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Abstract—Resource constrained job scheduling is a challenging
combinatorial optimisation with many real-world applications. A
number of exact methods and meta-heuristics have been proposed
in the literature to solve this problem, but often encounter
scalability issues. This paper investigates an automated heuristic
design approach to deal with this problem. The aim of this
approach is to generate heuristics that can quickly construct good
solutions, which can be applied directly or used to initialise other
meta-heuristics. A new adaptive genetic programming algorithm
is proposed to coevolve a large set of reusable heuristics to solve
the resource constrained job scheduling problem. There are three
different aspects to the novelty behind our proposed algorithm:
(a) a new phenotypic representation of heuristics, (b) an efficient
mapping technique to monitor the evolutionary process, and (c)
an adaptive fitness function to guide the search towards a diverse
and competitive population. The experimental results show that
evolved heuristics show promise and are able to outperform some
existing meta-heuristics for large-scale instances. Analyses also
show that the algorithm can be further improved if appropriate
parameters are selected.

Index Terms—genetic programming; scheduling, learning

I. INTRODUCTION

Several scheduling problems can be modelled as a variant of
job scheduling. Of particular interest is resource constrained
job scheduling with shared resources (RCJS), which can be
mapped to many real-world applications. A typical example,
derived from the mining supply chain, is the transport of ore
from mines to ports. The movement of one unit of ore can
be considered as a job. The transporting of ore takes place
with either trucks or trains. Since there are a limited number
of them, transporting ore at the same time is in effect limited
capacity or a resource limit on concurrently executing jobs.
Furthermore, there may be an ordering imposed on the arrival
of ore at ports, which is the same as precedences between jobs.
The objective is to ensure that the ore arrives at the ports in a
timely manner, thus avoiding demurrage costs associated with
making ships wait unnecessarily. This is effectively a total
weighted tardiness (TWT) of all jobs to be minimised.

Exact methods for solving the RCJS problem have not
proved effective. As a result there have been several meta-
heuristic and hybrid methods proposed [1], [2], [3], [4], [5],
[6], [7]. The studies by [1], [2], [3] show that combining La-
grangian relaxation with simulated annealing, particle swarm
optimisation and ant colony optimisation (ACO), respectively,
can provide very good solutions in reasonable run-times.

However, scalability still proves to be a issue and for this
reason parallel implementations of ACO and hybrid methods
were attempted in [4], [6]. To the authors; knowledge, the
latest study [7] applied a biased random key genetic algorithm
and showed that very good results can be obtained, even in
the non-parallel setting.

In the scheduling literature, simple scheduling heuristics
such as priority rules [8] were usually developed to provide
quick and acceptable solutions for large-scale instances. How-
ever, designing effective scheduling heuristics is a complex
task and requires a lot of trial-and-error and evaluations.
Automated heuristic design (AHD) has been recently proposed
to automatically discover effective heuristics for a wide range
of scheduling and combinatorial optimisation problems such
as job shop scheduling [9], bin packing [10], dynamic pickup
and delivery [11] and time-tabling [12]. AHD is considered a
machine learning problem [13] in which optimisation search
algorithms, e.g. genetic programming [9] and evolutionary
strategy [14] are developed to explore the space of heuristics
to determine the most effective among these based on a set of
training instances. Different from conventional optimisation
algorithms, the heuristics found are reusuable, i.e. able to
generate solutions for new instances without rerunning the
costly optimisation process. Previous studies have shown that
AHD methods can evolve powerful heuristics for dynamic
scheduling problems [15], [16] or effective reusable heuristics
to deal with large static scheduling problems [10], [17].

