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Abstract—Determining the three-dimensional structure of a
biomolecule is of great importance for understanding its biologi-
cal functions. Carbohydrates are an essential and diverse family
of biomolecules that exerts many functions. The structure of
carbohydrates, especially those of smaller sizes such as the dis-
accharides, are difficult to be studied by experimental methods.
One alternative is the use of computational methods such as
Molecular Dynamics to infer the conformation of disaccharides.
However, Molecular Dynamics simulations are computationally
expensive due to the many force field evaluations and atom
motions required to simulate the studied molecular system. In this
work, we represent the disaccharide structure prediction problem
as an optimization problem. We propose a metaheuristic based on
the Success-History Adaptive Differential Evolution algorithm to
find the best conformation, using the GROMOS force field energy
function with 53A6GLYC parameters as the objective function.
We tested the proposed method against different disaccharide
structures. A comparative analysis between the results achieved
by our method and those obtained by Molecular Dynamics
simulations were performed. The results show that the proposed
method achieved satisfactory results in terms of accuracy and
with a reduced computational time when compared to the usual
approach of Molecular Dynamics.

Index Terms—structural biology, disaccharides, optimization,
metaheuristic, differential evolution

I. INTRODUCTION

The determination and study of the three-dimensional struc-
tures of biomolecules are of great importance for the under-
standing of the biological functions they perform [1], [2].
Structural properties are fundamental for several areas of study,
whether for the understanding of the functioning of cellular
mechanisms, treatment of diseases, and the development of
new drugs [3]. The available techniques to study molecular
structures are divided into two main classes: experimental and
computational. Within the computational methods, Molecular
Dynamics (MD) is compelling regarding some aspects, such
as its lower financial cost, greater accessibility, and the ability
to deal with systems that can be challenging to study using
experimental techniques. On the other hand, one of its negative
aspects is related to the high computational cost due to
numerous evaluations of its energy function and movement
of the system atoms. A MD simulation must be done for a

time interval long enough in order to allow a proper study of
the system [4].

Carbohydrates are biomolecules composed mostly of carbon
atoms, oxygen, and hydrogen. They are essential molecules
that supply non-photosynthetic cells with energy [5]. Besides,
they also have structural functions and act as an energetic
reserve. There is a great variety of forms where structures can
appear in the form of simple monomers up to large polymers
with hundreds of monosaccharide units [6]. Several works seek
to study their functions and determine their structures. Many
of them use computational techniques, especially MD, due to
the inherent difficulty of studying small saccharides through
experimental techniques [7], [8]. In this paper, we explore
the development and application of a Differential Evolution
(DE) [9] metaheuristic as an alternative method to Molecular
Dynamics. We seek to obtain results similar to those obtained
by a MD simulation, with reduced running time.

II. PRELIMINARIES

A. Carbohydrates

Carbohydrates (or saccharides) are the most abundant and
diverse biomolecules in nature. They perform numerous bio-
logical functions and are formed by atoms of carbon, oxygen,
and hydrogen, mostly following the formula Cm(H2O)n. They
can be classified regarding the degree of polymerization of
the molecule [6]: (i) monosaccharides: basic unit that makes
up the other carbohydrates; (ii) disaccharides: formed by
the bonding of two monosaccharides; (iii) oligosaccharides:
formed by three up to twenty monosaccharides; (iv) polysac-
charides: formed by more than twenty monosaccharides.

