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Abstract—This paper presents a feature selection method
that incorporates a sensitivity-based single feature importance
measure in a context-based feature selection approach. The
single-wise importance is based on the sensitivity of the learning
performance with respect to adding noise to the predictive fea-
tures. Genetic programming is used as a context-based selection
mechanism, where the selection of features is determined by the
change in the performance of the evolved genetic programming
models when the feature is injected with noise. Imputation is
a key strategy to mitigate the data incompleteness problem.
However, it has been rarely investigated for symbolic regression
on incomplete data. In this work, an attempt to contribute to
filling this gap is presented. The proposed method is applied to
selecting imputation predictors (features/variables) in symbolic
regression with missing values. The evaluation is performed on
real-world data sets considering three performance measures:
imputation accuracy, symbolic regression performance, and fea-
tures’ reduction ability. Compared with the benchmark methods,
the experimental evaluation shows that the proposed method can
achieve an enhanced imputation, improve the symbolic regression
performance, and use smaller sets of selected predictors.

Index Terms—Symbolic Regression, Genetic Programming,
Incomplete Data, Imputation, Feature Selection

I. INTRODUCTION

Symbolic regression (SR) is the task of finding a sym-
bolic/ mathematical model that best fits a given data set [1].
Compared with traditional methods, it has the advantage of
requiring no presumptions on the desired model. Moreover,
its “white-box” nature provides desirable interpretability for
the learned models. Therefore, symbolic regression has several
important applications in various areas such as water resources
management [2] and wind energy [3].

Missing values represent a serious problem when learning
from real-world data [4]. One widely used approach for
dealing with missing values is called imputation. Imputation
is the process of predicting the missing values using some
estimation models. Imputation methods can be univariate or
multivariate. In the univariate methods, the missing values in
each feature are imputed using the observed data in the same
feature. In contrast, data from different features can be used
in multivariate imputation. Consequently, the selection of the
features to be involved in the imputation can make a significant
difference. The predictive features used for imputing the
missing values in an incomplete feature are called imputation
predictors.

Feature selection is the process of selecting a subset of
relevant/informative features based on predefined criteria [5].
Usually, the criteria imply the impact of the selected subset on
the learning performance and the size of this subset. Feature
selection has been intensively employed for several machine
learning tasks such as classification and clustering. However,
a few studies have been published on feature selection for
symbolic regression. Moreover, to the best of our knowledge,
only two of these studies have considered data incompleteness.

Feature selection methods can be classified as wrapper,
filter, and embedded approaches based on the way of involving
a learning algorithm in the evaluation procedure [6]. Filter
feature selection methods are based on the data properties
that can be measured using distance, information, dependency,
and consistency [7]. On the other hand, wrapper methods use
a learning algorithm for evaluating the features during the
manipulation. Unlike filter and wrapper methods, embedded
methods build the learning model and select a subset of the
features simultaneously.

One way for feature selection is to identify the impor-
tance of individual features and select top-ranked features
accordingly. Feature importance can be identified by several
approaches. For example, it can be measured by the impact of
the change in each feature on the learning performance. Such
a change can be made by injecting noise into each feature
individually [8]. This method is a wrapper-based feature
selection method as it requires involving a learning algorithm
to measure the performance before and after adding noise.

Genetic programming (GP) is a nature-inspired learning
algorithm that simulates the Darwinian evolutionary process to
generate computer programs for solving a given problem [1].
It has been successfully used for many tasks. For example, GP
is considered as the main approach for symbolic regression.
Another interesting aspect of GP is its ability for context-
based feature selection. GP is well-known as being a typical
example of the embedded feature selection approach. It selects
the predictive feature whilst constructing the prediction model.
It has been profitably applied for feature selection in different
learning tasks such as clustering, classification, and symbolic
regression [5]. Moreover, GP has been proposed for dealing
with incomplete data achieving encouraging results [9].

One of the main disadvantages of the importance-based
feature selection approach is that it does not consider the
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interaction between different features when constructing pre-
diction models. On the other hand, GP-based feature selection
does not consider the individual importance of the involved
features. To tackle these disadvantages, a combination of the
two approaches is proposed in this work.

In this work, the main goal is to develop a GP-based
method for selecting imputation predictors to improve the
performance of symbolic regression on incomplete data. In
addition to the implicit context-based selection ability of GP,
an explicit single-wise importance measure is employed to
select the predictors. This measure is based on how sensitive
the constructed GP models are to the noise added to the
corresponding predictors.

