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Abstract—Literature is prolific with metaheuristics for solving
continuous optimisation problems. But, in practice, it is difficult
to choose one appropriately. Moreover, it is necessary to deter-
mine a good enough set of parameters for the selected approach.
Hence, this work proposes a strategy based on a hyper-heuristic
for tailoring population-based metaheuristics. Besides, our ap-
proach considers search operators from well-known techniques
as building blocks for new ones. We test this strategy through
four benchmark functions and by varying their dimensions. We
obtain metaheuristics with diverse configurations. We observe a
possible performance boost when two or more search operators
are considered. This could be due to previously unexplored
interactions between such operators.

Index Terms—Metaheuristic, Hyper-heuristic, Search opera-
tors, Evolutionary computation.

I. INTRODUCTION

Technological breakthroughs offer us comfort and improve
our quality of life. But it also gives birth to new continu-
ous optimisation problems. Metaheuristics (MHs), defined as
general-purpose methods, have been proposed to tackle such
real-world problems. They are characterised by their flexibility,
versatility, and algorithmic simplicity when facing a problem.
A vast number of metaheuristics claiming to be the best one
for solving engineering problems has been reported [1], [2].
However, they are not so general: the no-free-lunch theorem
reigns [3]. In practice, researchers must know how to properly
select a MH for a given problem. Even then, they must also
know how to configure its parameters. Therefore, the question
of deciding which MH is worth implementing to solve a
defined problem remains open.

Throughout the last three decades, several MHs with curious
metaphors (or “flavours”) have been presented to face various
problems [4], [5]. However, they are not so different from con-
ventional metaheuristics such as Simulated Annealing (SA),
Differential Evolution (DE), and Particle Swarm Optimisation
(PSO). If we disassemble them into simple heuristics, say,
search operators, it is easy to notice that many of these are
variations of some basic ones, e.g., mutation [6], crossover [7],
and Lévy flight [8]. Some authors have taken advantage of
this fact for setting a procedure by selecting two or more
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simple heuristics to render MHs with excellent performances
in particular problems [9].

The idea of algorithms for combining heuristics is not en-
tirely new, as it goes back to the 1960s. But only recently it has
grown into an optimisation sub-area known as hyper-heuristics
(HHs) [10]. Of course, some alternative methodologies have
also appeared, but they are beyond the scope of this work.

HHs provide a general approach, which have been defined
as a high-level heuristic. Such a heuristic selects or modifies
low-level heuristics as a mean of finding better solutions for
a problem domain [11]. It is interesting to see that many
HHs have been applied to combinatorial problems [12], [13],
whilst only a few have dealt with continuous ones [11]. For
example, Miranda et al. proposed a Hybrid Hyper-Heuristic
for Algorithm Design (H3AD) [14]. The authors used H3AD
for optimising (or redesigning) the well-known Particle Swarm
Optimisation (PSO) algorithm to 60 continuous benchmark
problems. Their results showed that, in at least 80% of the
times, customised algorithms outperformed their counterparts.
Moreover, the selection process reduced computational cost.
However, this strategy employed the PSO grammar as design
schema. So, it may prove somewhat difficult to extend this
idea to other metaheuristics. In a similar approach, Abell et
al. generated an algorithm portfolio that included DE and PSO,
and which targeted the Black-Box Optimisation Benchmark-
ing problems [15]. They demonstrated that, by incorporating
feature extraction it is possible to consider problem structure
when selecting the best solution method within the portfolio.

Despite the scarce research dealing with high-level solvers
for continuous optimisation, the available ones lack a proper
generalisation scheme. Hence, this work proposes a HH-
based strategy for filling such a knowledge gap. Our approach
generates custom population-based MHs to solve continuous
optimisation problems. Each custom MH is built by cascading
one or more search operators collected from well-known MHs.
We test our proposal on four benchmark problems and under
several dimensions. Moreover, we consider a different number
of operators for tailoring MHs. The number of such operators
defines the cardinality of metaheuristics. Therefore, our anal-
ysis focuses on the influence of problem dimensionality, as
well as on the effects of the MH cardinality.

This document is organised as follows. Sect. II introduces
the theoretical foundations, whilst Sect. III describes the
testing methodology. Then, Sect. IV presents and discusses
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the obtained data. Finally, Sect. V highlights the most relevant
conclusions and lays out some paths for future works.

