approach,” in Proceedings of Genetic and Evolutionary Computation
Conference. ACM, 2010, pp. 257–264.

[42] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley,
and A. Chircop, “Ecj: A java-based evolutionary computation research
system,” Downloadable versions and documentation can be found at the
following url: http://cs. gmu. edu/eclab/projects/ecj, 2006.

