
A Threshold-free Classification Mechanism in
Genetic Programming for High-dimensional

Unbalanced Classification
Wenbin Pei1 Bing Xue1 Lin Shang2 and Mengjie Zhang1

1. School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

2. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
Email: {Wenbin.Pei, Bing.Xue, Mengjie.Zhang}@ecs.vuw.ac.nz, shanglin@nju.edu.cn

Abstract—Class imbalance is an unavoidable issue in many
real-world applications. Learning from unbalanced data, clas-
sifiers are often biased toward the majority class, while the
minority class is important as well (even more important in many
cases). How the issue of class imbalance is addressed becomes
more challenging if a classification task further encounters the
high dimensionality issue. This paper proposes a new genetic
programming (GP) approach to high-dimensional unbalanced
classification. A new classification mechanism is proposed for GP
to improve its classification performance. This new classification
mechanism is independent of a classification threshold to separate
the majority class and the minority class. The effectiveness of the
proposed method is examined on seven high-dimensional unbal-
anced datasets. Experimental results indicate that the proposed
GP method often performs better than other GP methods that
use a fitness function to solve the issue of class imbalance, in
terms of classification performance and training time.

Keywords: Unbalanced classification, High dimensionality,
Genetic programming

I. INTRODUCTION

Unbalanced classification has many real-world applications,
such as fraud detection [1] and medical diagnosis [2]. In
these tasks, the minority class is often more important than
the majority class. However, class imbalance often leads to
classifiers biased toward the majority class. This is because
the majority class typically outnumbers the minority class,
but the standard classification algorithms assume all instances
(from different classes) being equally important (with the same
misclassification cost).

To address the issue of class imbalance, sampling meth-
ods (mainly including undersampling [3] and oversamping
methods [4]–[6]) are commonly used to re-balance an unbal-
anced dataset before using classification algorithms. However,
sampling methods have to change the original information.
Moreover, it is often hard for undersampling methods to avoid
information loss when judging which instances are to be
excluded from the majority class. In oversampling methods,
some instances from the minority class are learned repeatedly,
or some new instances are generated for the minority class,
which may increase an additional computation cost. Cost-
sensitive learning [7] is a new learning paradigm that takes
the costs (mainly misclassification costs) into consideration,

so that different classification mistakes are treated differently.
Cost-sensitive learning has been widely applied to unbalanced
classification. However, for most existing cost-sensitive algo-
rithms, the cost matrices required by cost-sensitive algorithms
are often manually designed.

Recently, the increasing number of unbalance datasets fur-
ther encounter the issue of high dimensionality. High dimen-
sionality often makes it more challenging for classifiers to
correctly discriminate the boundary between the majority class
and the minority class [8]. Genetic programming (GP) [9] is a
population-based evolutionary algorithm, which automatically
evolves solutions to a problem. When GP is used to evolve
classifiers, a GP tree (also called a program or individual)
could be seen as a classifier. It is noteworthy that GP is able to
automatically select the informative features when classifiers
are constructed.

However, because of the uneven class distribution, the
classification performance of GP is degraded. The constructed
classifiers often achieve a high accuracy on the majority class
but a low accuracy on the minority class. This is because,
for many GP methods, the overall classification accuracy is
often used as a fitness function, which fails to take class
imbalance into consideration. As a result, GP is biased toward
the majority class because the majority class contributes more
to the overall classification accuracy than the minority class.

In GP, development of a fitness function is an effective
solution to address the problem of class imbalance [10], [11].
When an accuracy measure, such as the weighted average
classification accuracy, is used as a fitness function to evolve
classifiers, a classification threshold TH is required to separate
the output of a program for predictions in binary classification.
By taking an instance as an input, if an output value of
a program is greater than or equal to TH , this instance is
classified to the minority class, otherwise it is classified to the
majority class. Usually, TH is set to be 0 for separating the
original program outputs or 0.5 if the outputs are normalized
to a range of [0, 1].

In unbalanced classification, this classification threshold set-
ting is important [10]. In cost-sensitive learning, the threshold-
moving methods are often effective, based on the idea that
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the classification threshold is moving toward the inexpensive
instances (i.e. instances with the lower misclassification cost),
so that those expensive instances with the higher misclassi-
fication cost are easier to be correctly classified [12], [13].
However, a new moved classification threshold is calculated by
misclassification cost values that are often provided by domain
experts.