II. THEORETICAL FOUNDATIONS

This section aims to settle solid foundations to avoid
misunderstandings of the terms and definitions (which are
controversial in the literature) used in the proposed approach.

A. Optimisation

Optimisation is somehow implicit in nature. Even so, it
mainly concerns mathematical procedures for reaching the
best result of a problem in practical engineering scenarios. In
this work, we use the problem definition given by a feasible
domain and an objective function to minimise, as follows.

Definition 1 (Problem domain). Let X be a feasible set or
problem domain such as it is simply established by

X = {~x ∈ RD : (∃ ~L, ~U ∈ RD)[~L � ~x � ~U ]}, (1)

with ~L and ~U as the lower and upper boundary vectors. Thus,
D represents the dimensionality of the problem.

Definition 2 (Minimisation problem). Let f(~x) be a real-
valued function defined on a set X 6= ∅ such as f(~x) : ~x ∈
X ⊆ RD → R. Thus, a minimisation problem is stated as

~x∗ = argmin
~x∈X

{f(~x)} , (2)

where ~x∗ ∈ X is the optimal vector (or solution) that
minimises the objective function, i.e., f(~x∗) ≤ f(~x) ∀ ~x ∈ X.

B. Heuristics

A heuristic is a procedure that creates or modifies a
candidate solution for a given problem instance. There are
many classifications of heuristics in the literature. Most of
them relate to combinatorial optimisation domains [10], whilst
rather scarce on continuous ones [11].

In this work, we categorise continuous heuristics in three
groups, extending the ideas of [10], [11]: low-level, mid-
level, and high-level. These relate to simple heuristics, meta-
heuristics, and hyper-heuristics, respectively. Certainly, all of
them are heuristics but operate under different conditions and
domains. Fig. 1 shows an illustrative example of them, which
is also detailed below. However, since most heuristics use a set
of search individuals, we first need to establish the following
concepts:

Fig. 1. Heuristics of three levels interacting with the problem domain (X)
and the heuristic space (H). Since f(~x) is the objective function, ~x(t) is a
candidate solution at time t, and ~x∗ is the best solution found.

Definition 3 (Population). Let X(t) be a finite set of N can-
didate solutions for an optimisation problem given by X and
f(~x) (cf. Definition 2) at time t in an iterative procedure, i.e.,
X(t) = {~x1(t), ~x2(t), . . . , ~xN (t)}. Then, ~xn(t) ∈ X ∀n =
1, . . . , N denotes the n-th candidate solution or search agent
of, let us say, the population X(t).

Definition 4 (Best solution). Let Z(t) be an arbitrary set of
solutions, which can be designated as, e.g., the entire popula-
tion Z(t) = X(t), the n-th neighbourhood Z(t) = Yn(t),
and the historical evolution of the n-th candidate Z(t) =
{~xn(0), ~xn(1), . . . , ~xn(t)}. Therefore, let ~x∗(t) ∈ Z(t) be the
best solution from Z(t), i.e., ~x∗(t) = argmin {f(Z(t))}.

1) Simple Heuristics (SHs): They are the atomic unit in
terms of search techniques that interact directly with problem
domains. SHs are commonly categorised as constructive and
perturbative. As their names suggest, a constructive heuris-
tic renders new solutions from scratch while a perturbative
heuristic modifies current solutions [16]. Thus, we adopt these
categories adding another one, as Definition 5 describes.

Definition 5 (Simple Heuristic). Let h ∈ H be a simple
heuristic from the heuristic space H such that either produces,
modifies or evaluates a candidate solution ~x ∈ X, cf. Def-
inition 1, using a fitness metric, e.g., its objective function
value f(~x), cf. Definition 2. Therefore, three types of simple
heuristics can be stated as follows.

Remark 1 (Initialiser). Let hi ∈ Hi ⊂ H be a simple heuristic
that generates a candidate solution within the search space
~x ∈ X from scratch, i.e., hi : RD → X. Then, hi is called
Initialiser. The most common one in the literature is to place
the agents within the feasible search space randomly, e.g.,
using a uniform random distribution.