Specific objectives of this work include:
• Developing a predictor selection method that considers

both context-wise and single-wise contributions of the
predictive features.

• Utilizing the proposed method in imputing the missing
values for symbolic regression on incomplete data.

• Evaluating the proposed approach on real-world data sets
with comparisons to other approaches using different
performance measures.

The rest of this paper is organized as follows. A brief
review of the related work is given in Section II. Section
III presents the details of the proposed method. In Section
IV, the experiment settings are stated and the corresponding
experimental results are described in Section V. Finally, this
work is concluded in Section VI.

II. RELATED WORK

A. Incomplete Data Imputation

Data incompleteness is a serious problem in regression us-
ing real-world data. For example, in the UCI machine learning
repository [10], around one-forth the available regression data
sets are annotated as having missing values. There are three
main types of missing data: missing completely at random
(MCAR), missing at random (MAR), and missing not at ran-
dom (MNAR) [4]. MCAR implies that there is no relationship
between the missingness of a value and other data set values,
observed or missing. In MAR, the missingness of value is
related to some observed data rather than to the missing data
itself. However, MNAR means that the missingness is related
to the reason it’s missing (neither MAR nor MCAR).

Imputation is a key strategy to mitigate the missing data
issue [11]. It is used to produce approximate values to fill
in the missing data. Imputed data can be produced using
two approaches: single imputation and multiple imputation
[4]. Single imputation provides a specific value to replace
the missing data directly. In contrast, multiple imputation
estimates this value from several possible responses based
on the variance/confidence interval analysis. After applying
imputation, the imputed data can be used for learning by
machine learning algorithms in a similar manner that complete
data sets are used. Consequently, the imputation performance
impacts the whole learning process. Therefore, the adopted
imputation approach should be decided carefully.

B. Feature Selection for Symbolic Regression

For high-dimensional symbolic regression, a two-stage fea-
ture selection method is presented in [12]. The evolutionary
process is split into two phases. The first phase provides a
set of candidate important features. This set is then used
in the second phase to improve the generalisation of GP
models. With the same goal, a different feature selection
method is proposed in [13]. This method works by integrating
a permutation measure, used in random forest regression,
to obtain the importance of features that appear in the GP
models. A similar approach is proposed in [14], where the
permutation measure is employed for feature selection based
on the influence of a feature within a GP model.

In [15], artificial bee colony programming-based feature
selection is proposed for symbolic regression. They reported
better results than standard GP regarding both the learning
ability and generalization performance on synthetic and real-
world high-dimensional data sets. In [16], deep learning fea-
ture selection is utilized in symbolic regression-classification.
It is proposed to enhance GP assisted linear discriminant
analysis for multiclass classification problems presented in
[17]. However, all these studies consider complete data for
evaluating their methods.

C. Feature Selection on Incomplete Data

In [18], an imputation method is proposed based on feature
selection and cluster analysis for incomplete high-dimensional
data. This method has three steps. First, the dimension is
reduced by a clustering-based feature selection algorithm.
Second, the selected data are clustered using a parallel k-
means method. Finally, the missing values are estimated using
data in the same cluster.

In [19], a wrapper-based feature selection method is pro-
posed to improve the performance of a classifier with the
ability to classify incomplete data sets. The particle swarm
optimisation (PSO) is used for feature selection and the C4.5
method is used for classification. A similar approach is also
used for classification with missing values in [20]. In [21], a
hybrid method based on fuzzy c-means, mutual information,
and regression, is proposed for incomplete data imputation.
However, these methods are evaluated on classification tasks.

D. Symbolic Regression with Missing Values

A few studies have been conducted on symbolic regression
with missing values. In [22], a GP method for symbolic regres-
sion is presented, where missing values are handled through
prediction models. However, this method used synthetic data
generated by a dynamic model called Lorenz attractor system.
An imputation method combining GP and k-nearest neighbor
is presented for symbolic regression with missing values in
[23]. This method uses GP to construct imputation models
for the missing values using instances obtained by KNN. This
approach is time consuming especially on large data sets. In
[24], a GP-based wrapper imputation method for symbolic
regression with incomplete data is proposed. It works by
improving the regression prediction of the target variable while



constructing GP imputation models for incomplete features.
This is done by designing a fitness function that minimizes the
target regression error in addition to reducing the imputation
errors of estimating the missing values.

