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Abstract—A new mathematical programming formulation is
proposed for an optimization problem in queueing networks. The
sum of the blocking probabilities of a general service time, single
server, finite, acyclic queueing network is minimized, as are the
total buffer sizes and the overall service rates. A multi-objective
genetic algorithm (MOGA) and a particle swarm optimization
(MOPSO) algorithm are combined to solve this difficult stochastic
problem. The derived algorithm produces a set of efficient
solutions for multiple objectives in the objective function. The
implementation of the optimization algorithms is dependent on
the generalized expansion method (GEM), a classical tool used
to evaluate the performance of finite queueing networks. A set of
computational experiments is presented to attest to the efficacy
and efficiency of the proposed approach. Insights obtained from
the analysis of a complex network may assist in the planning of
these types of queueing networks.

Index Terms—Buffer allocation, queueing networks, conflicting
objectives, particle swarm optimization.

I. INTRODUCTION

Almost everyone has had the unpleasant experience of
spending too much time in queues. This phenomenon occurs in
traffic jams, retail checkouts, bank service queues, and in many
other situations. Many of these processes can be modeled
as queueing systems. In practice, queues occur because the
demand for service becomes greater than the ability of the
queueing system to meet such a demand. A simplistic solution
would be to increase the service capacity to the maximum, but
budget and space restrictions usually mean this is not a feasible
choice.

A queueing system can be described as customers arriving
and waiting for service, then leaving the system after their
demand has been met. In other words, queueing systems are
present in situations of uncertainty about the flow of products,
users, or other items. For example, it is possible to model a
process waiting to be processed on a CPU as a queue [1]–[3].

Queues configured in networks, where each queue has an
arrival rate λ and a service rate µ, are a natural generalization
for various systems of practical interest.

Situations with limited waiting areas (finite buffers) for a
given service, result in finite queues. In the case of finite
queues with total space for K customers, PK denotes the
probability of finding K customers in the system, including
those being served. That is, PK is the blocking probability.
Once a customer arrives in search of the service, and all the

servers and the waiting positions are occupied, the customer
is blocked by the system. For obvious reasons, high blocking
probabilities imply inefficiency of the queueing system [4].

The novelty of this article lies mainly in the new formulation
for an optimization problem in finite queueing networks and an
effective heuristic method to simultaneously minimize the sum
of the blocking probabilities (

∑
i PKi ) in acyclic networks of

m M/G/1/K queues, that is, in Kendall notation, acyclic
networks of Markovian arrivals, general service times, single-
serve, finite queues, and the maximum of K customers,
including those in service. To obtain the minimum

∑
i PKi ,

the minimum total capacity
∑
iKi, and the minimum overall

service rates
∑
i µi that must be allocated to a queueing

network, in a given topology and under a known arrival rate λi,
the procedure for the minimization process searches for the op-
timal coordinates of the vectors PK = (PK1 , PK2 , . . . , PKm),
K = (K1,K2, . . . ,Km), and µ = (µ1, µ2, . . . , µm), which
determine the optimal configuration for the queueing network.

Optimization in finite-queue network systems concerns
many aspects of real-life, with the possibility of helping to
understand and improve various systems present in people’s
daily lives, including industrial processes, health systems,
urban traffic, communication systems, and others [5]–[10].

This article focuses on networks of M/G/1/K queues. In
particular, the study will address a complex network of queues
involving series, splits, and mergers between queues. Entry
into the system will be unique, through the first queue of
the system, and will continue through the system with a pre-
set routing probability vector for split situations. The network
configuration under investigation can be seen in Fig. 1.

There is a critical trade-off between buffer allocation, ser-
vice rates, and blocking probabilities, in each queue of the
system. It is reasonable to note that the greater the buffer
allocation and the service rate are in the system, the less
the blocking probability is for each queue. On the contrary,
buffer allocation and service rates are highly costly. The major
objective is then to minimize such resources but still to be able
to obtain a situation capable of substantially minimizing the
blocking probabilities between the queues in the system.