Remark 2 (Search Operator). Let hp ∈ Hp ⊂ H be a simple
heuristic that modifies a candidate solution within the search
space ~x ∈ X and updates it according to its corresponding
fitness value via a selection criterion (say, Selector), i.e., hp :
X → X. Thus, hi is called Search Operator or Perturbator.
There are several standard Selectors, such as direct, greedy,
and Metropolis update.

Remark 3 (Finaliser). Let hf ∈ Hf ⊂ H be a simple
heuristic that evaluates the quality of a solution, during an
iterative procedure, by using information about, for example,
the current solution, its fitness value, the current iteration, the
previous candidate solutions, and other measurements. hf is
called Finaliser due to it maps RD, X, R and Z+ to Z2, which
corresponds to a stop flag—a convergence measurement.

2) Metaheuristics (MHs): They are defined as master strate-
gies which control SHs. MHs are trendy in the literature
because of their proven performance on different scenarios [2],
[5]. Without loss of generality, most of the MHs have a scheme
that Fig. 2 exemplifies and Definition 6 details.

Definition 6 (Metaheuristic). Let MH be an iterative proce-
dure called metaheuristic that approaches an optimal solution



Fig. 2. Scheme of a metaheuristic. It comprises a sequence of simple
heuristics (hi

1, hp
i , hf

1 ) which iterates until a stopping flag is raised.

~x∗ for a given optimisation problem with an objective function
f(~x) (cf. Definition 2). This procedure is represented as a
finite sequence of simple heuristics (cf. Definition 5) to be
applied iteratively until a stopping condition is met, i.e.,
MH = (hi1, h

p
1, . . . , h

p
n, h

f
1 ) ∈ Hi × Hnp × Hf .

Remark 4. Notice that there is only one heuristic for each
category of initialisers and finalisers. This is assumed for the
sake of simplicity, but it can be extended with ease.

Remark 5. (Cardinality) An inherent property of metaheuris-
tics is the cardinality, which is defined as the number of search
operators implemented in it, i.e., disregarding the initialiser(s)
and finaliser(s); ergo #MH = n (cf. Remark 2). By way of
standardisation, we denote a metaheuristic and its cardinality
such as MHn, where MH1 = MH.

3) Hyper-heuristics (HHs): Many researchers describe HHs
as high-level heuristics controlling simple heuristics in the pro-
cess of solving an optimisation problem [10]. Therefore, HHs
move in the heuristic space to find a heuristic configuration
that solves a given problem. With that in mind, a HH can be
defined according to [11] as follows.

Definition 7 (Hyper-Heuristic). Let h ∈ Hn be a heuristic
configuration from the heuristic space H (cf. Definition 5), and
let F (h|X) : Hn × X → R be its performance measure func-
tion, since n is the number of search operators (cardinality).
Recall X as the problem domain in an optimisation problem
with an objective function f(~x) : X → R (cf. Definitions 1-
2). Then, a solution ~x∗ ∈ X and its corresponding fitness
value f(~x∗) are found when a h is applied on X, so its
performance F (h|X) can also be determined. Therefore, let
HH be a technique that solves

(h∗; ~x∗) = argmax
h∈Hn,~x∈X

{F (h|X)}. (3)

In other words, a HH searches for the optimal heuristic
configuration h∗ that produces the optimal solution ~x∗ with
the maximal performance F (h∗|X).

Remark 6. (Heuristic Configuration) When performing a
hyper-heuristic process, a heuristic configuration h ∈ Hn is a
way of referring to a metaheuristic MH (cf. Definition 6).

III. METHODOLOGY

In this work, we followed a dual-stage methodology to test
our approach for tailoring metaheuristics (MHs). As a first

stage (Fig. 3), we compiled a collection of Search Opera-
tors (SOs) from MHs in the literature. The following 10 well-
known MHs were selected: Random Search [17], Simulated
Anneling [18], Genetic Algorithms [6], Cuckoo Search [8],
Differential Evolution [19], Particle Swarm [20], [21], Fire-
fly [22], Spiral [23], [24], Central Force [25], and Gravitational
Search [26]. Then, we identified their operators (initialiser,
perturbators, selectors, and finaliser) according to Definition 6.
So, we collected the SOs and identified their corresponding
selectors. Subsequently, we identified the control parameters
for each SO and their domains. Afterward, we were able to
generate an expanded SOs collection by assigning different
value combinations for each parameter of each search operator.
In this study, we set the number of combinations to five
to prevent an excessively large collection. Take heed that a
SO corresponds to a simple perturbative heuristic extracted
from an MH, with an associated selector and a defined set of
parameter values.