Feature selection is employed to select the imputation
predictors for symbolic regression with missing values in
a few studies. In [25], a GP-based feature selection and
ranking method is proposed. It works by constructing GP
models for each incomplete feature using other features as
predictors. The predictors that appear in the GP models are
then ranked based on the fitness values of the models and the
occurrence frequency of these predictors. In [26], GP-based
method for simultaneous imputation and feature selection is
presented. This method constructs the imputation models for
the incomplete features and selects their predictive features
at the same time. In [27], a complexity measure is employed
in GP for model selection and the imputation predictors are
selected from the selected models. However, none of these
methods considered the impact of individual predictors on the
empirical error as a selection criterion. The importance of the
predictors is estimated based on the genetic characteristics of
the constructed models.

Based on the review above, there is a need for more effort on
utilizing feature selection to improving the symbolic regression
with missing values.

III. THE PROPOSED METHOD

The main idea of the proposed method is to integrate a
noise sensitivity measure in the GP-based predictor selection
process. This section starts by introducing both selection ap-
proaches: GP and noise sensitivity, then the proposed method
that combines the two approaches is presented.

A. GP-based Predictor Selection

GP performs implicit feature selection as the features used
in a GP program represent a set of selected features. For
example, in tree-based GP, the target variable is represented
as an expression tree in which the leaf nodes can be chosen
from a terminal set that contains the input features. Any feature
appears in the constructed program is considered as a selected
feature by this program.

As GP models can provide mathematical expressions to
represent the relationships between input variables and a target
variable, it can be used for selecting predictive features for an
incomplete feature. Let f be an incomplete feature in a given
incomplete data set, D. The data set is reformed to consider
this feature as the target variable and the other features as
input variables (predictors). Although incomplete features can
be considered as predictors, only the complete instances are
used. That is, the instances having missing values are ignored,
which produces a complete data set, Df , whose prediction
target is f .

After reforming the data set, the standard GP is applied
to construct GP prediction models for the feature f . The
predictors that appear in these models are considered as the
selected imputation predictors for the feature f , Selectedf .
This process is performed for each incomplete feature getting

a set of selected imputation predictor sets for all incomplete
features, Selectedall.

B. Noise Sensitivity-based Predictor Selection

Predictor selection based on sensitivity depends on a
straightforward assumption: the prediction target is more sen-
sitive to the change in important predictors than others. The
sensitivity can be measured using different techniques. One of
these techniques is a noise-based method called feature per-
turbation. Its idea is that, when perturbed by noise, irrelevant
predictors have little influence on the learning performance
whereas important predictors impact the performance signif-
icantly. As a result, relevant predictors with a high effect on
performance under noise are selected.

This method is a wrapper-based feature selection method
where a learning algorithm is required for performance eval-
uation. It uses an iterative process to measure the predictors’
sensitivity in three stages. The first stage is to use the wrapper
algorithm to build a learning model on a subset of the training
data with all available predictors, D(subtrain)

f . The noise-free
performance is obtained by evaluating the model on a separate
holdout data set, D(holdout)

f , getting the error Err(holdout)f .
The second stage is to inject noise to a specific predictor, p,

in D
(holdout)
f getting D

(holdout,noisy)
f,p . After that, the perfor-

mance of the learned model is evaluated on this noisy holdout
data set getting the error Err(holdout,noisy)f,p . The two stages
are repeated several R times producing two sets of errors.
Errs

(holdout)
all,f is a noise-free error set and Errs(holdout,noisy)all,f,p

is the set of errors that measure the impact of adding noise to
the predictor p on the prediction of the feature f .

The third stage is to test the significance of the change in
the predictor under consideration. This stage is done for each
predictor and if the tested change is significant, this predictor
is appended to the selected predictor set. The whole process
of the three stages is carried out for all incomplete features
and the result is a set of selected predictor sets each associated
with a specific feature.

C. Noise-Sensitive GP-Based Predictor Selection

The main limitation of noise-based selection is the as-
sumption of predictors’ independency. It measures the impact
of the change in each predictor independently ignoring the
interaction factor between different predictors when used in
a prediction model. In contrast, the standard GP selection
approach considers the interaction between different predictors
rather than the individual importance of each predictor. That
is, any predictor appears in the evolved model is selected
regardless of its individual importance. Therefore, in this work,
a hybrid method between the two approaches is proposed
aiming at combining their advantages and suppressing the
drawbacks of each approach.