Nguyen et al. [18] presented a preliminary study on genetic
programming (GP) algorithm for RCJS. They proposed a
multiple tree representation and a simple fitness approximation
technique to help GP evolve multi-pass scheduling heuristics.
Their proposed GP is trained with a small number RCJS
instances and the experiment results showed that the proposed
algorithm outperformed the simple GP algorithm and evolved
heuristics can produce competitive solutions compared to
specialised hybrid optimisation algorithms, especially for large
problem instances. They also showed that better results can be
achieved when a larger number of priority rules are included
within the multi-pass heuristics. One of the key limitations
of their method is that the proposed representation can only
accommodate a restricted number of rules. When the number
of rules increases, the search space of GP will significantly
increase which makes it harder to find good programs.
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The goal of this paper is to develop an adaptive GP (AGP)
algorithm that can coevolve a large diverse set of priority
rules, which can be combined at the end of the evolutionary
process to become a powerful multi-pass heuristic. The aim is
not to beat the state-of-the-art but rather to demonstrate that
this algorithm can quickly construct high solutions, which can
be applied directly or used to initialise other meta-heuristics.
Different from Nguyen et al. [18], the number of candidate
rules in evolved multi-pass heuristics does not need to be
predefined as it will be the same as the population size. The
key challenge here is to ensure that the population diversity is
preserved during the evolutionary process while general and
effective rules can still be discovered efficiently. To address
this challenge, we focus on the following three objectives:

1) Developing a new phenotypic representation that cap-
tures the behavioural characteristics of evolved priority
rules for RCJS,

2) Developing a mapping technique based on the proposed
phenotype that can monitor the evolutionary process,

3) Developing a fitness function to evolve a diverse and
competitive population.

As it is very computationally expensive to compare evolved
rules using their genotypic representation (e.g. tree structure),
a phenotypic representation of evolved rules is proposed to
capture how a priority rule constructs a scheduling solution,
which decides whether two rules are similar. Then a mapping
technique based on growing neural gas (GNG) and principal
component analysis (PCA) is applied to capture the topological
relationships of evolved rules. The outcome of the mapping
technique is a network that allows us to conveniently and
efficiently analyse evolutionary patterns and diversity of the
population in an incremental manner. The network will store
the information of evolved rules such as their program sizes,
phenotypes and fitnesses. From the knowledge accumulated by
the network over time, the AGP is informed of which areas of
the search space it has been explored and which of those are
more promising. To reduce the computational costs for fitness
evaluation and maintain diversity in the population, we only
apply a small subset of training instances in each generation
while supporting the selection process with an approximate
fitness function based on the GNG network.

The rest of this paper is organized as follows. Section II-A
describes the RCJS problem investigated in this paper and
discusses related work. Section III presents the AGP algorithm
and its key components. Section IV presents the experiment
settings and the results of AGP compared to other GP and
a state-of-the-art optimisation algorithm. Finally, conclusions
and future studies are presented in Section V.

II. PROBLEM AND RELATED WORK

In this section we provide details of the RCJS problem
including its integer programming formulation. We also review
different solution methods that have been proposed for solving
it. Finally, we also provide an overview of automated heuristic
design with GP.

A. The Resource Constrained Job Scheduling Problem

We provide a formal description of the RCJS problem. We
are given a set of jobs J = {1, . . . , n} and each job i has
a release time ri, processing time pi, due time di, weight
wi, resource consumption gi and a machine mi. The jobs
need to be need to be executed on a set of machines M
= {1, . . . , l} and a job must execute on the machine that
it is assigned to. Additionally, a machine can execute only
one job at one time. We consider a horizon T = {0, . . . , D},
which consists of discrete time points. On any machine, there
may be precedences between jobs that have to execute on it.
Formally, we denote precedences between two jobs i, j ∈ J ,
i→ j which states that job i must complete executing before
job j can start executing. For all jobs executing at any single
point in time, the cumulative resources consumed by the jobs
must be at most G.

There have been different integer programming formulations
proposed for the RCJS problem. The most efficient one to date
is that of [1], which we also use in this study. This model uses
binary variables zjt, which is 1 if job j completes by time t
or earlier. The formulation is:

min
∑
j∈J

∑
t∈T

cjt (zjt − zj,t−1) (1)

s.t.
∑
j∈Jm

zj,t+pj − zjt ≤ 1 ∀ t ∈ T , ∀ m ∈M

(2)
zjt ≥ zj,t−1 ∀ j ∈ J, ∀ t > 0 (3)
zjT = 1 ∀ j ∈ J (4)

zj,t−pk ≥ zkt ∀ j → k, ∀ t ∈ T
(5)

zj,t = 0 ∀ t < rj + pj , ∀ j ∈ J
(6)∑

j∈J
gj (zj,t+pj − zjt) ≤ G ∀ t ∈ T (7)

zjt ∈ {0, 1} ∀ t ∈ T

where cjt = wj ×max{0, t−dj} is a penalty imposed on job
j when it completes later than its due time. The objective
is represented by Equation (1), which is the sum of the
tardiness of all jobs or the total weighted tardiness (TWT).
Only one job may execute at any one time on a machine,
which is specified by Equation (2). In Equation (3), once a jobs
completes it stays completed and Equation (4) requires that all
jobs complete. The precedences between jobs are imposed by
Equation (5) and the constraint on the release times are defined
by Equations (6). Finally, the resource constraints are satisfied
via Equation (7).