Fig. 3. First stage of the Methodology carried out in this work, which consists
of the search operator collection.

In the second stage (Fig. 4), we implemented a Random
Search approach to tune the HH. Such a process implied
exploring the heuristic space given by the collection of SOs.
This method was set to perform 5 steps, with 50 trials per
step. Bear in mind that every time the HH builds a candidate
MHn, it does so following Definition 6. So, the metaheuristic
considers a uniform random initialisation and its stop criterion
is given by a maximum number of iterations. Also, the number
of SOs in the MHn equals its cardinality n. For our testing,
population size and number of iterations were set to 30
and 100, respectively. Moreover, we considered cardinality
values of 1, 2, and 3. These values were chosen for chiefly
two reasons. First and foremost, because MHs available in
literature usually fall within one of these values (cf. Sect. IV).
Second, because we wanted to keep our approach as simple
as possible since a higher cardinality expands the size of the
search domain for the HH. It is important to highlight that
we only tune each HH for five steps, due to computing power
restrictions. We are aware of this drawback and plan on dealing
with it in a future work. Nonetheless, and since each step
considers 50 trials, tuning is carried out for a maximum of
250 function evaluations.

In order for the HH to improve, some performance metric



Fig. 4. Second stage of the Methodology carried out in this work, which
consists of the hyper-heuristic implementation.

is required. So, we measured the performance of a candidate
MHn, F (MHn|X), via its fitness values. Since the SOs are
usually stochastic, we ran each candidate MHn 100 times and
recorded all fitness values. Hence, the outcome is given by the
sum of the median fitness and its interquartile range.

Due to the exploratory nature of our work, we considered
four representative benchmark functions commonly found in
literature. For each one, we selected dimensionality values of
2, 10 and 30. These functions have minima equal to zero
f(~x∗) = 0 but different domains X and optimum locations
~x∗. Also, they differ in difficulty due to their shape. So, we
sorted them based on difficulty, as follows:

1) De Jong with X = [−1000, 1000]D and ~x∗ = ~0.
2) Griewank with X = [−600, 600]D and ~x∗ = ~0.
3) Ackley with X = [−32.78, 32.78]D and ~x∗ = ~0.
4) Rosenbrock with X = [−5, 5]D and ~x∗ = ~1.
In this work, all the experiments were carried out in

Python™ 3.7.6 running on an ASUS® S46C with an Intel®
Core™ i7-3537U CPU at 2.00-2.50 GHz, 6 GB RAM, and
Canonical® Ubuntu™ 19.04-64 bit.

IV. RESULTS

Table I presents a list with all the extracted operators. As can
be seen, the 10 MHs yielded 22 search operators (SOs). Each
operator is accompanied by its default selector, which decides
how to update the new positions. Thus, SOs based on swarm
dynamic, gravitation, and genetic mutation employ the direct
update, whilst the others use the greedy one. Moreover, by
considering five values for each parameter of every operator,
we obtained a total of 925 SOs within the database. Nonethe-
less, and for the sake of brevity, we omit the whole collection.
Bear in mind that the database could become bigger/smaller
by increasing/decreasing the number of values per parameter.
By using the MH scheme (cf. Fig. 2), we realised that most
algorithms exhibit a cardinality of one. The only exceptions
are Genetic Algorithms, Differential Evolution and Cuckoo
Search, whose cardinality equals two. It is important to note
that even if MHs have been split into the building blocks
we call SOs, it does not imply that all SOs have the same
intricacies. For example, random-based operators such as
random sampling and random walk are straightforward since

they represent a change in position of the agent. However, as
we go deeper into Table I, we find dynamics-based operators
that imply several and more elaborate operations. For example,
in Gravitational Search the change in position for the agent
depends on a velocity calculation that relies on the estimate
of an acceleration value.