The proposed method has two main steps. The first one is to
measure the impact of the noise change in GP selected predic-
tors for a specific incomplete feature, f . This step is shown in
Algorithm 1. Secondly, this process is repeated several times
and a statistical test is used to assist the significance of the



Algorithm 1: GP-based Predictor Noise Sensitivity
Evaluation(D, f )
Description: Evaluating predictor sensitivity to noise

using GP.
Input : An incomplete training data set, D, and

an incomplete feature identifier, f .
Output : Errors before and after adding noise to

the predictors of the feature f .
1 Extract a data set of complete instances, Df ,

considering f as a prediction target variable and the
other features, Pf , as input variables (predictors);

2 Split Df to D(subtrain)
f and D(holdout)

f ;
3 Err

(holdout,noisy)
f = φ;

4 Construct GP model, Gf , to predict f using the data
set D(subtrain)

f , i.e. Gf ≈ GP (D
(subtrain)
f );

5 Evaluate the error of Gf on D(holdout)
f as

Err
(holdout)
f ;

6 foreach Predictor p ∈ Pf do
7 Form D

(holdout,noisy)
f,p by adding noise into the

predictor p in D(holdout)
f ;

8 Evaluate the error of Gf on D(holdout,noisy)
f,p as

Err
(holdout,noisy)
f,p ;

9 Append Err(holdout,noisy)f,p to Errs(holdout,noisy)f ;
10 end
11 return Err

(holdout)
f , Errs(holdout,noisy)f ;

change to decide which predictors deserve to be selected. This
step is shown in Algorithm 2.

In this approach, there is a need to decide the noise
characteristics. As this approach assumes that the predictors
are independent of each other, a Gaussian noise depending on
each particular predictor is used as in Eq. (1). However, it
is not necessary for the noise to follow a certain distribution
since the noise is only used for perturbing the predictors.

Noisef ∼ N (µ = 0, σ2 = σf ) (1)

where, σf is the standard deviation of feature f across all
training samples.

In Algorithm 1, the training data D is first prepared to
consider the incomplete feature f as a prediction target, which
produces the data set Df . After that, Df is split into two
subsets, D(subtrain)

f and D(holdout)
f . The data set D(subtrain)

f

is used to train a GP model, Gf , to predict the missing values
of f , whereas D(holdout)

f is used to evaluate the evolved model
getting the prediction error Err(holdout)f .

Next, the sensitivity of the built model, Gf , to noise
added to each predictor independently is measured. For each
predictive feature, p ∈ Pf , a noisy data set D(holdout,noisy)

f,p is
generated by injecting noise to the predictor p in D(holdout)

f .
The impact of this noise is then measured by the error of Gf

on D(holdout,noisy)
f,p and referred to as Err(holdout,noisy)f,p . This

Algorithm 2: Selecting predictors for incomplete fea-
tures using multiple GP runs
Input : An incomplete training data set D.
Output: A set of selected predictors for each

incomplete feature.
1 Selectedall = φ;
2 foreach incomplete feature f in D do
3 Let Pf be the set of all the available predictors of

f ;
4 Selectedf = φ;
5 Initialize Errs(holdout,noisy)all,f,p = φ ∀p ∈ Pf ;
6 Initialize Errs(holdout)all,f = φ;
7 r = 0;
8 while r <= R do
9 Use Algorithm 1 to get the sensitivity errors,

Err
(holdout)
r,f and Errs(holdout,noisy)r,f , for the

feature f on the data D;
10 Append Err(holdout)r,f to Errs(holdout)all,f ;
11 foreach Predictor p ∈ Pf do
12 if p in Errs(holdout,noisy)r,f then
13 Err

(holdout,noisy)
f,p =Errs(holdout,noisy)r,f,p ;

14 else
15 Err

(holdout,noisy)
f,p =Err(holdout)r,f ;

16 end
17 Append Err(holdout,noisy)f,p to

Errs
(holdout,noisy)
all,f,p ;

18 end
19 r = r + 1;
20 end
21 foreach Predictor p ∈ Pf do
22 pv = significance test(Errs(holdout)all,f ,

Errs
(holdout,noisy)
f,p ) ;

23 if pv is significant then
24 Append p to Selectedf ;
25 end
26 end
27 Append Selectedf to Selectedall;
28 end
29 return Selectedall;

process is done for all predictors returning a set that contains
all their noise-affected errors, Errs(holdout,noisy)f .