An optimization approach is proposed for the search of a
Pareto-optimal solutions range. The method produces a set of
efficient solutions for more than one objective in the objective
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Fig. 1. A mixed-topology network (adapted from MacGregor Smith and Cruz [11])

function. With the approach proposed, the decision-maker
can evaluate the effect of each solution. The multi-objective
approach also allows the user to increase one objective (e.g.,
increase buffer allocation) while reducing another objective
(e.g., reduce blocking probabilities). A multi-objective genetic
algorithm (MOGA) combined with a particle swarm optimiza-
tion (MOPSO) algorithm was used. Nature-inspired heuristic
algorithms are particularly suitable for difficult mono-objective
problems, but their multi-objective counterpart has also been
shown to be effective in a variety of settings with particularly
difficult objective functions and constraints [12]–[17], with
great computational performance.

The rest of this article consists of four sections. Section II
discusses several mathematical programming formulations for
the optimization of queueing networks. A new mathematical
programming formulation for optimization of queueing net-
works and, multi-objective genetic and particle swarm opti-
mization algorithms, specifically developed for multi-objective
optimization, are presented in Section III. In Section IV, the
results of a comprehensive set of computational experiments
are presented to attest to the efficacy and efficiency of the
approach. Finally, the article is concluded in Section V, with
final remarks and propositions for future research in the area.

II. BACKGROUND

A. Single-objective Formulations

The objective here is the development of algorithms to
optimize (minimize) the sum of the blocking probabilities
(
∑
i PKi) of an acyclic network of M/G/1/K queues, while

simultaneously optimizing (maximizing) throughput (Θ).
The algorithm is very dependent on the mathematical pro-

gramming formulation. We begin by describing the formula-
tion of the buffer allocation problem (BAP).

The problem is defined on a digraph D(V,A) where V
is a finite set of m vertexes (queues), and A is a finite set
of edges (connections between the queues). The BAP, in its
primal formulation [11], is as follows:

minimize

m∑
i=1

ciKi, (1)

subject to:
Θ(K) > Θmin,
Ki ∈ N,∀i ∈ {1, 2, . . . ,m}, (2)

which minimizes the total capacity allocation cost for the
network with m queues, subject to a threshold Θmin and
integer total capacities Ki.

Although quite similar to a linear integer mathematical
programming problem, Θ(K) is difficult to define because
it is a function that involves arrival and service rates, the
topology of the queueing network, as well as the integer
decision variables, Ki.

There is another closely related formulation, a type of
dual BAP, which seeks to maximize the throughput, Θ(K),
while constrained to a maximum budget for the total capacity
allocation along the network, Ωmax. The dual formulation is
a type of stochastic knapsack problem [11], which may be
written as follows:

maximize Θ(K), (3)

subject to:
m∑
i=1

ciKi 6 Ωmax,

Ki ∈ N,∀i ∈ {1, 2, . . . ,m},
(4)

which maximizes the throughput, Θ(K), subject to a max-
imum budget, Ωmax, for the capacity allocation along the
network with integer capacities, Ki.

Although the BAP formulations just presented could be used
as an aid to develop efficient algorithms to solve queueing
network design problems, this article considers an algorithm
that is based on the following multi-objective formulations.

B. Multi-objective Formulation

The optimization problem of M/G/1/K networks, de-
scribed in its primal and dual formulations, can be refor-
mulated into a multi-objective mathematical programming
formulation, which comprises the minimization of capaci-
ties and service rates, simultaneously with maximization of
throughput. The multi-objective queueing network problem
may be formulated as follows (see [18], [19]):



minimizeF (K,µ) =
[
f1(K), f2(µ), f3(K,µ)

]
, (5)

subject to:
Ki ∈ N,∀i ∈ {1, 2, . . . ,m},
µi > 0,∀i ∈ {1, 2, . . . ,m}, (6)

in which f1(K) =
∑m
i=1Ki represents the total capacities,

f2(µ) =
∑m
i=1 µi represents the overall service rates, and

f3(K,µ) = −Θ(K,µ) represents the throughput. Note the
minus sign associated with throughput, as it is an objective to
be maximized.