There is a vast diversity of carbohydrates due to a large
number of distinct monosaccharide units and the many possi-
bilities of bonding between them. Such diversity leads carbo-
hydrates to play numerous roles in organisms, such as energy
storage, structural support of cells (cellulose and chitin),
support of the RNA chain (ribose), coenzymes components,
and interaction with proteins (glycoconjugates) [10].
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Monosaccharides: Are the simplest carbohydrates, serving as
the basic units that make up the other saccharides. They follow
the formula (CH2O)x, and can be classified according to the
number of carbon atoms such as trioses (x = 3), tetroses
(x = 4), pentoses (x = 5), hexoses (x = 6) and heptoses
(x = 7). Pentoses and hexoses are also called furanose and
pyranose, respectively [10]. Monosaccharide carbon atoms are
numbered incrementally, starting from the carbon belonging
to the carbonyl group (C−−O) (Figure 1). The rotational
configuration of the most distant carbonyl determines two
isomers named D and L [11]. In hexoses, the D isomers are
observed in nature at a higher frequency. Monosaccharides
are found in acyclic or cyclic form, the latter being the most
common for pentoses and hexoses. In the cyclic configuration,
the position of the hydroxyl (OH) from the carbon C1 defines
two anomers, α, and β. The anomer is defined depending on
the relative position between the hydroxyl from the C1 atom
and the CH2OH group attached to C5. If both groups are on
the same side of the plane defined by the ring, the anomer β is
configured, otherwise α if they are on opposite sides (Table I).
In this work, the studied monosaccharides belong to the D-
aldohexose group, with cyclic chain, in its two anomeric forms
α and β, totalizing 16 units of monosaccharides (Table I).

TABLE I: D-aldohexose monosaccharides studied in this work,
α (top half) and β anomers (bottom half).
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Disaccharides: Are composed by two monosaccharides units
joined by a glycosidic bond [10] [6]. The bond occurs be-
tween two hydroxyl groups, one from each monosaccharide,
releasing an water molecule in the process (Figure 1). In
this work, the studied disaccharides bonds are established
between the hydroxyl group of the carbon C1 from the
first monosaccharide unit and the hydroxyl group attached

Fig. 1: Schematic representation of the formation of a disac-
charide from the glycosidic bond between two monosaccharide
units. Carbon numbers shown in red.
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to the CX carbon, with X ∈ {2, 3, 4, 6}, from the second
monosaccharide, in a total of 1024 distinct disaccharides.
The established bond gives rise to two or three new dihedral
angles of great importance for the structural description of the
disaccharide [6]. In 1 → X bonds, with X ∈ {2, 3, 4, 6}, the
two new dihedral angles are φ and ψ. The 1→ 6 bonds also
have a third new dihedral ω. A dihedral angle can be defined
by four consecutively bonded atoms. The angles φ, ψ and ω
in the disaccharides uses the following convention to choose
the atoms i, j, k and l (Figure 2c):

φ : O5− C1−OX − CX
ψ : C1−OX − CX − C(X − 1)

ω : O6− C6− C5− C4

B. Differential Evolution

Differential Evolution (DE) is a population-based meta-
heuristic for numerical optimization, designed to operate on
real-valued functions (f : RD → R) [9]. The DE fits into
a sub-class of metaheuristics named evolutionary algorithms.
Such algorithms were conceived inspired by biological pro-
cesses, especially in the theory of evolution. They usually
undergo the phases of initialization, crossover, mutation, and
selection. The DE algorithm operates over a population of real-
valued vectors P = {xi ∈ RD | i ∈ [1, NP ]}, representing
the candidate solutions for the objective function f . After
the initialization phase (e.g., randomly sampling the vectors),
the algorithm executes the mutation, crossover and selection
phases iteratively, until reaching some stop condition.

At each generation G, a mutant vector vi,G is generated
for each vector xi,G ∈ P . Several mutation strategies are
available, and the following equations exemplifies those most
commonly found in the literature:



• rand/1:

vi,G = xr1,G + F (xr2,G − xr3,G) (1)

• best/1:

vi,G = xbest,G + F (xr1,G − xr2,G) (2)

• current-to-best/1:

vi,G = xi,G + F1(xbest,G − xi,G) (3)
+ F2(xr1,G − xr2,G)

The indexes r1, r2 and r3 are randomly sampled from
{1, ..., NP}\{i} and differ from each other (for each vector).
The index xbest refers to the current vector in the population
with the best objective value (e.g., the lowest value, assuming
minimization of f ). The mutation parameter F ∈ [0.0, 1.0]
controls the mutation scale. The crossover operation between
the respective pair of current and mutant vectors results in the
trial vector ui,G. The most usual crossover operator used in
DE is the binomial (or uniform) crossover, where:

ui,G,j =

{
vi,G,j , if rand(0, 1) 6 CR or j = jrand,

xi,G,j , otherwise.
(4)

For each dimension j ∈ [1, D] a value is inherited from
the mutant vector with CR probability. A randomly selected
dimension (jrand) ensures that always at least one value
is inherited from the mutant vector. The trial vectors are
then evaluated by the objective function, and replaces their
respective current vectors xi,G+1 in the next population if
f(ui,G) < f(xi,G) (assuming minimization).