Fig. 5 summarises the performance achieved by the hyper-
heuristic on the target problems. Recall that we implemented
a wider than usual search domain for De Jong’s function. The
reason: It is a straightforward multidimensional optimisation
problem, so no difference was otherwise perceived. Interesting
elements arise when moving to this second stage of testing. For
example, we noticed that performance distribution is positively
skewed, which is a desired feature as more values are closer to
zero. Also, we observed that, in general, a higher cardinality
seems to have a positive impact, allowing a better performance
on more complex problems. However, care must be taken.
In increasing cardinality, the size of the search space is also
expanded. Hence, it becomes more difficult to find a proper
sequence of search operators. For example, in the simplest
scenario (Fig. 5(a)) moving from a cardinality of two to three
dramatically improves performance and stability of hyper-
heuristics dealing with problems in 10D. However, it also
worsens the stability in problems with 30D. We believe this
behaviour can be due to the nature of the function, which is the
only one with a convex landscape from the studied problems.
This way, by considering 10 dimensions the problem may
be simple enough so that many three-block combinations
yield a good performance. Nonetheless, at 30D the problem
is more complex and a fewer number of combinations may
perform properly. Even so, this could be alleviated by either
allocating more resources to the tuning stage or increasing
the number of iterations. Hence, this implies that cardinality
must be correctly chosen, or that it could be tuned as a
hyper-parameter. As an example of what may happen consider
Griewank and Ackley functions (Fig. 5(b) and (c)). For 30D,
MH1 performed better than the other ones. Similarly, for the
Rosenbrock function (Fig. 5(d)) a cardinality of two yielded
the best performance at the highest number of dimensions.
Therefore, a higher cardinality does not guarantee a better
performance, at least for metaheuristics with a limited number
of iterations, as those found within this work. Also, recall
that most traditional metaheuristics are equivalent to a MH1,
whilst only a few are to a MH2. Moreover, MH3 can be
recognised in the literature as hybrid or “exotically-named”
methods. This implies that the HH may actually yield an
“already known” metaheuristic. Nevertheless, our approach is
also flexible enough to provide hybrid algorithms with better
performance.

So, it is paramount to analyze the structure of the generated
solvers and determine whether they are equivalent to original
metaheuristics. Table II to IV shows performance statistics
for each cardinality. Take in mind that the best results across
cardinality are highlighted in bold. Hence, Table II indicates
that the hyper-heuristic found for Griewank in 30D, and which
considered a single search operator (SO), outperformed those



TABLE I
SEARCH OPERATORS EXTRACTED FROM 10 WELL-KNOWN METAHEURISTICS IN THE LITERATURE.

Name, Reference Expressionsa Parametersb

Random Samplec, [17] ~xn(t+ 1) = ~r ~r 3 ri ∼ U(−1, 1)

Random Walkc, [18] ~xn(t+ 1) = ~xn(t) + α~r α ∈ [0.1, 0.9], ~r 3 ri ∼ U(−1, 1) ∨
N (0, 1)

Local Random Walkc, [8] ~xn(t+ 1) = ~xn(t) + α~r �H(~r − p)� (~xz1 (t)− ~xz2 (t)) α ∈ [0.1, 0.9], p ∈ [0.1, 0.9], ~r 3 ri ∼
U(0, 1), z1, z2 ∼ UI(1, N), z1 6= z2

Genetic Mutation, [6] ~xn(t+ 1) = (1− ~m)� ~xn(t) + α~m� ~s,
~m = H(~r − pm), ∀n ∈ {dpeNe, . . . , N}

α = 1.0, ~s 3 si ∼ U(−1, 1) ∨N (0, 1),
~r 3 ri ∼ U(0, 1), pe, pm ∈ [0.1, 0.9]

Genetic Single-Point Crossoverd, [6] ~xn(t+ 1) = (1− ~m)� ~u+ ~m� ~v, ~m = H(~i− z), ~i = (1, 2, . . . , D)ᵀ ∈ RD z ∼ UI(1, D)

Genetic Two-Points Crossoverd, [6] ~xn(t+ 1) = (1− ~m)� ~u+ ~m� ~v, ~m = H(~i− z1)−H(~i− z2),
~i = (1, 2, . . . , D)ᵀ ∈ RD

z1, z2 ∼ UI(1, D) ∧ z1 < z2

Genetic Uniform Crossoverd, [6] ~xn(t+ 1) = (1− ~m)� ~u+ ~m� ~v, ~m = H(~r − 0.5) ~r 3 ri ∼ U(0, 1)

Genetic Blend Crossoverd, [6] ~xn(t+ 1) = ~r � ~u+ (1− ~r)� ~v
Genetic Linear Crossoverd, [6] ~xn(t+ 1) = α~u+ β~v α = β = 0.5