In this paper, we propose an easy classification mechanism
that is independent of a predefined classification threshold,
working with a fitness function for GP in high-dimensional
unbalanced classification.
Goals: The overall goal of this paper is to investigate a
classification mechanism for GP to improve its performance
for high-dimensional unbalanced classification. This goal is
composed of the following sub-goals:
− Develop a new classification mechanism,
− Develop a new fitness function working with the new

classification mechanism,
− Investigate whether the proposed method enhances the

classification performance of GP for unbalanced classifi-
cation,

− Investigate whether the proposed method is time-efficient
and achieves at least similar performance as other existing
classification methods.

The remainder of this paper is organised as follows. Section
II introduces important background knowledge. In Section III,
the proposed method is introduced. Section IV is devoted
to introducing experiment design. Results are reported and
discussed in Section V. In Section VI, the two evolved trees
are shown for further analysis. Finally, the conclusion of this
paper is drawn in section VII.

II. BACKGROUND

A. Methods to Solve the Issue of Class Imbalance

a) At the data level: Sampling methods are used to re-
balance an unbalanced dataset before classification algorithms
are applied. Generally speaking, sampling methods have three
groups, including undersampling methods [3], oversampling
methods [4], [6], and hybrid sampling methods [14]. Hybrid
sampling methods combine oversampling and undersampling.
New instances are created by an oversampling method for the
minority class, and then some of them, which are less useful,
are removed.

b) At the algorithmic level: Cost-sensitive learning is the
most popular method in this group, which incorporates mis-
classification costs into classification paradigms to construct
cost-sensitive classifiers [15], [16]. For support vector ma-
chines (SVMs) or other kernel-based classification algorithms,
a kernel function is modified to address the problem of class
imbalance [17].

B. Methods to Solve the High Dimensionality Issue

a) Provision of more instances: In high-dimensional
classification, when features typically outnumber instances, the
data space is sparse. Accordingly, it is often very challenging
to discover the useful pattern or rules. In addition, because

of the lack of the training instances, classifiers are often
overfitting to training data. An easy solution is to provide more
instances [18]. However, in many situations, it is often difficult
to collect new useful instances.

b) Feature selection: Feature selection is a popular so-
lution to solve high dimensionality issue. The limited number
of instances are described by too many features, while many
of them are irrelevant or redundant features. The goal of
feature selection is to select the smallest subset of features
that are necessary and sufficient to describe the target labels
[19]. The selected features, instead of all features, are used
for classification. However, in high-dimensional classification,
feature selection is a challenging task because the search
space is large (the total number of possible solutions is 2n,
n is a number of original features). Moreover, there might be
two-way, three-way or complex multi-way interactions among
features [20]. Therefore, a feature, which is weakly relevant to
target labels, might become important when using it together
with other features. Oppositely, an important feature may
become redundant when using it together with other features.

Feature selection with unbalanced data is more challenging.
This is because the selected features should benefit the major-
ity class as well as the minority class [21]. If the issue of class
imbalance is not addressed, the selected features are possibly
biased toward the majority class. As a result, the classifiers
using these biased features are more likely to be biased toward
the majority class.

C. GP for Classification

In GP, for each tree, its internal nodes are taken from a
function set, while the leaf nodes are taken from a terminal
set. Usually, a GP tree is seen as a classifier, which could
be translated into a mathematical expression [22]. The output
of this mathematical expression is used to classify instances.
Usually, all features are fed to GP as terminals to evolve
classifiers. However, not all features are used by each GP tree.
Informative features are automatically selected to improve the
classification performance of a GP tree.

However, in unbalanced classification, classifiers evolved by
GP are often biased toward the majority class, resulting in
a performance bias issue. In [23], GP is used for learning
fuzzy rule bases, where the linguistic variables are used
in a hierarchical way, and synthetic minority over-sampling
technique (SMOTE) is adopted to address the issue of class
imbalance. Hunt et al. [24] investigate the use of sampling
methods in GP to solve the issue of class imbalance. In [25],
[26], cost-sensitive learning is used with GP for unbalanced
classification. In [10], [11], [27], [28], new fitness functions
are proposed for GP in unbalanced classification. Bhowan et
al. [29]–[32] develop multi-objective GP (MOGP) methods for
unbalanced classification, where the accuracies of the majority
class and the minority class are used as two potentially
conflicting objectives to be evolved together.