III. PROPOSED METHOD

A. Disaccharides Representation

A vector of real values must represent the three-dimensional
structure of the disaccharides in order to be suited for the DE
algorithm. The representation also must be able to describe the
various conformational configurations of the disaccharides. For
such, the intramolecular parameters (geometrical properties)
of the molecule are used [4]. They provide a straightforward
representation of the disaccharide structure and can also be
easily restricted to valid values with real intervals, unlike the
explicit use of atomic coordinates.

Five types of intramolecular parameters are used: bond
lengths, bond angles, dihedral angles, improper dihedrals, and
ring puckering coordinates (Fig. 2, Fig. 3). The first four
parameters are also used in the energy function, detailed in
the next subsection. The ring puckering coordinates are based
on the work by Cremer and Pople [12].

In the following descriptions of each parameter, atoms are
identified by the letters i, j, k and l, whereas i − j denotes
that i and j are bonded atoms. The notation ~r

ij
represents the

vector between the atoms i and j, and r̂ is an unit vector.

Bond lengths (Fig. 3-a): one parameter for each i − j
bond is used, except for those belonging to the rings.
When setting a bond parameter only the length of the ~r

ij

vector is changed, i.e., the other atoms connected to j are
also moved, keeping the other distances and angles of the
molecule. The length values are restricted to the interval
[|~r

ijinitial
| − 0.02, |~r

ijinitial
|+ 0.02] (values in nm).

Bond angles (Fig. 3-b): it is used one parameter for each
angle defined by the three atoms i − j − k, except for those
belonging to the rings. Setting an angle value only changes
the angle between the vectors ~r

ji
and ~r

jk
. For this purpose, the

coordinates of the k atom and the other atoms connected to it
are rotated along the axis defined by r̂

ji
× r̂

jk
, with j as the

origin. Bond angles values are restricted to the interval [0.0, π].

Dihedral angles (Fig. 3-c): a proper dihedral angle is defined
by the four atoms i − j − k − l, and consists in the angle
between the two planes that contains the atoms i − j − k
and j − k − l. To set the dihedral angle the atom l and other
atoms connected to it are rotated along the axis r̂

jk
, with j

as the origin. A parameter is used for every dihedral angle
that doesn’t changes the ring, and the values are restricted to
the interval [−π, π].

Improper dihedrals (Fig. 3-d): in the improper dihedrals
the four atoms are chosen in a specific order to represent the
chirality of a tetrahedral configuration, where the atoms j, k
and l are bonded to the central atom i. A parameter is used for
each carbon atom in the rings (i atom of the improper), with
values restricted to the interval [− 2π

9 ,
2π
9 ] (same as [−40°, 40°]

in degrees).

(a) Bond length (b) Bond angle (c) Dihedral angle (d) Improper dihedral

Fig. 2: Intramolecular parameters used in the disaccharides representation.



(a) Bonds (b) Angles (c) Dihedrals

Fig. 3: Example with bond lengths (a), bond angles (b) and dihedral angles (c) used to represent the disaccharides conformations.

Ring puckering: the ring puckering coordinates of Cremer
and Pople [12] allows the description of N-atoms rings con-
formations with a reduced number of parameters. For six atom
rings, as in the studied disaccharides, three coordinates define
the ring puckering: the puckering amplitude Q and the torsion
angles θ and φ. With the purpose to define the disaccharides
rings conformation given these coordinates, the equations and
procedures originally proposed in [12] for measurements can
be used as follows: (1) the geometrical mean plane of the ring
is computed; (2) the current displacements zi of each ring
atom to this plane is then computed; (3) using the expression
for zi in function of Q, θ and φ the correct displacements
znewi are calculated in function of the puckering coordinates
(Equation 5); (4) finally, the ring atoms are displaced by
znewi − zi along the mean plane’s normal, establishing the
ring puckering defined by the given coordinates. The atoms
connected to the ring atom are also displaced to maintain
the other geometrical properties of the molecule. Puckering
coordinates are restricted to Q ∈ [0.0, 0.08] (nm), θ ∈ [0.0, π]
and φ ∈ [−π, π].