Usually, in the literature, the throughput is modeled as a
constraint. One drawback of this approach is that the through-
put restriction must be relaxed. However, finding a suitable
threshold is not a trivial task.

C. Multi-Objective Optimization

Multi-objective optimization addresses the problem of
searching for optimal solutions, when multiple, competing
objective functions are interacting. A multi-objective optimiza-
tion problem comprises a pair of objects X and F , defined as:

minimizeF (x) =
[
f1(x), f2(x), . . . , f`(x)

]
,

subject to: x = (x1, x2, . . . , xn) ∈ X ,
(7)

wherein x ∈ X is the decision variable, X is the feasible
solutions set, and F = F (X ) is the objective space, with `
objective functions. The goal in multi-objective optimization
is to find the solutions that “minimize” F (x) in the Pareto-
optimality context [20].

Given x,x′ ∈ X and the relation ≺, defined as

F (x) ≺ F (x′) ⇐⇒ F (x) ≤ F (x′) and F (x) 6= F (x′),

wherein F (x) ≤ F (x′) if and only if fi(x) ≤ fi(x
′), for all

i = 1, . . . , `, and F (x) 6= F (x′) if and only if ∃i ∈ {1, . . . , `},
such that fi(x) 6= fi(x

′), a feasible solution x∗ ∈ X is a
Pareto optimal solution of the multi-objective optimization
problem given by Eq. (7) if there is no x ∈ X such that
F (x) ≺ F (x∗). The range of x∗, F (x∗), is called a non-
dominated point. The set of all Pareto-optimal solutions is
called the Pareto-optimal set, and the set of all non-dominated
points is called the Pareto front. It is said that solution x
dominates solution x′ and/or that F (x) dominates F (x′) if
F (x) ≺ F (x′).

III. A NOVEL MULTI-OBJECTIVE FORMULATION

A. Blocking Probabilities Optimization

The literature presents several possible formulations for the
optimization problem based on the throughput of the system,
(Θ) [4], [18], [19], [21]–[28].

The new mathematical formulation proposed here for opti-
mization focuses on the blocking probabilities of the queueing
system. This investigation prioritizes minimizing the sum of
blocking probabilities in the system while minimizing the total
capacity allocation and the overall service allocation. The ra-
tionale behind this choice is a more intuitive nature of blocking

probability. That is, when looking at the overall throughput,
there is no clear idea of the interrelation between the queues in
the network. Prioritizing blocking probability values ensures
a greater degree of decoupling between the different queues
of the network. With a low blocking probability, the lines
suffer less interlocking, which occurs when the downstream
flow blocks the upstream flow.

Given that the decision variables Ki and µi indicate the total
capacity of the system and service rate for the ith M/G/1/K
queue, respectively, the optimization problem under study can
be formulated as:

minimizeF (K,µ) =
[
f1(K), f2(µ), f3(K,µ)

]
, (8)

subject to:
Ki ∈ N,∀i ∈ {1, 2, . . . ,m},
µi > 0,∀i ∈ {1, 2, . . . ,m}, (9)

in which f1(K) =
∑m
i=1Ki represents the total capacity

allocated; f2(µ) =
∑m
i=1 µi represents the service rates, and

f3(K,µ)
∑m
i=1 PKi represents the sum of blocking probabil-

ities.