Sampling methods often need to change the original data
distribution and require some additional computation. Cost-
sensitive learning methods require the cost matrices that are



often manually designed. For a single-objective GP method,
a fitness function can be used to address the issue of class
imbalance. Generally speaking, a single-objective GP method
is often time-efficient than MOGP methods. This is because
MOGP methods have more components than a single-objective
GP method. Moreover, it is often time-consuming to obtain
the complete Pareto front in MOGP methods. Therefore, this
paper focus on single-objective GP, where a new classification
mechanism is developed, working with a fitness function, to
address the issue of class imbalance for high-dimensional
unbalanced classification.

III. THE PROPOSED METHOD

This section introduces the proposed method, called Genetic
Programming with a Threshold-free Classification Mechanism
(GPTFCM).

A. The Threshold-free Classification Mechanism

As introduced previously, when an accuracy measure is used
as a fitness function, a classification threshold TH is required
for separating the output of a program to predict the majority
class and the minority class. Usually, TH is set to be 0.
However, in unbalanced classification, the main limitation of
using a predefined threshold is that the classification perfor-
mance of a program (as a classifier) is only evaluated at this
predefined threshold, but the classification performance of this
program may be different by using other thresholds to separate
its output [10]. Therefore, for unbalanced classification, area
under a curve (AUC) is often used as a fitness function, which
evaluates true positive rate and false positive rate many times
by varying thresholds to provide an accurate rendition of the
curve. However, GP using AUC as a fitness function is very
time-consuming [10].

Accordingly, this paper investigates a threshold-free classi-
fication mechanism for GP. The idea is explained by Figure 1.
In binary classification, for each GP tree, its left sub-tree and
right sub-tree are able to learn input data independently. When
learning from the minority class (denoted as Min), the output
value of the left sub-tree (denoted as output1) is expected to
be greater than or equal to the output value of the right sub-
tree (denoted as output2). Oppositely, when learning from the
majority class (denoted as Maj), output1 is expected to be
smaller than output2.

The proposed method (GPTFCM) is based on strongly-
typed genetic programming (STGP), because STGP makes
it possible to evolve GP programs based on a predefined
program representation. In STGP, every terminal has a type,
and correspondingly, each function has types for its arguments
and its returned values [9].

The Function Set and The Terminal Set

In Table I, we report the terminal set and the function set
in the proposed method (GPTFCM) for binary classification.
The function set has eight functions in total, including four
basic arithmetic functions (i.e. +, −, × and protected division

Figure 1: Classification mechanism in the training process

÷), and four functions (i.e. if , Left, Right and Root). The
protected division ÷ returns zero when dividing by zero.

A conditional function if takes three arguments (when the
first argument is negative, the second argument is returned,
otherwise it returns the third argument). Left function takes
one argument, and it directly returns the value of this argument
(data type of the returned value is Oput1). The role of
Left function is to transfer an output value of the left sub-
tree to the root node of a tree. Similar to Left function,
Right function also has one argument, and it directly returns
the value of its argument (data type of the returned value
is Oput2). Right function transfers an output value of the
right sub-tree to the root node of a tree. Root function has
two arguments (i.e. argu1 with the data type Oput1 and
argu2 with the data type Oput2). Root function directly
returns [argu1, argu2] (i.e. a two-value vector). Root function
accepts outputs of the left sub-tree and right sub-tree, and
combines them together as an output of a tree. Therefore, for
a tree, when taking instance i as an input, its output is a two-
value vector [Outputi1, Outputi2].

Classification Predictions in a Training Set

− For instance i from Min, if Outputi1 ≥ Outputi2, then
this instance is correctly classified;

− For instance j from Maj, if Outputj1 < Outputj2, then
this instance is correctly classified.