As shown in Algorithm 2, the process of obtaining noise
sensitivity errors for each incomplete feature f (Algorithm 1)
is repeated R times (R = 30 in this work). The output of
these runs is a set of R values of the errors obtained from the
different runs before adding noise, Errs(holdout)all,f , and |Pf | sets
of R values of the errors obtained after adding noise to each
predictor. Each set of the errors with noise is for a specific
predictive feature p and it is denoted as Errs(holdout,noisy)all,f,p .
Note that, in case the predictor p is not included in the rth

GP run, its noise sensitivity error, Err(holdout,noisy)f,p , is set to
the error before noise Err(holdout)r,f , which means zero impact



TABLE I
STATISTICS OF THE DATA SETS

Data set #Instances #Features
fri c0 100 25 (Fri) 100 25

CPMP-2015-runtime-regression (CPMP) 2108 24
Bank32nh (Bank) 8192 33

Selwood 31 54
MIP 1090 145
Mtp 4450 203

of this predictor in this run.
After obtaining the error values before and after adding

noise to each predictor for each incomplete feature, a signif-
icance test is used to decide whether the predictor has a sig-
nificant impact on the prediction of f or not. If the difference
between Errs

(holdout)
all,f and Errs

(holdout,noisy)
f,p is significant

then the predictor p is added to the selected predictors of f ,
Selectedf .

IV. EXPERIMENT SETUP

Six real-world regression data sets obtained from the repos-
itory OpenML [28] are used for evaluation in this work. As
shown in Table I, these data sets have different numbers of
features and instances. Each data set is divided randomly into
training and test data sets with a 70:30 ratio. For each data
set, 30% Missing At Random (MAR) missingness is imposed
on 20% of the features to generate an incomplete copy of
the data set. The initial experiments were conducted using the
missingness ratios 10%, 30%, 50% for the instances on 10%,
20%, and 30% of the features. However, as similar patterns for
the results have been observed, only one combination (30%
instance-based ratio on 20% incomplete features). This process
is used to generate 30 data set copies for each missingness
probability, i.e. 150 incomplete train/test data sets are obtained.

The goodness of the selected predictors is evaluated based
on their impact when used by some popular imputation meth-
ods. These methods include linear regression (LR), predictive
mean matching (PMM), and K-nearest neighbour (KNN) [11].
The synthetic incomplete data sets are generated using the
R package SIMSEM [29] and the imputation methods are
implemented using the R package Simputation [30] keeping
default settings. For GP methods, Table II shows the used
settings. The metric used for computing the imputation error
and the regression error is relative squared error (RSE) shown
in Equation (2).

RSE =

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(2)

where n is the number of instances, yi (ŷi) is the target value
(predicted value) of the ith instance, and ȳ is the average of
the target values.

As GP is a stochastic method, the experiments are repeated
30 times for each method then the results are compared
statistically. The significance of the difference between the
results is measured based on the pair-wise Wilcoxon test with
a significance level of 0.05. The proposed method is compared

TABLE II
GP SETTINGS

Parameter Value
Generations 50

Population size 1024
Crossover rate 0.9
Mutation rate 0.1

Elitism Top-5 individual
Selection method Tournament
Tournament size 7
Maximum depth 9

Initialization Ramped-half and half
Function set +, -, *, protected %
Terminal set predictors and constants ∈ U(−1, 1)

with three methods. The first one is to use all the available
features without any feature selection strategy and it is denoted
as “Full”. This approach is used to evaluate the difference
brought when feature selection is employed. Actually, it aims
to justify the consideration of feature selection in the first
place.

The other methods represent the underlying approaches and
they are considered to measure the ability of the proposed
method to improve their feature selectability. The second
method is to use standard GP for feature selection. The
third one is a noise-based feature selection method. As this
approach is wrapper-based, following [8], support vector ma-
chine (SVM) regressor is used and this method is referred to
as noise-based support vector feature selection (NSSV).

V. RESULTS AND DISCUSSIONS

For evaluation, three performance measures are consid-
ered: the accuracy of imputing missing values, the symbolic
regression performance, and the reduction ratio of selected
predictors.