B. Performance Evaluation

In single M/G/1/K queues, the estimate of the blocking
probability PK can be obtained through a computationally
efficient and accurate closed-form. The method, proposed by
MacGregor Smith [29], is based on a two-moment approxi-
mation of Kimura [30]:

PK =
ρ

(
2+
√
ρs2−√ρ+2(K−1)

2+
√
ρs2−√ρ

)
(ρ− 1)

ρ

(
2

2+
√
ρs2−√ρ+(K−1)

2+
√
ρs2−√ρ

)
− 1

, (10)

in which ρ < 1 must hold, where ρ is the system utilization,
defined as the ratio between the total arrival rate and the
service rate, ρ = λ/µ, and, s2 = Var(Ts)/E2(Ts) is the
squared coefficient of variation of the service time (Ts).
Several previous studies confirm that the approximation of PK
is accurate for a wide range of values [4], [11], [31].

For single queues, a fraction PK of the arrivals cannot join
the system. Thus, PK represents the probability that a cus-
tomer arrives when there is no more waiting space. Therefore,
only the fraction (1−PK) of the arrivals can be served by the
queue [32], resulting in a throughput of λ(1−PK). That is, the
fraction of customers, arriving at a rate of λ, who did not find
the system blocked, will be the throughput of this single queue.
The throughput is approximately Markovian, that is, the inter-
arrival times approximately follow an exponential distribution
(see [11]).

Investigations of queueing network problems are addressed
from many perspectives [27], [33]–[35]. Approaches using
optimization methods are quite common, for example, Pow-
ell’s method [28], Genetic algorithms [18], and Simulated
Annealing [19] have been used. These approaches use the
throughput (Θ), which is generally obtained by using an
approximate performance evaluation method, namely the gen-
eralized expansion method (GEM) [36].



GEM is an algorithm that has been successfully used
to estimate the performance of arbitrarily configured, finite
queueing, acyclic networks that updates system performance
measures over repeated trials. The method considers the delay
effect generated by several possible blockages occurring in the
flow of customers along the queueing network. GEM solves
a set of simultaneous nonlinear equations through iterative
procedures. This leads to considerable improvement in the
precision of the estimation of the performance measures of the
queueing network. The method is a combination of node-by-
node decomposition and repeated trials, in which each queue
is analyzed separately, and corrections are made to account
for interrelated effects between network queues.

As described in detail by Kerbache and MacGregor Smith
[36], GEM creates, for each finite node j, an auxiliary vertex
(hj) that is modeled as an M/G/∞ queue, as shown in Fig. 2.
For each entity placed in the system, vertex j may be blocked
(with probability PKj ) or may be unblocked (with probability
1 − PKj ). When blocking occurs, the entities are rerouted to
vertex hj and are delayed while node j is busy. Vertex hj
records the time that an entity has to wait, with a service
rate µ′h, given by GEM, before entering vertex j, and updates
accordingly the effective arrival rate coming from vertex i to
vertex j, λeff = λi(1− PKi).
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Fig. 2. Generalized expansion method for a tandem network

The ultimate goal of GEM is to provide updates of the
service rates of the nodes as follows:

µ̃−1
i = µ−1

i + PKj (µ
′
h)−1, (11)

in such a way that from Eq. (11) services rates µi can be
updated for all nodes along ρ and consequently PK , from
Eq. (10).

The GEM iteratively calculates updates of the system per-
formance measures. The method takes into account the delay
effect generated by several possible blockages occurring in
the flow of customers along the queues. This paper does
not consider the throughput (Θ) as its optimization objective.
Instead, the sum of the blocking probabilities in each queue
is considered. It is important to note that the computation of
PK , even though the approximation proposed in Eq. (10), is
dependent on the knowledge of the queue arrival rate, λ. For
the front queue of a network (see Fig. 1), the arrival rate, λ,
is known. However, what are the arrival rates for subsequent
queues? The procedure applied to obtain these arrival rates in
many studies also takes into account approximations produced
through the use of GEM.

Note that PKi is calculated by GEM [29] and is dependent
on λi, µi, and Ki. The µi and Ki values are decision variables
of the optimization problem, but arrival rate λi is dependent
on the throughput rate of the previous queue. Without loss of
generality, in a tandem queueing network, the computations
performed in this study always assume that the arrival rate on
the ith queue is dependent on the previous (i − 1)th queue,
given by:

λi = λi−1(1− PKi−1), (12)

in which i ∈ {2, . . . ,m} and λ1 is considered to be the
external queueing network arrival, that is, λ1 = Λ.