B. Previous Work Related to RCJS

A closely related problem to RCJS is Project scheduling
[19]. This problem is very popular and has thus been studies
extensively. The studies by [20], [19], [21], [22], [23], [24],
[25] examine various algorithms for the problem including



local search, branch & bound, matheuristics and parallel im-
plementations. The study by [21] explore simulated annealing,
genetic algorithms and exact approaches for different variants
of the project scheduling problem. [22] consider a variant
which incorporates time windows and they propose solution
methods based on heuristics and exact approaches. A similar
project scheduling variant to RCJS is one that is considered
by [20], where the objective is to minimise the cumulative
deviation from the desired task completion times. Their main
result is that an iterated local search proves very effective. The
studies by [23], [24], [25] consider the problem variant where
the aim is to maximise the net present value. They show that
matheuristics and their parallel implementations can be very
effective for this problem.

The studies [26], [5] also consider an extension to the
RCJS, with hard deadlines. [26] explore a hybrid of constraint
programming, beam search and ant colony optimisation, which
prove to be effective at solving the problem. A limitation of
this study was large run-time requirements and so [5] develop
a parallel implementation to find good solutions more quickly.

Other studies on similar problems to RCJS have also
considered the TWT objective [27], [28]. Both studies, [27]
and [28] solve a similar problem to the RCJS and explore
an agent based approach coupled with as little information
sharing as possible. An assumption of this study is to assume
decentralised data.

III. ADAPTIVE GENETIC PROGRAMMING

Fig. 1 shows how the proposed AGP works. The algorithm
starts with a random population H = {H1,H2, · · · ,HN} of
scheduling heuristics, i.e. priority rules used to construct RCJS
solutions. In each generation, all heuristics in the population
will be evaluated by using a set T of RCJS instances. The
phenotypic characteristics phenotype(H), the corresponding
fitnesses fitness(H) and the sizes of evaluated heuristics are
recorded in archive A. A dimensional reduction technique
is applied to transform the dataset X of phenotypic char-
acteristics (with the dimension of D stored in A) to X ′

with a lower dimensionality (by using the first K principal
components where K << D). Following this, a modified
version of growing neural gas (GNG) [29] is used to learn
topological relations of generated heuristics from the trans-
formed dataset X ′. The network N = (V,E) obtained with
the modified GNG (mGNG) contains a set of nodes V and a
set of undirected edges E that represent the distributions of
generated heuristics on the search space. Genetic operators are
then applied to generate an intermediate (or trial) population.
The fitnesses of these newly generated heuristics are estimated
by using the inputs from the phenotypic characteristics and
sizes of those heuristics, archive A and the network N . The
heuristics in the intermediate population are ranked based on
the approximate fitnesses and only the top heuristics are used
to build the population for the next generations. In the rest of
this section, we will provide the details of each key component
in this algorithms including the GP representation of schedul-
ing heuristics, genetic operations, the mGNG algorithm, and
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Fig. 1. Adaptive Genetic Programming.

approximate fitnesses. Different from most GP algorithms, the
output of AGP is the whole population, i.e. H, instead of
the best priority function generated during the evolutionary
process. All priority functions in the final population are
candidate rules for the multi-pass heuristic. To handle a unseen
test instance, the multi-pass heuristic will execute all Hk ∈ H
to construct N schedules one the best schedule in terms of
TWT will be the final schedule.