B. Fitness Function

In a population, every individual is evaluated by a fitness
function to measure its classification performance. In the
proposed method, the fitness function consists of two parts.
The first part is to measure the classification performance by
using the squared root of the product of the accuracy on the
minority class and the accuracy on the majority class. The
second part is used to measure the mean values of outputs of
the two sub-trees when Min is inputted into the left sub-tree
and Maj is inputted into the right sub-tree, respectively. The
fitness function is defined as:

R_L =

√
CMin

CMin +MMin

∗
CMaj

CMaj +MMaj

+ I(Min,Maj) (1)



Table I: The function set and terminal set

Terminal Set Function Set
Name Type Name Type (Input) Type (Output)

• Root [Oput1, Oput2] Oput (two-value vector)
• Left [float] Oput1 (float)
• Right [float] Oput2 (float)

• Features of a dataset float • + [float, float] float
• A random constant float • − [float, float] float

• × [float, float] float
• ÷ (protected) [float, float] float
• if [float, float, float] float

Note: Oput1 and Oput2 are different types in an evolved tree, even though they are actually the same type (float, but it is redefined as different types in the
tree representation).

where CMin (or CMaj) indicates how many instances from
Min (or Maj) are correctly classified; MMin (or MMaj) indi-
cates how many instances from Min (or Maj) are incorrectly
classified. In R_L, I(Min,Maj) is:

I(Min,Maj) =

{
1, if

Σ
|Min|
i=1

Outputi1

|Min| > 0 and
Σ
|Maj|
j=1

Outputj2

|Maj| > 0

0, otherwise

The main steps in the fitness evaluation are summarized as
follows:
1) CMin = CMaj = MMin = MMaj = 0.

2) Classification process:

For instance i from Min, if Outputi1 ≥ Outputi2,
then CMin = CMin + 1, else MMin = MMin + 1; For
instance j from Maj, if Outputj1 < Outputj2, then
CMaj = CMaj + 1, else MMaj = MMaj + 1.

3) Calculate µMin =
Σ
|Min|
i=1 Outputi1

|Min| .

4) Calculate µMaj =
Σ
|Maj|
j=1 Outputj2

|Maj| .

5) If µMin > 0 and µMaj > 0, then I(Min,Maj) = 1,
else I(Min,Maj) = 0.

6) Calculate the fitness value of a tree according to Eq. (1).

C. The Overall Design of the Proposed Method

The overall design is shown in Figure 2. The training set
is split into the majority class and the minority class. After
initializing a population in terms of trees, the fitness of every
tree (as a classifier) is calculated by Eq. (1). Based on the
fitness values, the better trees are selected by tournament se-
lection. Genetic operators, i.e. mutation, crossover and elitism,
are used to create a new population. The evolutionary process
is stopped until a termination criterion is satisfied. After the
training process, the best tree from the final generation is
chosen as a classifier to predict class labels of unseen instances
in a test set. For each instance, if the output value of the left
sub-tree is greater than or equal to that of the right sub-tree,
this instance is predicted into Min, otherwise it is predicted
into Maj.

It is straightforward to generalize this method to multi-class
classification. For n-class classification, a tree is constituted

Training Set (Split into the majority 
class and the minority class)

Initialization        Fitness 
   Evaluations

      
         Tournament Selection

     Evolution 

Elitism Mutation Crossover

  Select genetic operators probabilistically  

   New populationTermination

NO
Yes

Best Program

Test Set

GP

Figure 2: Overall design of GPTFCM

by n sub-trees and a root node. For example, for a three-
class classification task, a GP tree consists of three sub-
trees and a root node. Therefore, when taking instance i as
an input, the output of a tree is a three-value vector, i.e.
[Outputi1, Outputi2, Outputi3]. On a test set, for instance
i, if Outputi1 ≥ Outputi2 and Outputi1 ≥ Outputi3,
then this instance is predicted into Class 1; if Outputi2 >
Outputi1 and Outputi2 ≥ Outputi3, then this instance
is predicted into Class 2; if Outputi3 > Outputi1 and
Outputi3 > Outputi2, then this instance is predicted into
Class 3.

IV. EXPERIMENT DESIGN

A. Datasets

In the experiments, gene expression datasets are used
to examine the classification performance of the proposed
method. This is because many gene expression datasets have
a large number of features (thousands), but a few number
of instances are available. Therefore, these datasets may
have the high dimensionality issue. Moreover, many of these
datasets are unbalanced. These datasets can be downloaded at
https://schlieplab.org/Static/Supplements/CompCancer/datasets.
htm.

More details of these datasets are reported in Table II,
including the number of features and instances, and class
imbalance ratio (IR = |Maj|

|Min| , where |Maj| is the number



Table II: Dataset description

Dataset #Features #Instances IR (Approximately)
Armstrong-2002-v1 1,081 72 2

Golub_1990 1,868 72 2
Colon 2,000 62 2

Leukemia 7,129 72 2
DLBCL 5,469 77 3

Yeoh-2002-v1 2,526 248 5
Lung 12,600 158 8

instances in Maj and |Min| is the number of instances in
Min).