C. Multi-objective Approach

A multi-objective evolutionary algorithm (MOEA) is
adapted for the optimization problem given by Eq. (8) and (9).
An MOEA is an optimization algorithm that approximately
performs global searches based on the information that is ob-
tained from the evaluation of several points in the search space
[37]. The population converges to a mutually non-dominated
approximation set of the Pareto front by the application of
the genetic operators of mutation, crossover, selection, and
elitism. The MOEA used here is the elitist non-dominated
sorting genetic (NSGA-II) algorithm, which is state of the art
for multi-objective optimization of finite queueing networks
[19]. Details will not be given here due to space considerations,
but can be found easily (e.g., see [19]).

Following NSGA-II optimization, a multi-objective particle
swarm optimization (MOPSO) algorithm is applied to improve
the solutions provided by the NSGA-II algorithm. Given the
newly introduced mathematical programming formulation, the
convergence of NSGA-II might be greatly improved by a
post-processing algorithm such as a MOPSO. The proposed
MOPSO extends the single-objective PSO algorithm from
Kennedy & Eberhart [38].

Each particle should represent a possible solution for the
resource allocation (capacities and service rates) that opti-
mize the finite-queueing network under study. Hence, in this
particular formulation, each particle can be represented by
variables (x1, . . . , x`) = (K1,K2, . . . ,Km, µ1, µ2, . . . , µm),
with ` = 2m.

It is important to highlight here that the multi-objective
optimization problem being addressed is a mixed-integer prob-
lem. Thus, a particle repair strategy must be defined. Indeed,
changes to capacities are performed and then integer values
are used, as Ki > 1 is always respected. Similarly, the
restrictions associated with service rates are also respected,
because it is necessary to guarantee that ρ < 1. That is,
the queue arrival rate must be strictly less than the service
rate µ. These considerations guarantee the feasibility of the
investigated solutions.

If s denotes the size of the swarm (population of particles),
each particle 1 ≤ i ≤ s has the following attributes:
• Position, xi = (xi,1, xi,2, . . . , xi,`);
• Velocity, vi = (vi,1, vi,2, . . . , vi,`);
• Personal best position, pi;



• Global best position, gi.
The proposed MOPSO approach for queue network opti-

mization is to execute the following sequence of steps:
step 1:Initialize:

• The population of particles, xi;
• The velocities of particles, vi;
• The best position, pi = xi;
• Particle’s global best positions, gi = xi;
• Iteration counter;

step 2:Store the non-dominated particles of xi into external
archive A;

step 3:Compute the crowding distance of particles stored in
A and sort them in descending values;

step 4:Randomly select a solution from the non-dominated
particles from A and store the position to gi for each
particle of the population;

step 5:Update the velocity and position of the particles
according to Eq. (13) and (14), respectively:

vt+1
i = wt + r1

(
pi − xti

)
+ r2

(
gi − xti

)
,(13)

xt+1
i = xti + vt+1

i ; (14)

For the integer variables, the position must be up-
dated accordingly, Eq. (15), that is:

xt+1
i = int

(
xti + vt+1

i

)
; (15)

step 6:Update the particle’s best position, pi; if the current
position dominates pi in memory, then reset pi to
current position.

step 7:Go to step 2 until a criterion is satisfied.
The parameters and their values were defined as follows: r1

and r2 are positive random numbers with uniform distribution
belonging to the interval [0, 1.0], w = 0.4 is the inertia weight.

Further details about the implementation of MOPSO al-
gorithms can be found in the literature. The MOPSO just
described is an adaptation of the classical implementation
described by Coello-Coello and Lechunga [39]. However
simplified versions may be found [40] and more sophisticated
and improved versions [41], [42] as well, including mixed-
integer mathematical programming formulations [43].