zi =
1√
3
q2 cos(φ+ 2π(i− 1)/3) +

1√
6
q3(−1)i−1

q2 = Qsin(θ) q3 = Qcos(θ) i ∈ [1, 6]

(5)

It should be noted that the configuration of some geomet-
rical parameters may still affect others as a side effect. Using
the following order when setting the disaccharide structure
based on the representation vector values, those unwanted side
effects are removed: first, the rings puckering is configured,
followed by the bond lengths, bond angles, improper dihedrals,
and finally, the dihedral angles.

B. Objective Function

The structural stability of a molecule is related to lower
values of its free energy [13]. Taking this into account, we use
as the objective function to model the optimization problem
the energy function from the force field GROMOS [14], with
the parameterization 53A6GLYC [15]. This parameter set was
specially developed to better represent the monosaccharide
units considered in this work.

The general form of the GROMOS energy function is:

V (r; s) = V phys(r; s) + V special(r; s) (6)

V phys(r; s) = V bon(r; s) + V nbon(r; s) (7)

Where the argument r is the atom coordinates of the system,
and s is the associated parameterization. The term V special

is used to restrain specific properties of the molecules (such
as bond lengths), and will not be used since the restrictions
(real intervals) violations of the representation vector will be
handled by the metaheuristic.

The term V phys is subdivided into V bon, related to the
intramolecular potentials, and V nbon, which represents the
electrostatic potentials between non-bonded atoms. The V bon

terms calculates the intramolecular potentials of the bonds
lengths, bonds angles, dihedral angles and improper dihedrals,
as show bellow in equations 8, respectively.

V bond(r;Kb, b0) =

Nb∑
n=1

1

4
Kbn [bn

2 − b0n2]
2

V angle(r;Kθ, θ0) =

Nθ∑
n=1

1

2
Kθn [cos θn − cos θ0n ]

2

V trig(r;Kϕ, δ,m) =

Nϕ∑
n=1

Kϕn [1 + cos (δn) cos (mnϕn)]

V har(r;Kξ, ξ0) =

Nξ∑
n=1

1

2
Kξn [ξn − ξ0n ]

2

(8)

Three terms composes the electrostatic potential V nbon

between pairs of non-bonded atoms: V LJ (Lennard-Jones
potential), V C (Coulombic interactions) and V RF (reaction-
field), shown below in the equations 9.

V LJ(r;C12, C6) =
∑

pairs i,j

(
C12ij
r12
ij

− C6ij
r6
ij

)

V C(r; q) =
∑

pairs i,j

qiqj
4πε0ε1

1

rij

V RF (r; q) =
∑

pairs i,j

qiqj
4πε0ε1

− 1
2Crfr

2
ij

R3
rf

(9)



The term V RF is not used, since no cutoff radius (Rrf )
will be used. Then, the final used energy function terms are:

F (r; s) = V bon(r; s) + V LJ(r; s) + V C(r; s) (10)

The objective function fs(x) is first initialized with the
parameters s for the specific disaccharide being evaluated.
To evaluate a representation vector x, the coordinates of the
disaccharide are first set accordingly to the intramolecular
parameters. The objective value of fs is the total energy
computed with Equation 10.

C. Proposed Search Strategy

Determining the conformation of a disaccharide can be seen
as an optimization problem of the type f : RD → R, where
intervals constrain the values of x ∈ RD. Many metaheuristics
have been developed to address this class of problems, with
the DE algorithm being one of them that has been showing
an excellent performance. Furthermore, several works were
developed seeking to improve the canonical DE, especially by
the use of adaptation mechanisms for the parameters F and
CR. Among these works, the Success-History based Adaptive
Differential Evolution (SHADE) [16] algorithm and its vari-
ants (such as the L-SHADE algorithm [17]) have obtained
excellent results in several CEC competitions [18]. Using an
adaptive parameter mechanism will not only provide better
and more robust performance but will also eliminate the need
to manually tune the parameters on a case-by-case basis (for
a total of 1024 different disaccharides).