The stratified sampling is employed to split a dataset into
a training set and a test set (70% as a training set and 30%
as a test set), to ensure the same class imbalance ratio in the
training set and the test set (also the same as that in the original
whole dataset). To examine the classification performance of
the proposed method on a highly unbalanced dataset, Lung is
changed to a binary dataset (IR = 8) by using label 1 as the
majority class and label 2 as the minority class.

B. Baseline Methods

The proposed method is compared with GP methods and
non-GP methods from machine learning.

In single-objective GP, a fitness function is often adopted to
solve the problem of class imbalance. The proposed method
is compared with GP methods with different fitness functions,
including weighted-average classification accuracy (Ave),
the geometric mean (G_Mean), average mean squared error
(Amse) [10], Correlation ratio (Corr) [10], Dist [10], and
an AUC measure WMW (Aucw). In GP, Ave and G_Mean
are often used to replace the overall classification accuracy
as a fitness function for unbalanced classification. Amse
[10] has been proposed as a fitness function to improve the
classification performance of GP in unbalanced classification.
Because it is very time-consuming for GP to use a full AUC
measure as a fitness function, Corr and Dist [10] have been
proposed to approximate AUC for saving training time. Aucw
is an AUC measure, and GP using it often achieves a good
performance in unbalanced classification. The definitions of
these fitness functions are listed as following:

• Ave = 0.5 ∗ TP
TP+FN + 0.5 ∗ TN

TN+FP

where TP is true positive, FP is false positive, TN is
true negative and FN is false negative.

• G_Mean =
√

TP
TP+FN ∗

TN
TN+FP

• Amse = 1
KΣKc=1(1− ΣNc

i=1(sig(Pci
)−Tc)2

Nc∗2 )

where sig(x) = 2
1+e−x − 1, Tc are -0.5 and 0.5 for

Maj and Min, respectively. K is the number of
classes (K = 2 for binary classification), Nc is the
number of instances in class c, and Pci is an output
value of a genetic program taking instance i from class c.

• Corr = 1
K (r + Izt(1, µmin, µmaj))

where r =

√ ∑K
c=1 Nc(µc−µ)2∑K

c=1

∑Nc
i=1(Pci−µ)2

, µc =
∑Nc

i=1 Pci

Nc
, and

µ =
∑K

c=1 Ncµc∑K
c=1 Nc

. Indicator function Izt enforces a zero
class threshold, which returns 1 if µmin > 0 and
µmaj < 0, otherwise it returns 0.

• Dist =
|µmin−µmaj |
σmin+σmaj

∗ Izt(2, µmin, µmaj)

where µc =
∑Nc

i=1 Pci

Nc
, σc =

√
1
Nc
∗
∑Nc

i=1(Pci − µc)2,
and the distance value of a program is doubled if Izt
returns 1.

• Aucw =
∑

i∈Min

∑
j∈Maj Iwmw(Pi,Pj)

|Min|∗|Maj|

where Iwmw(Pi, Pj) =

{
1, Pi > Pj and Pi ≥ 0
0, otherwise

.

In machine learning, classification algorithms often use
sampling methods to solve the problem of class imbalance
at the data level. The proposed method is compared with non-
GP classification algorithms, including 1-nearest neighbours
(1NN), decision trees (DT), random forests (RF), gradient
boosting decision tree (GBDT) and naive bayes (NB). The
oversampling methods, i.e. SMOTE [4] and adaptive synthetic
sampling approach (ADASYN) [6], are used to solve the issue
of class imbalance for these classification algorithms.

C. Parameter Settings

The parameter settings of GP methods are reported in Table
III. Note that the compared GP methods are standard tree-
based GP (not STGP). For other GP methods, their function
set includes four arithmetic functions and a conditional op-
erator if ; the terminal set includes all features and a random
constant. The function set of compared GP methods is slightly
different from that of the proposed method (reported in Table
I). However, it should be fair to compare the proposed method
with other GP methods. This is because, in the function set in
GPTFCM, Left, Right and Root do not directly manipulate
on input data.