IV. COMPUTATIONAL RESULTS

The optimization algorithms were implemented in FOR-
TRAN. The NSGA-II code used here was provided by Cruz
et al. [19]. For educational and research purposes, the code
is available from the authors upon request. The execution
environment of the computational experiments was conducted
on Intel(R) Core(TM) i3-2310M 2.10 GHz running Windows
10 Pro 64 bits, with 6.00GB of RAM.

The mixed-topology network presented in Fig. 1 was
adapted from the literature [11] and analyzed with the pro-
posed method. Three different squared coefficients of vari-
ation were analyzed, s2 = {0.5, 1.0, 1.5}, to characterize
systems that are hypo-exponential, exponential (Markovian),
and hyper-exponential, respectively. The external arrival rate

was Λ = 5.0. For comparison purposes, the above experiments
match those previously performed by Cruz et al. [19].

The number of particles in the GA and swarm was defined
as 400, and the maximum number of interactions of the
algorithm was defined as 4,000. To examine the solutions in
greater detail, Fig. 3, 4 and 5 present the results obtained
for all squared coefficients of variation tested. In each of
these figures, sub-optimal solutions are presented for, (a) a
three-dimensional space, provided by the NSGA-II, (b) by
MOPSO algorithm, and (c) the points projected into the two-
dimensional space

∑
iKi ×

∑
i µi. This projection leaves

a false impression of the existence of dominated points
but, in fact, they are all non-dominated points in the three-
dimensional space. In the graph representing the projection,
the points obtained by NSGA-II are shown, as are the points
obtained by MOPSO post-processing.
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Fig. 3. Solutions for s2 = 0.5.

From the results for the hypo-exponential system (s2 = 0.5)
shown in Fig. 3, including the final surface in two-dimensional
space

∑
iKi ×

∑
i µi, after convergence it is possible to see

that the behavior of a given queueing network cannot be pre-
dicted without the use of an algorithmic approach such as the
one proposed here. A detailed analysis of the results in Fig. 3,
revealed that many different pairs of capacities and service
rates can be selected for a given sum of blocking probabilities.
It is noteworthy that the MOPSO better distributes the points
and improves the representation of the Pareto surface using its



discrete points so that more diverse solutions are available for
the analysis to choose from.

The two-dimensional space
∑
iKi ×

∑
i µi projection,

shown in Fig. 3-(c), resulting from the NSGA-II and MOPSO
approach, reveals several solutions with a low overall service
allocation, but which are still efficient to solve the problem
under investigation. Even with low capacity allocation, the
algorithm can produce promising solutions. It is possible to
observe a large number of solutions with the capacity allo-
cation between approximately 50 and 150, while the overall
service allocation is less than 250, better than some solutions
previously provided the NSGA-II. Fig. 3-(c) illustrates that
these solutions have an acceptable sum of blocking probabil-
ities for solving the problem. This analysis confirms that, for
hypo-exponential systems, the proposed approach is capable
of delivering many efficient solutions.

Results for the exponential system (s2 = 1.0) are shown in
Fig. 4. Again, the analysis shows that several different pairs of
service rates and capacities may be chosen for a given sum of
blocking probabilities. The MOPSO post-processing produced
solutions that are more broadly spread in the region compared
to the solutions previously produced by the NSGA-II alone.
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Fig. 4. Solutions for s2 = 1.0.

The two-dimensional space
∑
iKi ×

∑
i µi projection,

Fig. 4-(c), from NSGA-II and MOPSO, again shows many
similar points for exponential systems. The MOPSO approach

was able to better represent the Pareto surface by utilizing
more representative discrete points that were more broadly
distributed.

It is noticeable that MOPSO uses solutions provided by
the NSGA-II with an overall service allocation above 200,
and replaces them with other solutions when there is a lower
overall service allocation, even while preserving the capacity
allocation of previous solutions. Such solutions are less costly
compared to the previous, while still providing effective solu-
tions regarding blocking probabilities.