The DE algorithm used in this paper is based mostly on
the SHADE algorithm, and also uses the population size
reduction from the L-SHADE. In the SHADE algorithm,
there are three main modifications:

1) External archive: an aditional population of vectors
A is used to maintain the population diversity. Vectors
xi,G that are replaced by a better trial vector ui,G in
the selection phase are assigned to this population. The
size of A is kept equal to NP , and randomly selected
vectors are removed when |A| > NP .

2) current-to-pbest/1 mutation strategy: this mutation
strategy is similar to the current-to-best mutation
(Equation 3), with the xbest vector actually being
selected ramdomly from the p% best vectors of the
current population (for each mutant), and the xr2
vectors selected from P ∪A. These modifications aims
to control the greedines of the mutation, achieving a
better balance between exploration and exploitation.

3) Parameters adaptation: the parameters Fi and CRi
are individually generated for each xi,G in every gener-
ation. Fi values are sampled from a Cauchy distribution
(Equation 12), being resampled when lesser than 0.0
and truncated to 1.0 if greater than 1.0. CRi values
are drawn from a normal distribution (Equation 13) and

truncated to the [0.0, 1.0] interval. The mean values
of each distribution are randomly selected from the
historical memories MF and MCR for each vector
(Equation 11).

r = rand(1, H) (11)
Fi = cauchy(MF,r, 0.1) (12)

CRi = normal(MCR,r, 0.1) (13)

Each memory consists of H entries with the mean values
of the Fi and CRi parameters used to generate the
successfull ui,G of a generation. During the selection
phase, when a trial vector is selected to replace its
parent xi,G, the associated Fi and CRi values are stored
in the vectors SF and SCR. The improvement rate
∆fi = |f(ui,G) − f(xi,G)| is also recorded. Then,
at the end of a generation, the current memory entry
k ∈ [1, H] is updated. The new F mean is calcu-
lated with a weighted Lehmer mean (Equation 15),
and the new CR value by a weighted arithmetic mean
(Equation 16). Both equations uses the improvement
rates as the weighting factors, emphasizing parameters
associated with a greater improvement (Equation 14).

wj =
∆fj∑|∆f |
j=1 ∆fj

(14)

MF,k =

∑|SF |
j=1 wjS

2
F,j∑|SF |

j=1 wjSF,j
(15)

MCR,k =

|SCR|∑
j=1

wjSCR,j (16)

In the L-SHADE algorithm, the most significant modifica-
tion is the population size reduction. Starting with NP init

vectors, at the end of each generation a new NP value is
computed (Equation 17), and the worst solutions from the
population are removed until |P | = NP . The population size
decreases to NPmin after MAX NFE function evaluations,
also used as the stop condition.

NPg+1(NFE) = round
[(

NPmin−NP init
MAX NFE

)
NFE +NP init

]
(17)

In the proposed method, the weights F1 and F2 (Equation 3)
are adapted independently of each other, whereas in the
original SHADE algorithm the same value is used to both
mutation parameters.

To repair any eventual boundary violations that can happen
when computing the mutant vectors, the repetition of the
mutation equation with re-selected xr1 and xr2 vectors is
performed until a feasible vector is generated [19]. A pseudo-
code of the algorithm is shown next, highlighting the main
modifications from the canonical DE.



Algorithm 1: SHADE + POPULATION SIZE
REDUCTION

Input: f : RD → R, xlow, xhigh, NP init, NPmin,
MAX NFE, H

1 begin
2 P = {xi|i = 1, ..., NP init}, xi,j ∼ U(xlow

j , xhigh
j )

3 NP = NP init

4 A = {}
5 Initialize memories MF1 , MF2 and MCR, k = 1
6 NFE = NP init

7 while NFE + NP 6 MAX NFE do
8 for xi,G ∈ P do
9 F1i, F2i, CRi = generate(MF1 ,MF2 ,MCR)