Table III: Parameter settings

Parameters Values
Population size 1024

Generations 50
Initialization Ramped half-and-half

Mutation rate (Subtree mutation) 0.2
Crossover rate (Subtree crossover) 0.8

Elitism 1
Selection method Tournament selection (size=6)

Maximum tree depth 10

V. RESULTS AND DISCUSSIONS

Each GP method has been independently run 30 times with
different random seeds, and results (i.e. AUC) of different
GP methods are reported in Table IV. AUC has been widely
used as a metric to show the classification performance of a



Table IV: GPTFCM Versus other GP methods on the test
sets

AUC (%) Training Time
(seconds)

Datasets Methods Best Mean±Std ST Mean
GPAve 100 94.48 ± 8.4 + 114.86

GPG_Mean 100 92.13 ± 8.01 + 114.88
Armstrong-2002-v1 GPAmse 100 90.17 ± 7.65 + 146.24

(IR = 2) GPCorr 100 94.67 ± 7.56 + 142.55
GPDist 100 95.84 ± 3.93 = 141.33

GPAucw 100 94.46 ± 4.93 = 1917.99
GPTFCM 100 97.22 ± 4.21 123.89

GPAve 100 91.93 ± 10.09 + 158.77
GPG_Mean 100 88.99 ± 11.89 + 158.31

Golub_1990 GPAmse 100 82.78 ± 11.62 + 226.35
(IR = 2) GPCorr 100 96.06 ± 6.32 = 225.06

GPDist 100 96.9 ± 5.23 = 229.09
GPAucw 100 98.42 ± 3.38 = 3089.78
GPTFCM 100 97.47 ± 4.01 155.92

GPAve 91.67 75.52 ± 10.11 + 177.08
GPG_Mean 92.86 71.51 ± 12.95 + 174.21

Colon GPAmse 95.24 74.8 ± 10.76 + 203.33
(IR = 2) GPCorr 96.43 75.28 ± 10.1 + 201.08

GPDist 92.86 76.59 ± 9.63 = 203.64
GPAucw 91.67 78.97 ± 7.3 = 2348.72
GPTFCM 94.05 79.33 ± 10.78 168.81

GPAve 98.21 88.79 ± 7.74 = 975.7
GPG_Mean 100 81.79 ± 15.38 + 979.29

Leukemia GPAmse 100 81.73 ± 11.84 + 793.34
(IR = 2) GPCorr 100 86.16 ± 10.84 + 785.98

GPDist 97.32 86.32 ± 8.95 + 788.22
GPAucw 100 86.28 ± 9.68 + 10396.7
GPTFCM 100 91.93 ± 6.0 858.06

GPAve 98.15 75.4 ± 15.67 + 740.03
GPG_Mean 100 77.01 ± 15.75 + 731.45

DLBCL GPAmse 100 77.19 ± 13.18 + 638.3
(IR = 3) GPCorr 98.15 81.02± 11.42 + 643.18

GPDist 99.07 84.35 ± 9.96 = 633.55
GPAucw 100 85.54 ± 10.83 = 7845.03
GPTFCM 100 86.1 ± 12.42 642.44

GPAve 100 83.97 ± 11.91 + 773.26
GPG_Mean 95.78 66.33 ± 16.09 + 767.4

Yeoh-2002-v1 GPAmse 92.06 63.79 ± 12.06 + 717.74
(IR = 5) GPCorr 100 93.29 ± 7.77 = 685.35

GPDist 100 91.1 ± 8.22 = 694.73
GPAucw 100 98.95 ± 2.32 − 24174.23
GPTFCM 100 90.57± 6.78 893.64

GPAve 100 83.46 ± 14.73 + 3048.62
GPG_Mean 99.05 80.89 ± 18.41 + 3038.89

Lung GPAmse 100 81.78 ± 16.55 + 2503.15
(IR = 8) GPCorr 100 80.71 ±17.21 + 2490.26

GPDist 100 84.27 ± 14.8 + 2493.37
GPAucw 100 92.35 ± 13.23 = 45375.33
GPTFCM 100 93.59 ± 6.57 2861.7

1: Std means standard deviation.
2: ST means significance test results.

classifier in unbalanced classification. This is because AUC is
invariant to data distributions [10]. The Wilcoxon statistical
significance test is conducted to further compare the proposed
method with different GP methods, with a significance level
of 0.05. The results of the significance test are also reported
in Table IV, where “+”, “=”and “−” indicate that the proposed
method (i.e. GPTFCM) is significantly better, similar, and
significantly worse than a compared method.