A. Representation

Each individual in the AGP population is a priority function
H which is used to rank jobs during the scheduling con-
struction procedure. These priority functions will be repre-
sented as expression trees composed of arithmetic operators
(i.e. function set) and relevant attributes (i.e. terminal set or
attribute set) [30]. This representation has been widely adopted
by most previous studies with GP for automated heuristic
design and has shown very promising results. Table I shows
the attributes and functions used to design priority functions.
The first part of the table shows five static attributes which
will not be changed during the schedule construction process.
The second part shows two dynamic attributes to reflect the
urgency and the resource tightness as more jobs are added into
the schedule. To construct a schedule using H, we apply the
schedule construction procedure in Algorithm 1. The output
of this algorithm is the starting times of all jobs j ∈ J , which
can be used to calculate the schedule performance, i.e. TWT.
To better compare or aggregate the performance of evolved
heuristic across different instances, we calculate the objective
value obj(H) divided by the TWT obtained with H by the
TWT obtained by a reference heuristic, i.e. weighted shortest
processing time in this paper.



TABLE I
TERMINAL SET AND FUNCTION SET

Notation Description Value

PR processing time pj
W weight wj

R required resource gj
TPS total load of successors

∑
l∈{i∈J |j→i} pl

TWS total weight of successors
∑

l∈{i∈J |j→i} wl

SL slack dj − (tmin + pj)

RT resource tightness
∑tmin+pj

t=tmin (Rt − gj∗ )/pj

Functions +,−, ∗,%,max,min

j is the job to be prioritised; tmin can be calculated as in step 7 of Algorithm 1
s̃j is the start time from previous constructed schedule; % is protected division

Algorithm 1 Schedule construction procedure
Input: A RCJS instance I, a priority function H
Output: A resource feasible schedule S(H) defined by
job start times sj for ∀ j ∈ J

1: Ω is the set of ready jobs j ∈ J (@i→ j)
2: Ω′ = ∅ is the set of scheduled jobs
3: Rt := G ∀ t ∈ T
4: while Ω is not empty do
5: determine the priorities of jobs j ∈ Ω with H
6: select job j∗ with the highest priority
7: tmin := max {rj∗ ,max {si + pi | i ∈ Ω′ ∧mi = mj∗}}
8: sj∗ := min

{
t ≥ tmin | Rt+k ≥ gj∗ ∀ 0 ≤ k < pj∗

}
9: Rt := Rt − gj∗ ∀ t = sj∗ , . . . , sj∗ + pj∗ − 1

10: add j∗ to Ω′

11: remove j∗ from Ω and add new ready jobs into Ω

12: return S(I,H) = {s1, . . . , sn}

1) Phenotype: Since the goal of AGP is to evolve a set
of diverse heuristics which can cope with a wide range of
situations, it is important to capture how evolved heuristics
can construct a complete schedule to measure the similar-
ity/distance of two priority functions. In this case, the starting
time vector S obtained from Algorithm 1 is a good way
to capture the behavioural characteristics of evolved priority
functions as it provides the information of how priorities are
assigned from an empty schedule to a complete schedule. In
AGP, a random instance Ip is generated and fixed during the
evolutionary process and each newly generated function H
will be applied to Ip to determine phenotype(H) = S(Ip,H).
Although it is possible to use a large instance as Ip or a subset
of RCJS instances, we prefer a single and small instance to
minimise the computational cost as it is sufficient to represent
different job permutations or schedules. For example, if the
instance has no precedence constraints, a single machine, and
unlimited resources, the number of jobs permutation is n!,
which is more than three million for a small instance with
n = 10 jobs.

B. Genetic operations

In the proposed algorithm, subtree crossover and subtree
mutation [30] are employed to generate new scheduling
heuristics H. A heuristic will be randomly picked and a
random genetic operation is applied. The subtree crossover
creates new heuristics for the next generation by randomly
recombining subtrees from two selected parent heuristics. The
subtree mutation is performed by selecting a node of a chosen
functions and replacing the subtree rooted by that node with
a newly randomly-generated subtree. To improve the diversity
of the population, all the same duplicated heuristics (based on
phenotypic similarity) will be eliminated [31].