10 vi,G = curr-to-pbest(P,A, xi,G, F1i, F2i)
11 Repair boundary violations of vi,G
12 ui,G = crossover(xi,G, vi,G, CRi)
13 end
14 SF1 = {}, SF2 = {}, SCR = {},∆f = {}
15 for xi,G ∈ P do
16 if f(ui,G) < f(xi,G) then
17 Store F1i, F2i, CRi and ∆fi
18 Add xi,G to A
19 xi,g+1 = ui,G

20 NFE++
21 end
22 end
23 update(k, SF1 , SF2 , SCR,∆f)
24 NP = NPg+1(NFE)
25 Resize P if |P | > NP , resize A if |A| > NP
26 end
27 end

IV. EXPERIMENTS AND RESULTS

A. Previous Work

In our experiments we studied monosaccharides belonging
to the D-aldohexose group, with cyclic chain, in its two
anomeric forms α and β, totalizing 16 units of monosaccha-
rides (Table I). A previous work studied the same group of
disaccharides using Molecular Dynamics [20]. We use this
study as a reference to analyze the results obtained by the
metaheuristic. It also used the same force field (GROMOS
53A6GLYC), and two main steps where performed: (i) Meta-
dynamics: in this step were obtained structures of global and
local minimal free energy for each disaccharide, along with
a contour map of the mean free energy; (ii) Molecular Dy-
namics: the structures of minimum energy (local and global)
obtained in the previous step undergoes a MD simulation to
study the stability of the structures and the interconversions
between the local and global minima. Only 544 from the total
of 1024 disaccharides were studied with Metadynamics, and
from those 478 also went to the Molecular Dynamics step.
One important difference to mention is the use of explicit
water molecules in the Metadynamics/MD, which is not being
considered in the proposed method.

B. Experimental Setup

Both the DE and MD were executed in the same machine:
IBM X3650 M5 Server; Intel Xeon E5-2650V4 30 MB, 2

CPUs, 2.2Ghz, 48 cores/threads; 64 GB; Titan X Pascal, 3584
CUDA core, 12 GB GDDR5X. Since the DE is a stochastic
algorithm, it was executed 31 times for each disaccharide. The
following parameters were used by the metaheuristic:
◦ NP init = 200
◦ NPmin = 3
◦ MAX NFE = 200000
◦ H = 100
◦ p value used in the curr-to-pbest mutation: 0.2
◦ Initial memories values: MF1 = 0.01, MF2 = 0.9 and
MCR = 0.01

NP init, MAX NFE and the initial values for MF1
, MF2

and MCR where chosen empirically by running the method for
a small set of disaccharides, being selected those that provided
the lowest best objective value means and standard deviation
in 31 runs. NPmin is the smallest value possible for the curr-
to-pbest mutation, and H and p values are the same as reported
by the original papers.

C. Results

Regarding the general (φ, ψ) distribution, the proposed
method was able to achieve results consistent with those
obtained by MD simulations. The main common aspects
observed by both methods are: (i): concentration of (φ, ψ)
values in the quadrants centers; (ii): influence of the first
monosaccharide anomerism, with α anomers occurring mostly
in quadrants I and IV (Figure 4) and β anomers in quadrants
II and III (Figure 5); (iii): higher occurrence of ψ values near
−π and π for 1→6 bonds.

To perform a case-by-case comparison, two sets of data are
available from the previous work: the (φ, ψ) values of minimal
free energy (local and global) from the Metadynamics step
and the most frequent values after the Molecular Dynamics
refinement. To compare these results with those of metaheuris-
tics, the Chebyshev distance between the (φ, ψ) values from
the DE and the Metadynamics/MD is used (Equation 19)
with a small modification to take into account the toroidal
nature of the space (Equation 18). DE results with a distance
of up to 45°(average radius of the most frequent regions in
the MD simulations) will be considered similar to those of
the Metadynamics/MD. When more than one pair of angles
are available from the Metadynamics/MD results, those that
present the smallest distance are used.

d(θa, θb) =

{
|θa − θb|, if |θa − θb| 6 π

2π − |θa − θb|, otherwise
(18)

D((φa, ψa), (φb, ψb)) = max(d(φa, φb), d(ψa, ψb)) (19)