Lévy Flightc, [8] ~xn(t+ 1) = ~xn(t) + α~r � (~xn(t)− ~x∗(t)) α ∈ [0.1, 0.9], ~r 3 ri ∼ L(β), β ∈
[1.25, 1.75]

Differential Mutation /rand/M c, [19] ~xn(t+ 1) = ~xz1 (t) + F
∑M
m=1

(
~xz2m (t)− ~xz2m+1

(t)
)

F ∈ [0.5, 2.5], M ∈ {1, 2, 3}

Differential Mutation /best/M c, [19] ~xn(t+ 1) = ~x∗(t) + F
∑M
m=1

(
~xz2m (t)− ~xz2m+1

(t)
)

zi ∼ UI(1, N) :
⋂
j{zj} = ∅

Differential Mutation
/current/M c, [19]

~xn(t+ 1) = ~xn(t) + F
∑M
m=1

(
~xz2m (t)− ~xz2m+1

(t)
)

Differential Mutation
/rand-to-best/M c, [19]

~xn(t+ 1) = ~xz1 (t) +F · (~x∗(t)−~xz2 (t)) +F
∑M
m=1

(
~xz2m+1

(t)− ~xz2m+2
(t)
)

Differential Mutation
/current-to-best/M c, [19]

~xn(t+ 1) = ~xn(t) + F · (~x∗(t)− ~xz1 (t)) + F
∑M
m=1

(
~xz2m (t)− ~xz2m+1

(t)
)

Differential Mutation
/rand-to-best-and-current/M c, [19]

~xn(t+ 1) = ~xz1 (t) + F · (~x∗(t)− ~xz2 (t) + ~xz3 (t)− ~xn(t))

+ F
∑M
m=1

(
~xz2m+2

(t)− ~xz2m+3
(t)
)

Inertial Swarm Dynamic, [20] ~xn(t+ 1) = ~xn(t) + ~vn(t+ 1)
~vn(t+ 1) = ω~vn(t) + φ1~r1 � (~xn,∗(t)− ~xn(t)) + φ2~r2 � (~x∗(t)− ~xn(t))

ω ∈ [0.1, 1.0], φ1, φ2 ∈ [1.1, 4.1],
~ri 3 ri ∼ U(0, 1) ∀i ∈ {1, 2}

Constricted Swarm Dynamic, [21] ~xn(t+ 1) = ~xn(t) + ~vn(t+ 1)
~vn(t+ 1) = χ (~vn(t) + φ1~r1 � (~xn,∗(t)− ~xn(t)) + φ2~r2 � (~x∗(t)− ~xn(t)))
χ =
√
κ− (

√
κ− 2κ/(φ−

√
φ(φ− 4))H(φ− 4), φ = φ1 + φ2

κ ∈ [0.1, 1.0], φ1, φ2 ∈ [1.1, 4.1]
~ri 3 ri ∼ U(0, 1) ∀i ∈ {1, 2}

Firefly Dynamicc, [22] ~xn(t+ 1) = ~xn(t) + α~r + β
∑N
k=1,k 6=nH(−∆In,k)∆~xn,ke

−γ||∆~xn,k||
2
2

∆In,k = f(~xk)− f(~xn), ∆~xn,k = ~xk(t)− ~xn(t)
α ∈ [0.0, 0.5], β = 1.0, γ ∈ [10, 990],
~r 3 ri ∼ U(−0.5, 0.5) ∨ N (0, 1)

Spiral Dynamice, [24] ~xn(t+ 1) = ~x∗(t) + ~rRD(θ)(~xn(t)− ~x∗(t)) RD(θ) ∈ RD×D , θ ∈ [0.001◦, 179◦],
~r 3 ri ∼ U(r0 − σ, r0 + σ),
r0 ∈ [0.001, 0.99], σ ∈ [0.0, 0.5]

Central Force Dynamic, [25] ~xn(t+ 1) = ~xn(t) + 1
2~an(t)∆t2,

~an(t) = G
∑N
k=1,k 6=nH(∆Mn,k)(∆Mn,k)α

∆~xn,k

||∆~xn,k||
β
2 +ε

∆Mn,k = f(~xk(t))− f(~xn(t)), ∆~xn,k = ~xk(t)− ~xn(t)