C. Mapping evolutionary process

To efficiently explore competitive scheduling heuristics,
it is crucial for AGP to capture the topological relations
and distributions of previous generated heuristics. Since the
heuristics generated by genetic operations are complicated
and usually contain redundant components, phenotypic char-
acteristics are more useful than genotypic characteristics to
determine the similarity between generated heuristics. Also,
phenotypic characteristics are a good predictor of program
fitnesses [31], [32] and the phenotypic diversity has good
correlation with fitness improvements [33]. Therefore, we
employ the phenotypic characteristics to map the evolutionary
process of AGP. In this paper we apply the mapping technique
proposed in [34] which includes two steps: (1) dimensionality
reduction with PCA, and (2) topological learning with mGNG.

1) Dimensionality reduction: High-dimensional data X can
slow down the mapping algorithm. In this paper, we use princi-
pal component analysis (PCA) for dimensionality reduction to
transform X into a lower dimensional space. PCA is chosen
for this task because it is an efficient and well-established
approach and it copes very well with the multicollinearity
issues in the phenotypes. Since there is a good chance that
jobs to be prioritised will have similar attributes (as shown in
Table I, their phenotypes (start times) can be quite similar.

2) Modified growing neural gas: Algorithm 2 shows how
mGNG can adapt the network to the input data. All data points
in X = {phenotype(H)|H ∈ A} are transformed into X ′ by
PCA. In each epoch, an input x is then sampled from the
transformed data X ′ and mGNG will determine the nearest
unit (s1) and the second nearest unit (s2) based on Euclidean
distance. An edge connecting these two units are created (if it
does not yet exist) and its age is set to zero. After each epoch,
a new unit will be inserted near the unit with the maximum
error in order to reduce the total error of the network. If
an unit has a very low utility as compared to the maximum
error, it will be removed from the network. This mechanism
is proposed in [29] to deal with non-stationary distributions.
This growing and removing mechanism is created to reduce
the computational costs of the mapping process and help AGP
track the dynamics of the population. The maximum age of
edges are set to the size of the dataset to preserve most
relations of programs. We also adopt a scheme like k-means
to adapt the learning rate over time [35], i.e. eb = 1/nwin and



Algorithm 2 Modified growing neural gas (mGNG)
Input: dataset X , current network N (if exist)
Output: (updated) mGNG network N , PCA model

1: X ′ ← transform dataset X with PCA
2: epoch← 0
3: randomly initialise N with two nodes if N is empty
4: repeat
5: randomly shuffle X ′

6: for each data point x ∈ X ′ do
7: ws1 ← the nearest (winning) node s1 for input x
8: update the error of s1: Es1 = Es1 + ||x− ws1 ||2
9: updating unit s1: ws1 = ws1 + εb(x− ws1)

10: updating neighbour n of s1: wn = wn+εn(x−wn)
11: create an edge between s1 and s2 (the second-

nearest unit to x) and set its age to zero if the edge does
not exist; otherwise set the edge’s age to zero

12: increment the age of edges connecting s1 and each
neighbor n ∈ N

13: removing edges with age larger than amax = |X|
and nodes with no emanating edges

14: updating the utility of s1: Us1 = Us1 + ||x −
ws2 ||2 − ||x− ws1 ||2

15: let q is the unit with maximum error and l is the
unit with minimum utility

16: remove the unit l if Eq/Ul > θ
17: for each unit c ∈ N do
18: Ec = (1− β)Ec
19: Uc = (1− β)Uc

20: insert a new unit to N between q and its neighbor if
the number of nodes in N < max node

21: until epoch = maximum epoch or mGNG converges

en = 100/nwin (see steps 9–10 in Algorithm 2) where nwin
is the number of input signals for which the considered node
has been a winner.

It is noted that mGNG is applied at the end of each genera-
tion. The obtained network N can show what heuristics have
been generated and evaluated through generations. As com-
pared to existing mapping-based method in the literature such
as MAP-Elites [36], mGNG has a number of advantages. First,
mGNG does not make any assumption about the phenotype
search space, which is important for MAP-Elites to predefine
the map size. Second, the output of mGNG is a network
that can help AGP perform analyses more efficiently. Finally,
mGNG can efficiently control and dynamically updating the
map (i.e. network) during the evolutionary process.