A first comparison was done using the best results (lowest
energy) from the 31 runs of the metaheuristic againts both
the Metadynamics and Molecular Dynamics results (tables II
and III). In a second comparison the results from all runs for
each disaccharide are considered, being used the pair of angles
that presented the shortest distance (tables IV and V). The first
column of the tables idintifies the disaccharyde group by bond
number and anomerism of the first monosaccharide, followed



Fig. 4: Best (φ, ψ) of each disaccharide, α anomers.
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Fig. 5: Best (φ, ψ) of each disaccharide, β anomers.
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by the total number of disaccharides in the second column. In
the following columns is shown the number of cases that the
proposed method achieved a distance up to 45°, fist comparing
φ and ψ independently (Equation 18) and finally the total
distance (Equation 19).

In both comparisons, the DE achieved a better correspon-
dence with the Metadynamics results rather than those of the
Molecular Dynamics. Also, when considering the results from
all runs rather than only the best run, a higher similarity
is observed between the techniques. When comparing the
φ and ψ angles independently, φ values obtained a better
correspondence than ψ values. Such observations provide an
indication that in cases where the proposed method achieved
an unsatisfactory result are likely due to the convergence to a
local minima. As reported by the previous work, the multiple
global and local minima of a disaccharide are usually scattered
along oposite sides in the ψ axis. As an example, is shown
by Figure 6 regions of lowest energy explored during all 31
runs of a case that the DE result did not achieve the expected
outcome (with φ = −67.15°and ψ = 110.14°) in quadrant II,
despite having intensively explored such region.

Concerning the running time the proposed method greatly
outperformed the Metadynamics/MD, taking around 7s per

TABLE II: DE best runs × Metadynamics
Group #Total #φdist 6 45° #ψdist 6 45° #(φ, ψ)dist 6 45°

α-1→2 67 63 (94.03%) 52 (77.61%) 52 (77.61%)
α-1→3 67 56 (83.58%) 38 (56.72%) 32 (47.76%)
α-1→4 67 60 (89.55%) 35 (52.24%) 33 (49.25%)
α-1→6 76 72 (94.74%) 52 (68.42%) 48 (63.16%)
All α 277 251 (90.61%) 177 (63.90%) 165 (59.57%)

β-1→2 71 63 (88.73%) 25 (35.21%) 17 (23.94%)
β-1→3 77 63 (81.82%) 29 (37.66%) 23 (29.87%)
β-1→4 67 64 (95.52%) 45 (67.16%) 45 (67.16%)
β-1→6 62 50 (80.65%) 38 (61.29%) 29 (46.77%)
All β 277 240 (86.64%) 137 (49.46%) 114 (41.16%)

All 554 491 (88.63%) 314 (56.68%) 279 (50.36%)

TABLE III: DE best runs × Molecular Dynamics
Group #Total #φdist 6 45° #ψdist 6 45° #(φ, ψ)dist 6 45°

α-1→2 67 57 (85.07%) 57 (85.07%) 56 (83.58%)
α-1→3 64 53 (82.81%) 26 (40.62%) 25 (39.06%)
α-1→4 62 55 (88.71%) 14 (22.58%) 8 (12.90%)
α-1→6 67 61 (91.04%) 24 (35.82%) 24 (35.82%)
All α 260 226 (86.92%) 121 (46.54%) 113 (43.46%)

β-1→2 70 54 (77.14%) 26 (37.14%) 15 (21.43%)
β-1→3 53 41 (77.36%) 10 (18.87%) 1 (1.89%)
β-1→4 46 42 (91.30%) 31 (67.39%) 30 (65.22%)
β-1→6 49 32 (65.31%) 43 (87.76%) 32 (65.31%)
All β 218 169 (77.52%) 110 (50.46%) 78 (35.78%)

All 478 395 (82.64%) 231 (48.33%) 191 (39.96%)

run (3min 37s for all 31 runs of a single disaccharide; single
core) compared to 3h (CPU + GPU with GROMACS [21]).
This gain is mostly due to the reduced number of function
evaluations, of 200, 000 in the metaheuristic whereas for the
Metadynimics/MD with a total simulation time of 110ns
and dt = 0.001ps, 110, 000, 000 evaluations are performed.
Also, the presence of explicity water molecules in the MD
makes its function evaluations more costly. In addition, the
metaheuristic doesn’t need to compute the forces in each atom
and their motions, since the structures are changed by the
search method.