G ∈ [0.0, 0.01], α ∈ [0.0, 0.01],
β ∈ [1.25, 1.75], ∆t = 1.0, ε = 10−23

Gravitational Search, [26] ~xn(t+ 1) = ~xn(t) + ~vn(t+ 1), ~vn(t+ 1) = ~r � ~vn(t) + ~an(t)

~an(t) = Ge−αt
∑N
k=1,k 6=nMk(t)~rk �

∆~xn,k
||∆~xn,k||2+ε

Mk(t) =
f(~x◦(t))−f(~xn(t))

Nf(~x◦(t))−
∑N
k=1

f(~xk(t))

~r 3 ri ∼ U(0, 1), G ∈ [0.0, 1.0],
α ∈ [0.0, 0.04], ε = 10−23,

a~xn(t) ∈ X(t) is the vector position of the n-th agent (cf. Definition 3), and ~x∗(t) = arg min{
⋃N
n=1 f(~xn(t))} and ~x◦(t) = arg max{

⋃N
n=1 f(~xn(t))} correspond to

the best and worst positions from the current population. � is the Hadamard-Schur product and H : RD → ZD2 is the component-wise Heaviside function with H(0) = 1.
b~r and ~s are vectors of i.i.d. random variables with either Uniform U(yl, yu), NormalN (µ, σ) or Lévy stable L(β) distribution. zi stands an integer random variable with uniform
distribution UI(yl, yu). Parameter values were picked up from an evenly spaced sequence of five values in their intervals defined in the third column; e.g., for α ∈ [0.1, 0.9],
we considered α = 0.1, 0.3, 0.5, 0.7, and 0.9.

cThese operators use a greedy selection mechanism for updating new positions, i.e., ~xn(t+ 1) is accepted iff f(~xn(t+ 1)) < ~xn(t). The others use a direct update.
d~u and ~v are the parents selected from a mating pool of size bpmNe, since pm ∈ [0, 1] is the mating pool factor and N is the population size, by using a pairing scheme such
as Roulette Wheel, Rank Weighting, Random, Even-and-Odd, and Tournament with given size of two or three and probability of 100% [6].

eRD(θ) is the rotation matrix determined by the product of all the combinations of two-dimensional rotation matrices by utilising the Euler-Rodrigues’s rotation formula.

with two and three SOs. However, should the problem had
been in 2D, the hyper-heuristic with two SOs would have
outperformed the other ones, as Table III indicates.

For the smallest configuration (i.e., only one search operator,
Table II), all the selected SOs correspond to those inspired
by kinematics and gravitation. Particularly, operators based
on Gravitational Search were frequent in all the problems,
especially when the number of dimensions and the problem
complexity increased. These MHs showed high precision in
terms of low values for dispersion metrics such as standard

deviation and interquartile range. Besides, they rendered the
best solutions for functions Griewank and Ackley in 30D. For
metaheuristics with more than one operator, Tables III and
IV, we noticed excellent results for problems with 2D and
10D. Mainly, MHs with a cardinality of two achieved the best
solutions for functions De Jong and Rosenbrock. It is also
worth mentioning that the heuristic configurations found are
diverse, and they may never have been thought in the literature.

Besides, it is important to remark that the selected Spiral
Dynamic operators use random radii between r0 ± σ with
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Fig. 5. Results of four problems, with different dimensionalities, achieved by
metaheuristics obtained via the hyper-heuristic varying their cardinalities.

σ > r0. In magnitude, these values provide faster convergence
to the solution, ideal for intensification. In sign, when they are
negatives, they add 180◦ to the rotation angle of the spiral
trajectories. So, agents have the chance of being reflected
and boost their convergence towards the rotation reference.
This dynamic remains almost unknown in the literature, and
it would be interesting to deepen on it because of its high
potential for intensification phases.