A. GPTFCM Versus Other GP Methods

(1) Analysis on Classification Performance

Generally, GPTFCM achieves similar or significantly better
performance in 41 out of the 42 cases (significantly better
performance in 28 cases and similar performance in 13 cases,
respectively). On five datasets (seven datasets in total), GPT-
FCM achieves the best AUC result than other GP methods.

GPAve, GPG_Mean and GPAmse use different accuracy-
based fitness functions (i.e Ave, G_Mean and Amse), re-
spectively. The three GP methods use the threshold-based

Table V: Summary on training time

Datasets GPTFCM consuming less training time
than GP methods (times)

Armstrong-2002-v1 4
Golub_1990 6

Colon 6
Leukemia 3
DLBCL 4

Yeoh-2002-v1 1
Lung 3

classification mechanism (threshold TH = 0). Comparing
the proposed method with the three GP methods, GPTFCM
achieves significantly better performance in 20 out of the 21
cases, based on results in Table IV.

GPCorr, GPDist and GPAucw adopt AUC approximation
measures (i.e. Corr and Dist) or AUC (i.e. Aucw) as a fitness
function, respectively. The three GP methods are independent
of a classification threshold in the training process [10].
GPAucw often achieves better performance than other GP
methods in unbalanced classification. Compared to GPAucw ,
GPTFCM achieves similar or significantly better performance
in 6 out of the 7 cases.

On the slightly unbalanced datasets (i.e 1 < IR ≤ 2), such
as Armstrong-2002-v1 and Golub_1990, GPTFCM achieves at
least similar classification performance than other GP methods
in all cases. On the highly unbalanced datasets (i.e IR >
2), the proposed method also performs better than other GP
methods in almost all cases.

In addition, based on results reported in Table IV, the best
AUC result (among 30 GP runs) on each dataset, is often at
least similar to other GP methods.

(2) Analysis on Training Time

Training time of different GP methods is reported in Table
IV, which is further summarized in Table V. According to
Table V, in 27 out of the 42 cases, GPTFCM consumes
less training time than other GP methods. More importantly,
GPTFCM consumes much less training time than GPAucw ,
but GPTFCM achieves similar classification performance on
5 datasets and significantly better performance on one dataset
than GPAucw , based on Table IV.

B. GPTFCM Versus Other Classification Methods Using Sam-
pling Methods

SMOTE and ADASYN are used to solve the issue of
class imbalance for 1NN, DT, RF, GBDT and NB. The
AUC results are reported in Table VI. Note that deterministic
algorithms (i.e. 1NN and NB) are run once, while DT, RF
and GBDT are conducted 30 times. The Wilcoxon statistical
significance test is also conducted (a significance level is 0.05).
Similarly, “+”, “=”and “−” indicate that the proposed method
is significantly better, similar, and significantly worse than a
compared method.

On three datasets, i.e. Armstrong-2002-v1, Golub_1990 and
colon, the proposed method achieves the best classification
performance, compared to other methods. In general, GPT-
FCM achieves significantly better or similar performance in



Table VI: GPTFCM Versus other traditional classification methods using sampling methods (AUC %)

1NN
w.t.

1NN
w.t.

DT
w.t.

DT
w.t.

RF
w.t.

RF
w.t.

GBDT
w.t.

GBDT
w.t.

NB
w.t.

NB
w.t. GPTFCM

SMOTE ADASYN SMOTE ADASYN SMOTE ADASYN SMOTE ADASYN SMOTE ADASYN Best Mean Significantly better
(Times)

Armstrong-2002-v1 96.67 = 93.33 = 88.46 + 89.59 + 90.97 + 91.97 + 89.52 + 89.52 + 85.71 + 92.86 + 100 97.22 8
Golub_1990 93.75 = 93.75 = 89.91 + 90.51 + 89.80 + 89.35 + 92.86 + 92.86 + 68.75 + 68.75 + 100 97.47 8