Fig. 6: (φ, ψ) regions of lowest energy (at most 5% higher
than the best value) during the 31 runs of the metaheuristic for
the disaccharide β-D-Allose-(1→3)-β-D-Idose. Local minima
explored in quadrant II, but runs converged in quadrant III.
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TABLE IV: DE all runs × Metadynamics
Group #Total #φdist 6 45° #ψdist 6 45° #(φ, ψ)dist 6 45°

α-1→2 67 67 (100.00%) 63 (94.03%) 63 (94.03%)
α-1→3 67 65 (97.01%) 55 (82.09%) 54 (80.60%)
α-1→4 67 62 (92.54%) 52 (77.61%) 49 (73.13%)
α-1→6 76 75 (98.68%) 64 (84.21%) 63 (82.89%)
All α 277 269 (97.11%) 234 (84.48%) 229 (82.67%)

β-1→2 71 71 (100.00%) 54 (76.06%) 54 (76.06%)
β-1→3 77 69 (89.61%) 47 (61.04%) 40 (51.95%)
β-1→4 67 64 (95.52%) 57 (85.07%) 56 (83.58%)
β-1→6 62 50 (80.65%) 42 (67.74%) 33 (53.23%)
All β 277 254 (91.70%) 200 (72.20%) 183 (66.06%)

All 554 523 (94.40%) 434 (78.34%) 412 (74.37%)

TABLE V: DE all runs × Molecular Dynamics
Group #Total #φdist 6 45° #ψdist 6 45° #(φ, ψ)dist 6 45°

α-1→2 67 67 (100.00%) 66 (98.51%) 66 (98.51%)
α-1→3 64 63 (98.44%) 54 (84.38%) 53 (82.81%)
α-1→4 62 55 (88.71%) 28 (45.16%) 21 (33.87%)
α-1→6 67 65 (97.01%) 57 (85.07%) 55 (82.09%)
All α 260 250 (96.15%) 205 (78.85%) 195 (75.00%)

β-1→2 70 64 (91.43%) 49 (70.00%) 48 (68.57%)
β-1→3 53 45 (84.91%) 16 (30.19%) 11 (20.75%)
β-1→4 46 45 (97.83%) 44 (95.65%) 44 (95.65%)
β-1→6 49 35 (71.43%) 46 (93.88%) 35 (71.43%)
All β 218 189 (86.70%) 155 (71.10%) 138 (63.30%)

All 478 439 (91.84%) 360 (75.31%) 333 (69.67%)

V. CONCLUSIONS

In the presented work, a disaccharides representation suffi-
ciently descriptive of their structural conformations and also
suitable to be used with a DE algorithm was successfully
defined and implemented. The used objective function reason-
ably models the problem, but it seems necessary the addition
of some solvation term (implicit or explicit) to achieve results
closer to those of the Metadynamics and MD. When compar-
ing the results obtained by the proposed method, the general
conformational preference of disaccharides is consistent with
those reported by the previous work. However, in a case-by-
case comparison, there are some differences, mostly due to
the multimodal and dynamic nature of the problem.

Despite the metaheuristics results not being a direct match
to those obtained by the MD they are of a reasonable quality
and obtained quickly. A possible application of the technique
would be the initialization of saccharide structures that are part
of a more extensive molecular system in a MD simulation,
adding a negligible overhead to the total run time. Besides the
possible convergence to local minima, the main drawbacks of
the proposed method are the lack of explicit water molecules
and the loss of physical meaning from the algorithm execution,
alongside with any sort of trajectory analysis that could be
done in a MD simulation.

In future works, the addition of a solvation term to the
energy function and the implementation of mechanisms to
allow the metaheuristics to better handle the multimodal
nature of the problem are likely to improve the proposed
method results. Another possible extension is the addition
of more monosaccharide units and the capability of running
the proposed technique to optimize more complex saccharides

(polysaccharides) instead of only disaccharides.
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