D. Adaptive fitness function

When a new heuristic H is generated by genetic operations,
its corresponding phenotypic characteristic phenotype(H) is
determined by using the technique discussed in section III-A1.
Ideally, to measure the fitness of a heuristic phenotype(H),
the heuristic will be applied to a set of training instances.
In previous studies [9], a large training set is needed to
avoid overfitting issues. However, since GP usually requires a

large population with expensive program evaluations, using a
large training set can significantly increase the running times
of the algorithm. To overcome this computational difficulty,
we propose an incremental learning approach to measure
the fitnesses of evolved heuristics. In each generation, all
heuristics in the population are only applied to a small subset
of random training instance to determine obj(H). Then, the
fitness function is calculated as follow:

fitness(H) = objavg(H,N )× SP (H,N )×BF (H,N ) (8)

where objavg(H,N ) is the estimated objective values,
SP (H,N ) is the selection pressure and BF (H,N ) is the
bloat control factor. objavg(H,N ) is the average of the objec-
tive values from all evolved heuristics, similar to H:

objavg(H,N ) =

∑
H′∈NB(nN∗H )

obj(H′)

freq(nN∗H )
(9)

where obj(H′) is the objective of an evolved heuristic H′
recorded in the archive A, nN∗H is a node in N with the
minimum distance to the transformed phenotype(H), and
NB(nN∗H ) is the set of neighbours of nN∗H , i.e. basically any
nodes in N that are directly connected to nN∗H by an edge.
Meanwhile, freq(n) is the matching frequency of node n ∈ N
determined by the number of entries in A that best match node
n (noted that |A| =

∑
n′∈N freq(n

′)). Because objavg(H,N )
are based on the historical information recorded in A, its
values are different in each generation (as A is updated) and
this estimate will be more accurate in the later generations.

The selection pressure can be calculated as follow:

SP (H,N ) = 1 + nd(H,N )α (10)

where

nd(H,N ) =
1

|A|

freq(nN∗H ) +
∑

n∈NB(nN∗H )

freq(n)


(11)

SP (H,N ) allows AGP to reduce the chance of selecting
and reproducing heuristics located in a well-explored area of
the search space. Since the distribution of evolved heuristics
has been captured by mGNG, we can easily determine the
density of a certain area in the search space by the neigh-
bourhood density nd(H,N ). The coefficient α ≥ 1 is used to
control the impact of diversity on the fitness function. When
α is low, AGP will evolve a more diverse population.

The bloat factor can be calculated as follow:

BF (H,N ) =

1 +
(
size(H)
ms(H,N ) − 1

)B
size(H)
ms(H,N ) > 1

1 otherwise
(12)

where size(H) is the size of heuristic H (total number of
terminals and functions) and ms(H,N ) is the maximum size
of heuristics H′ ∈ A that best matched node nN∗H (defined
in the previous section). If size(H) ≤ ms(H,N ), the bloat
factor will have no impact on the estimated fitness of H.
Otherwise, the parameter B ≥ 1 governs the tradeoffs between
the sizes of the evolved heuristics and their quality.



IV. EXPERIMENT RESULTS

To evaluate the effectiveness of the new algorithm, we have
two datasets for RCJS. The first data set includes a wide
range of randomly generated instances based on the instance
generator proposed in [6]. The second data set includes a set
of benchmark instances widely used in the literature [1], [2],
[3], [4]. The first data set containing 108 instances (from 3
to 6 machines and 30 to 64 jobs) is used for training with
AGP. The second data set containing 36 benchmark instances
is used for testing the performance of evolved heuristics at the
end of AGP runs.

For the experiments in this paper, we set the default AGP’s
parameters as follows. The population size of AGP is 40000,
the size of the intermediate population is 5 times the pop-
ulation size, the number of random training instances used
in each generation is 5, the diversity parameter α is 4 and
the maximum depth of the program trees is 5. For genetic
operators, we randomly use subtree crossover and subtree
mutation as described in the previous section. In this paper,
we use a very large population to ensure that we have enough
genetic materials to maintain a diverse set of scheduling
heuristics. The value α = 4 is selected based on our pilot
experiments, which help to maintain both the exploration and
exploitation of AGP.