Colon 74.40 = 74.40 = 64.04 + 66.69 + 64.46 + 66.19 + 65.83 + 62.20 + 47.62 + 47.62 + 94.05 79.33 8
Leukemia 90.18 = 83.04 + 86.61 + 86.61+ 81.52 + 80.47 + 86.61 + 86.61+ 100 − 100 − 100 91.93 7
DLBCL 69.44 + 77.78+ 67.31 + 67.31 + 77.13 + 74.35 + 72.22 + 72.22 + 80.86 + 88.89 = 100 86.1 9

Yeoh-2002-v1 86.29 = 91.13 = 96.03 − 95.64 − 72.66 + 72.66 + 96.15 − 96.15 − 80.58 + 86.04 = 100 90.57 3
Lung 85.24 + 76.90 + 95.21 = 97.83 = 82.23 + 79.74+ 100 − 99.67 − 80.00 + 74.60 + 100 93.59 6

62 out of the 70 cases. By GPTFCM, the best result on each
dataset is at least similar to other classification methods.

On slightly unbalanced datasets, including Armstrong-2002-
v1, Golub_1990, colon and Leukemia, GPTFCM generally
performs well, achieving similar or significantly better per-
formance than other GP methods in 38 out of the 40 cases
(significantly better performance in 31 cases and similar
performance in 7 cases, respectively). On highly unbalanced
datasets, including DLBCL, Yeoh-2002-v1 and Lung, the new
method achieves significantly better or similar performance in
24 out of the 30 cases (significantly better performance in 18
cases and similar performance in 6 cases, respectively).

C. Summary

In summary, based on results in Table IV and Table VI,
the new method often achieves at least similar classification
performance than other classification methods. However, ac-
cording to results, it is noticed that the proposed method
is more suitable for sightly unbalanced datasets than highly
unbalanced datasets.

VI. FURTHER ANALYSIS

In this section, we will take two examples of evolved
programs (from two datasets, i.e. Armstrong-2002-v1 and
Lung) to further analyse the proposed method.

Figure 3: An evolved tree on Armstrong-2002-v1

An evolved tree on Armstrong (1081 features, 72 instances,
IR = 2) is shown in Figure 3, which is the best tree from
a final generation in a GP run. Using this tree to classify
instances in the test set, the AUC score is 100%, and the
accuracies of the majority class and the minority class are also

100%. Training time of this GP run is 79.69s, which is faster
than the averaged training time on this dataset (i.e. 123.89s).
This tree has 7 nodes in total, where only three features are
used as terminals to achieve 100% AUC.

Figure 4: An evolved tree on Lung

In Figure 4, we show another program that is evolved in
a GP run on Lung (12600 features, 158 instances, and IR =
8). On the test set, AUC result of this tree is 100%, and its
accuracies of the majority class and the minority class are also
100%. The training time of this GP run takes 3060.26s, which
is longer than the averaged training time on this dataset (i.e.
2861.7s). In addition, the tree (on Lung) in Figure 4, having
16 nodes in total, is more complicated than the evolved tree
(on Armstrong-2002-v1) in Figure 3. This is mainly because
the number of features (12600 features) in Lung is much more
than that of Armstrong-2002-v1 (1081 features).

VII. CONCLUSIONS

This paper develops a new threshold-free classification
mechanism for GP in high-dimensional unbalanced classifi-
cation. In binary classification, for a tree, when an instance
from the minority class is inputted, the output value of its left
sub-tree is expected to be greater than or equal to that of its
right sub-tree. Oppositely, when an instance from the majority
class is inputted, the output value of its left sub-tree is expected
to be smaller than that of its right sub-tree. To achieve this,
in the new method (i.e. GPTFCM), the tree representation is
predefined, working with a terminal set and a function set,
to obtain two output values from the left sub-tree and right
sub-tree.



In the experiments, the proposed method was examined
on seven high-dimensional unbalanced datasets. Compared to
other GP methods, the classification performance of the new
method is often better than other methods. More specifically,
compared to GP methods based on threshold-based classi-
fication mechanism (i.e. GPAve, GPG_Mean and GPAmse),
GPTFCM often achieves significantly better performance. In
addition, GPTFCM often achieves similar classification per-
formance as GPAucw , but the new method consumes much
less training time. Compared to other non-GP classification
methods, GPTFCM also achieves at least similar classification
performance in most cases.

However, based on results, the proposed method seems to be
more suitable for classification with sightly unbalanced data
than highly unbalanced data. In the future, we will further
investigate how classification performance could be improved
on highly unbalanced datasets.
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