A. Imputation Performance

The imputation performance measures the estimation ac-
curacy of the missing values. It is computed by the RSE
error (Eq. (2)) between the original complete data sets and
the corresponding imputed data sets. The impact of using pre-
dictors selected using the compared selection methods on the
imputation results of different imputation methods is shown in
Table III. For each data set, the mean of the imputation errors
over the corresponding thirty synthetic test incomplete data
sets is shown. For the predictors used to impute the incomplete
features, column “Full” refers to the use of all the available
predictors, “GP” refers to the use of standard GP for predictor
selection, “NSSV” means that the predictors are selected by
noise-sensitive support vectors, while “NSGP” refers to noise-
sensitive GP which implies the use of predictors selected by
the proposed method.

The imputation results of different imputation methods
when using predictors selected using the considered ap-
proaches are shown in Table III. The significance of the
difference between the different selection approaches is shown
in the column “ST”. The symbol “+” (“-”) means that the
corresponding method outperforms (is outperformed by) the



TABLE III
THE IMPUTATION PERFORMANCE OF DIFFERENT METHODS USING THE COMPARED PREDICTOR SELECTION APPROACHES ON THE TEST DATA SETS

Full GP NSSV NSGP
Method Data Mean Sdev ST Mean Sdev ST Mean Sdev ST Mean Sdev ST

LR

Fri 0.0564 0.0082 (-,-,-) 0.0553 0.0161 (+,-,-) 0.0525 0.0086 (+,+,-) 0.0519 0.0093 (+,+,+)
CPMP 0.1976 0.0115 (-,-,-) 0.185 0.0063 (+,=,-) 0.1843 0.0028 (+,=,-) 0.1839 0.0031 (+,+,+)
Bank 0.1349 0.0155 (=,-,-) 0.1351 0.0031 (=,-,-) 0.1225 0.0092 (+,+,-) 0.1151 0.0056 (+,+,+)

Selwood 0.2141 0.0142 (-,-,-) 0.2106 0.0034 (+,-,-) 0.2022 0.0088 (+,+,=) 0.201 0.0029 (+,+,=)
Pah 0.0733 0.0083 (-,-,-) 0.0679 0.0135 (+,-,-) 0.0433 0.0075 (+,+,-) 0.0391 0.0072 (+,+,+)
Mtp 0.1712 0.0158 (-,-,-) 0.1674 0.0116 (+,-,-) 0.1535 0.0023 (+,+,-) 0.1438 0.0053 (+,+,+)

KNN

Fri 0.0536 0.0061 (-,-,-) 0.0513 0.0048 (+,-,-) 0.0529 0.0062 (+,+,-) 0.05 0.0041 (+,+,+)
CPMP 0.1764 0.0114 (-,-,-) 0.1501 0.0152 (+,+,-) 0.1519 0.0035 (+,-,-) 0.1469 0.0075 (+,+,+)
Bank 0.1229 0.0126 (-,-,-) 0.1205 0.0025 (+,+,-) 0.1217 0.003 (+,-,-) 0.1101 0.0066 (+,+,+)

Selwood 0.1874 0.0041 (-,-,-) 0.1756 0.0139 (+,-,-) 0.1532 0.0051 (+,+,+) 0.1614 0.0025 (+,+,-)
Pah 0.0545 0.014 (-,-,-) 0.0505 0.0105 (+,-,-) 0.0478 0.0075 (+,+,-) 0.0374 0.0104 (+,+,+)
Mtp 0.1312 0.0175 (=,=,-) 0.1328 0.0094 (=,=,-) 0.1338 0.0022 (=,=,-) 0.1198 0.0034 (+,+,+)

PMM

Fri 0.0511 0.0134 (-,-,-) 0.0503 0.0084 (+,=,-) 0.0501 0.0042 (+,=,-) 0.0481 0.0107 (+,+,+)
CPMP 0.1489 0.003 (=,+,-) 0.148 0.003 (=,+,-) 0.1498 0.0021 (-,-,-) 0.1423 0.006 (+,+,+)
Bank 0.1166 0.0102 (-,-,-) 0.1157 0.0156 (+,=,-) 0.1153 0.0068 (+,=,-) 0.1001 0.0064 (+,+,+)

Selwood 0.1551 0.0185 (=,-,-) 0.1554 0.0122 (=,-,-) 0.1523 0.0098 (+,+,-) 0.1504 0.0091 (+,+,+)
Pah 0.0495 0.0073 (-,-,-) 0.0488 0.0124 (+,-,-) 0.0418 0.0084 (+,+,-) 0.034 0.0057 (+,+,+)
Mtp 0.1122 0.0157 (-,-,-) 0.1028 0.0123 (+,+,-) 0.1084 0.0025 (+,-,-) 0.0981 0.0079 (+,+,+)

compared method, whereas “=” means no significant differ-
ence. These symbols are shown in 3-tuples to show the test
sign of the comparison with the other methods in the same
order shown in the table.