Finally, the results of hyper-exponential systems (s2 = 1.5)
are highlighted in Fig. 5, including the final surface and the
swarm in two-dimensional space

∑
iKi ×

∑
i µi after final

processing. Once again, the analysis of the results in Fig. 5
shows that several different pairs of service rates and capacities
may be achieved for a given sum of blocking probabilities.
This finding is very important in multi-objective approaches.

The two-dimensional projection of the space
∑
iKi ×∑

i µi, Fig. 5-(c), by NSGA-II and MOPSO, again shows a
good resemblance between the two sets of points. Similar to
the hypo-exponential and exponential systems, the MOPSO
approach is capable of achieving many of the solutions previ-
ously obtained. Post-processing with MOPSO also identifies
new solutions with capacity allocation between 70 and 150, but
with overall service allocation notably lower than the previous
solutions provided by NSGA-II.

   0  200  400  600  800 1000 1200 1400

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

  0

100

200

300

400

Σi Ki

Σ
i P

K
i

Σ i µ
i

(a) surface for NSGA-II

   0  200  400  600  800 1000 1200 1400

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

  0

100

200

300

400

Σi Ki

Σ
i P

K
i

Σ µ
i

(b) surface after MOPSO

0 200 400 600 800 1000 1200 1400

0
1

0
0

2
0

0
3

0
0

4
0

0

Σi Ki

Σ
i µ

i

NSGA−II

MOPSO

(c) two-dimensional projection for solutions

Fig. 5. Solutions for s2 = 1.5.



Two specific factors affect the computational efficiency of
the algorithm in obtaining solutions for the queueing network
optimization problem in hand. First, the choice of MOPSO for
post-processing after NSGA-II and, second, the new mathe-
matical programming formulation that prioritizes the blocking
probability, a performance measure that makes more sense
given the behavior of the system being modeled, because it
shows the proportion of items that are not served by the
respective queue. For the comparisons to be adequate, the same
population size in the NSGA-II was also used as the particle
number in the swarm for the MOPSO algorithm. Further, the
number of generations chosen for the MOPSO algorithm was
identical to the number of interactions used with the NSGA-II
algorithm.

Considering the three different squared coefficients of vari-
ation analyzed s2 = {0.5, 1.0, 1.5}, the CPU times of the
NSGA-II were 527.0, 529.4 and 539.8 seconds, respectively.
The CPU times of the MOPSO algorithm were 478.1 sec,
475.5 and 495.95 seconds, respectively. This result confirms
that the new approach provides efficient solutions in a reason-
able amount of time.

V. CONCLUSION

In this article, a novel mathematical programming formu-
lation was proposed for an optimization problem in queueing
networks. The sum of the blocking probabilities of a general-
service time, single-server, finite, acyclic queueing network
was minimized along with the total capacity and the overall
service rate.

A combination of multi-objective genetic and particle
swarm optimization algorithms were developed and employed.
Insightful Pareto curves were obtained. In this new approach,
the use of a classical tool to approximately evaluate the
performance of finite queueing networks, namely GEM, was
used and very efficient solutions were obtained.

Concerning CPU time, the new approach is comparable
to the previous approach. Thus, future experiments can be
performed to evaluate this approach’s flexibility regarding
the number of interactions and swarm sizes, its use under
different queueing networks, with different topologies (e.g.,
series, merges, and splits), and with various numbers of nodes,
arrival rates, and service time variability.

The modifications in the mathematical programming for-
mulation of this stochastic optimization problem in queueing
networks, and the change in the optimization heuristic applied,
brought improvements to the area. The combination of NSGA-
II and MOPSO was successful. The novel mathematical
programming formulation also made it possible to produce
an optimization approach that performed well under GEM
updates.

Future investigations should be executed to determine the
applicability of this approach for the determination of other
optimal conditions in queueing networks. For instance, this
method could be applied to optimize general, multi-server
finite queueing networks. Moreover, future research should be
conducted to evaluate the algorithms in real-life situations.
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