A. Testing performance

The test performance based on 30 runs of AGP are shown in
Table II. In this table, we also show the best solution (BS), the
CGACO algorithm [3], and the ACO algorithm [4]. The results
of CGACO and ACO are obtained from 1-hour run. The first
number in the instance name is the number of machines, hence
the results are arranged by the increasing order of complexity.
In this table, Obj and %dev is the average objective values
and the average deviation from BSs obtained by the algorithms
from all random independent runs. The AGP’s results are
marked as bold if AGP outperforms CGACO and marked as
bold-italic if AGP outperforms both ACO and CGACO.

From the results, it is easy to see that AGP does not
perform as well as CGACO and ACO for small instances
(with fewer than 6 machines). This is expected because these
meta-heuristics can usually find very good, sometimes optimal,
solutions for small instances. However, when we move to
medium-size instances (from 6 to 9 machines), AGP becomes
more competitive and even outperforms CGACO in some
instances. AGP shows its real advantage when dealing with
large instances. Although CGACO seems to perform better
than ACO in large instances, it is clear that AGP outperforms
CGACO in most instances with 10 machines or more. The
gaps (for both objective values and %deviation ) between
AGP and CGACO become more significant as the instance
size increases. For instances with more 12 machines, the %dev
of AGP is kept below 20% in most cases while the those
values of CGACO and ACO become very high. Given that
AGP use reusable evolved heuristics to generate solutions
for these instances, the time it needs to solve an instance
is significantly lower than those of ACO (with 1-hour) and

TABLE II
TEST PERFORMANCE OF AGP COMPARED TO EXISTING META-HEURISTICS

Instance BS AGP CGACO [3] ACO [4]

Obj %dev Obj %dev Obj %dev

3–5 505.00 594.96 17.81 559.67 10.83 553.60 9.62
3–23 149.07 164.88 10.61 162.83 9.23 151.79 1.82
3–53 69.36 73.47 5.93 70.02 0.95 70.11 1.08
4–28 23.81 35.40 48.66 28.73 20.66 23.96 0.63
4–42 66.73 111.91 67.70 70.38 5.47 68.55 2.73
4–61 45.96 86.03 87.18 48.58 5.70 45.96 0.00
5–7 252.90 332.56 31.50 308.33 21.92 256.39 1.38

5–21 168.63 213.24 26.45 177.11 5.03 177.84 5.46
5–62 250.67 342.12 36.48 300.70 19.96 279.22 11.39

6–10 861.35 1001.75 16.30 1031.51 19.76 996.01 15.63
6–28 228.46 311.18 36.21 294.64 28.97 240.07 5.08
6–58 243.20 360.64 48.29 300.89 23.72 265.91 9.34
7–5 438.71 553.51 26.17 537.17 22.44 477.51 8.84

7–23 562.82 681.96 21.17 764.25 35.79 585.43 4.02
7–47 439.41 635.94 44.73 614.46 39.84 547.12 24.51
8–3 631.81 956.53 51.39 967.58 53.14 873.44 38.24

8–53 449.22 603.06 34.25 575.94 28.21 480.57 6.98
8–77 1237.21 1597.48 29.12 1544.54 24.84 1498.52 21.12
9–20 930.18 1154.98 24.17 1129.66 21.45 1033.48 11.11
9–47 1233.13 1655.84 34.28 1638.35 32.86 1365.43 10.73
9–62 1460.72 1767.43 21.00 1807.34 23.73 1630.97 11.66

10–7 2538.17 2999.12 18.16 3304.73 30.20 2942.94 15.95
10–13 2191.75 2764.06 26.11 2834.93 29.35 2695.90 23.00
10–31 614.57 769.24 25.17 815.69 32.73 677.61 10.26
11–21 1017.13 1281.54 26.00 1247.38 22.64 1114.53 9.58
11–56 1790.09 2234.09 24.80 2337.83 30.60 2184.68 22.04
11–63 2021.89 2396.62 18.53 2451.35 21.24 2329.96 15.24
12–14 1766.43 2125.57 20.33 2342.19 32.59 2295.43 29.95
12–36 2968.87 3683.40 24.07 4136.53 39.33 3756.95 26.54
12–80 2457.55 2753.37 12.04 3215.07 30.82 3061.05 24.56
15–2 3927.99 4258.26 8.41 5529.95 40.78 6036.81 53.69
15–3 4327.26 5108.68 18.06 6346.85 46.67 5764.59 33.22
15–5 3490.20 4256.99 21.97 5497.48 57.51 4629.45 32.64
20–2 8344.87 9449.50 13.24 10421.02 24.88 11497.30 37.78
20–5 14533.30 15520.40 6.79 18238.09 25.49 20678.80 42.29
20–6 7438.49 8327.00 11.94 9740.80 30.95 9850.56 32.43