Table III shows that the use of features selected by NSGP
leads to a remarkable improvement in the imputation per-
formance of the three imputation methods. It significantly
outperforms the use of the other three methods in almost
all considered cases. Although the two underlying methods,
GP and NSSV, improve the imputation performance compared
to the case of using all features without feature selection in
most cases, they fail against each other in several cases. GP
significantly outperforms NSSV in 4 cases while NSSV is
better in 10 cases. Moreover, they achieve similar performance
in 4 cases. The reason of these results can be the variation
in the selection mechanism used in each approach. This
variation might make some methods more suitable for specific
imputation methods on some data sets. GP suits the cases
in which the interaction between features is important, while
NSSV fits the cases where some features dominate the others.
Fundamentally, hybridizing both approaches enables NSGP to
work effectively in both situations.

B. Symbolic Regression Performance

On each training-test data set pair imputed using the previ-
ous settings, 30 independent symbolic regression experiments
are performed. For each imputation method, the test symbolic
regression results (computed using RSE) obtained from using
different selection strategies are compared. This ends up with
180 comparisons between each pair of selection methods.
Table IV shows the number of the cases when comparing
the symbolic regression performance associated with different
predictor selection methods. Each value in the table refers to
the number of times in which the column method significantly
outperforms the method in the corresponding row. The “Sum”
row is the total number of win cases for each method on each
data set, while the “Total” row is the sum of these sums over
all data sets.

From Table IV, the superiority of using NSGP regarding the
symbolic regression performance can be easily noticed. It has
the most win cases against the other methods on almost all data
sets. Such results are consistent with the imputation results
as methods with better imputation provide better symbolic
regression performance. An example of this pattern is that
NSSV has the best symbolic regression results when using
KNN on the Selwood data set, which is compatible with
imputation results as NSSV is the best as well.

Out of 1620 comparisons (30 synthetic incomplete data sets
× 6 original data sets × 3 selection methods × 3 imputation
methods), NSGP wins 1207 times while it is outperformed
in only 110 comparisons. The best results of NSGP are
achieved on the Mtp data set with 216 wins (out of 240)
and only 12 losses. This might be due to the relatively high
number of features and instances in this data set, which
makes it more suitable for feature selection. That is, more
features means a higher reduction possibility and a higher
number of instances provides more information, which in turn
increases the ability of the selection methods to provide more
stable results. However, the worst results of NSGP are on the
Selwood data set with 159 wins. One possible reason is that
the Selwood data set has more features than instances, which
might limit the learning ability of the proposed method.

On the other hand, the imputation method associated with
the best NSGP results is LR, which achieves 410 wins out
of 480 comparisons. Such results are due to the regression
nature of the LR method. Similar to the GP method, LR relies
on predictive features to predict the incomplete ones, which
makes it more sensitive to the used predictors in regression. In
contrast, when using an instance-based imputation approach,
less positive results are observed in NSGP with the KNN
imputation method.

C. Predictor Reduction

For the predictor reduction, the average number of selected
predictors for all incomplete features using different methods
is calculated for each incomplete copy data set. These averages



TABLE IV
NUMBER OF COMPARISONS IN WHICH THE METHOD IN THE COLUMN HAS A SIGNIFICANTLY BETTER SYMBOLIC REGRESSION PERFORMANCE THAN THE

METHOD IN THE CORRESPONDING ROW

LR KNN PMM
Data Method Full GP NSSV NSGP Full GP NSSV NSGP Full GP NSSV NSGP

Fri

Full 0 17 21 26 0 18 26 25 0 14 17 26
GP 1 0 16 23 2 0 23 21 3 0 4 23

NSSV 1 4 0 17 0 3 0 24 4 4 0 21
NSGP 0 1 2 0 0 3 2 0 0 2 2 0
Wins 2 22 39 66 2 24 51 70 7 20 23 70

CPMP

Full 0 18 21 30 0 14 18 26 0 5 2 26
GP 5 0 7 22 6 0 2 19 4 0 3 19

NSSV 1 6 0 15 3 13 0 23 16 14 0 25
NSGP 0 3 3 0 0 5 0 0 1 2 2 0
Wins 6 27 31 67 9 32 20 68 21 21 7 70

Bank

Full 0 6 20 27 0 17 17 24 0 17 27 25
GP 4 0 19 23 5 0 5 22 4 0 6 22

NSSV 2 4 0 21 5 21 0 26 0 4 0 22
NSGP 1 3 2 0 0 0 1 0 1 5 2 0
Wins 7 13 41 71 10 38 23 72 5 26 35 69

Selwood

Full 0 13 24 26 0 16 21 21 0 5 19 17
GP 5 0 23 25 2 0 21 22 8 0 21 20

NSSV 1 1 0 6 2 3 0 4 3 2 0 18
NSGP 1 2 4 0 0 1 20 0 4 2 6 0
Wins 7 16 51 57 4 20 62 47 15 9 46 55

Pah

Full 0 14 25 25 0 17 24 20 0 12 25 26
GP 6 0 19 24 6 0 19 23 3 0 18 24

NSSV 0 4 0 25 2 4 0 21 1 4 0 21
NSGP 1 3 0 0 1 3 2 0 0 4 1 0
Wins 7 21 44 74 9 24 45 64 4 20 44 71

Mtp

Full 0 11 22 30 0 6 11 24 0 17 20 27
GP 7 0 24 23 4 0 6 21 3 0 6 25

NSSV 1 1 0 22 7 9 0 26 4 19 0 18
NSGP 0 2 3 0 1 2 0 0 0 1 3 0
Wins 8 14 49 75 12 17 17 71 7 37 29 70

All Sum 37 113 255 410 46 155 218 392 59 133 184 405

are then averaged over the 30 copies for each original data set
and the results are shown in Table V.

TABLE V
THE AVERAGE NUMBER OF SELECTED PREDICTORS BY EACH METHOD ON

DIFFERENT DATA SETS

Data set Full GP NSSV NSGP
Fri 25 9 5 5

CPMP 24 7 8 5
Bank 33 16 21 11

Selwood 54 31 16 11
MIP 145 54 67 22
Mtp 203 73 91 21

It is clear that the NSGP method achieves higher predictor
reduction ratios than the other methods. This is expected as
the idea of NSGP is to select a subset of the sets selected
by both GP and NSSV. While NSSV selects all individually
important predictors and GP selects all contributor predictors,
NSGP selects the important predictors from the contributing
predictors. It selects the subset of the predictors selected by
GP that includes only the important predictors according to
the noise sensitivity measure.

Another way to judge the effectiveness of the feature selec-
tion methods is to examine whether the selected features by
the method are the actual predictive features or not. However,
this measure requires having data sets annotated stating which
features are relevant and which ones are not. This condition
holds for the data set Fri as only the first five features are used

to generate the target variable while the remaining ones are
randomly generated features. When evaluated on this data set,
both NSSV and NSGP selection methods are able to determine
these features successfully.

VI. CONCLUSIONS AND FUTURE WORK

This work presented an improved GP-based imputation
predictor selection method with application to symbolic re-
gression on incomplete data. This method combines two
feature selection approaches. The first approach considers the
contribution of the feature in its selection context, while the
other one relays on the importance of individual features
regarding a learning process. The former one is represented
using GP and the second one is implemented by measuring
the sensitivity of the prediction models to noise added to single
features.

The proposed method is applied to an important task that
has not been adequately investigated. This work is one of the
very first studies on predictor selection for imputation in sym-
bolic regression with incomplete data. The experimental work
shows that the proposed method takes the advantages of both
underlying methods. It selects the most important predictors
while taking into account their context. This conclusion can
be induced by the gained imputation improvement over these
methods. Moreover, it leads to a significant enhancement when
utilized for symbolic regression with missing values. Mean-
while, the improvement in both regression and imputation is



accompanied by a high reduction in the number of selected
predictors.

For future work, this method can be extended to provide
a feature ranking method based on the two considered as-
pects: single-wise importance and context-based contribution.
Moreover, this approach can be extended to be applied to
different machine learning tasks, e.g. classification. As the
main limitation of the proposed method, the time complexity
needs to be addressed. One possible option in this direction
is to use surrogates for reducing the evaluation time of the
evolved models.
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