# wins – 9 – 2 – 25 –

CGACO (with 1-hour and 8 CPU cores). These results show
that AGP is a very efficient approach to dealing with large
RCJS instances. In additional, the result here also confirm
that the reusable heuristics have good generalisation and
scalability. Although trained with small and unrelated (i.e.
different sources) instances, the reusable heuristics show very
good performance on the test instances. In the rest of this
section, further analyses are presented to show the influences
of parameters on AGP’s performance and behaviours.

B. Influence of population size

The test performance %dev in Fig. 2(a) shows increasing
the population size can significantly improve the performance
of AGP. However, it should be noted that the improvement is
not exceptional as the %dev only reduce 1% as the population
increases from 20, 000 to 40, 000. This is further confirmed
when we observe the training progress of AGP in Fig. 3(a)
(noted that the test performance is only sampled every 20
generation to save computational costs) and Fig. 4(a). AGP
behaves very similarly as the population size increases. These
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Fig. 2. Parameter sensitivity analyses.

analyses suggest that population size alone cannot efficiently
and significantly improve the performance AGP.

C. Influence of diversity control

Fig. 2(b) and Fig. 3(b) show that α ≥ 2 do not show a
significant impact on the test performance and the program
size although a slight decrease in test performance is observed
as the alpha values increase. AGP with a high values of α
(i.e. 4,8) seems to produce less variance. In the future study,
a more detailed analysis is need to carefully examine the role
of diversity control in AGP.

D. Influence of training instances

Fig. 2(c) and Fig. 3(c) show that increasing the number
of training instances per evaluation can improve the test
performance of AGP. One explanation is that more training set
will allow AGP to more accurately identify good heuristics.
However, as shown in Fig. 3(c), the number of training
instances show a greater impact in the early stage of the
evolution. As the evolution progresses, the impact of a larger
training set is not very clear. This is expected as more data
is available in A and N , which makes the adaptive fitness
function predict the heuristic performance more accurately.

E. Influence of intermediate population

The size of the intermediate population is the most impor-
tant parameter as shown in Fig. 2(d) and Fig. 3(d). A larger
intermediate population not only significantly improves the test
performance but also reduces its variance. It is also clear that
the advantage of a large intermediate population is sustained
as the evolution progresses, which is different from what we
have observed with the number of training instances. Given
that the size of intermediate population does not significantly
increase the computational times (as compared to the increase
in the number of training instances) of AGP, a reasonably
large intermediate population is desirable. One disadvantage
of a large intermediate population size, as shown in Fig. 4,
is that it may slightly increase the average size of evolved
heuristics and slow down the evaluation process. However,
due to the bloat control trick embedding directly into the

adaptive fitness function, the sizes of evolved heuristics are
systematically controlled.

The results here are also compared to the GP methods
proposed in [18] for evolving multi-pass iterative heuristics.
It is clear that the proposed AGP outperforms GP [18] for
all test instances (the results are not shown here due to
space limitations). Nonetheless, in future studies, additional
experiments need to be conducted to fully understand the
contribution of each of the evolved heuristics.

V. CONCLUSIONS

In this paper, we develop a new adaptive genetic program-
ming (AGP) algorithm to coevolve a diverse set of schedul-
ing heuristics for RCJS. Contributions of this paper include
a new phenotypic representation of scheduling heuristic, a
mapping technique that monitor the evolutionary process, and
an adaptive fitness function that balance both the quality and
size of evolved heuristics. The experimental results show that
the reusable heuristics evolved by AGP are very effective for
medium and large RCJS instances. For large instances, evolved
heuristics can easily outperform customised meta-heuristics
such as ACO and CGACO.

In future studies, we plan to further examine diversity
control strategy in AGP and look at the solution to dynamically
adjust the population size of AGP to make the algorithm more
efficient. As the gaps between solutions found by evolved
heuristics and the best known solutions are still significant,
there is a lot room for further improvements.
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