It is essential to mention that these results are preliminary
and are sharply limited to MHs which only have a hundred
iterations to solve a problem. Undoubtedly, this has some pros
and cons, depending on the application. For this reason, we

do not rush to conclude that MHs with more than two search
operators have a poor performance. Indeed, we are confident
that they may perform better if more tuning steps are allowed.
But, this requires more computing resources than those which
were available. Still, we plan on tackling this problem shortly.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a strategy based on a hyper-
heuristic (HH) search to generate custom population-based
metaheuristics (MHs) for solving continuous optimisation
problems. For that purpose, we split each MH into build-
ing blocks defined as search operators (SOs). So, the HH
builds a MH given by a set of such blocks. Moreover, we
defined a property deemed as cardinality, which represents
the length of the set. We collected 22 different operators
from 10 well-known MHs available in literature. Such a
collection represented the heuristic space for our HH. Then,
we implemented a Random Search approach for tuning the
HH over four benchmark problems (i.e., De Jong, Griewank,
Ackley, and Rosenbrock). We considered the sum of median
and interquartile range of fitness values as the performance
metric. Lastly, we analysed the performance of our proposed
approach over three dimensionalities for each problem (2, 10,
and 30), and while creating MHs with three cardinality values
(1, 2, and 3). All the MHs were set to carry out only 100
iterations using 30 agents.

Our data revealed diverse configurations, which may never
have been thought of. For example, the MH3 (cf. Table IV)
found for Rosenbrock in 30D is a sequence based on the Lévy
Flight, Firefly Dynamic, and Spiral Dynamic operators. In this
case, the first and third operators promote the exploration
and exploitation of search space, respectively. Meanwhile,
the second operator refines the previous perturbations in a
deterministic fashion. The reason: α = 0.0, so randomness is
nullified. Even though, we could name them with sophisticated
names or explain them with creative metaphors, that was not
the focus of our work. Instead, we strove to propose a way
for creating custom metaheuristics by exploring and exploding
the nature of currently available methods.

In particular, we observed that MHs with a single op-
erator render high precision. This can be reflected in low
dispersion metrics (standard deviation and interquartile range).
Metaheuristics with more than one operator achieved excellent
results for problems with 2D and 10D. However, for problems
in 30D performance was hindered. A possible reason for this
phenomenon may fall upon the number of iterations available
to solve the problem with the candidate MH. Likewise, the
effect may be due to the number of tuning iterations. Increas-
ing cardinality seemingly has a positive impact on problems
with higher dimensions. Nonetheless, this also expands the
search domain so more tuning iterations should be allowed.
Conversely, a different stopping criteria could be implemented.
In any case, this implies an increase in computing requirements
so it should be carefully dealt with.

This primary work lays the groundwork for future research.
We plan on increasing the size of the heuristic collection by



TABLE II
HYPER-HEURISTIC PERFORMANCE IN DIFFERENT OPTIMISATION PROBLEMS AND NUMBER OF DIMENSIONS, WHEN CUSTOMISING METAHEURISTICS

WITH A CARDINALITY OF ONE. VALUES IN BOLD REPRESENT THE BEST RESULT BETWEEN DATA FROM TABLE II TO IV.

Problem Dim. Avg. St. Dev. Med. IQR Min. Max. Best Search Operator

De Jong
2 1e-03 0.016 1e-84 3e-82 4e-90 0.163 Spiral Dynamic with r0 = 0.001, θ = 90◦, σ = 0.5

10 6.270 10.68 2.018 4.890 5e-03 50.78 Inertial Swarm Dynamic with ω = 0.325, φ1 = 2.6, φ2 = 1.85

30 2311 729.4 2140 568 1006 5767 Gravitational Search with G = 0.5, α = 0.0

Griewank
2 5e-03 5e-03 7e-03 7e-03 1e-13 0.027 Inertial Swarm Dynamic with ω = 0.55, φ1 = 2.6, φ2 = 1.1

10 0.179 0.124 0.140 0.139 0.030 0.780 Constricted Swarm Dynamic with κ = 0.325, φ1 = 1.85, φ2 = 1.85

30 1.001 0.083 1.004 0.048 0.817 1.561 Gravitational Search with G = 0.75, α = 0.02

Ackley
2 0.015 8e-03 0.014 0.011 1e-03 0.038 Gravitational Search with G = 0.5, α = 0.03

10 3.358 1.13 3.39 1.502 1.096 6.478 Central Force Dynamic with G = 0.005, α = 0.0075, β = 1.5

30 0.749 0.396 0.546 0.461 0.329 2.034 Gravitational Search with G = 0.75, α = 0.02

Rosenbrock
2 5e-06 9e-06 2e-06 5e-06 5e-09 7e-05 Central Force Dynamic with G = 0.0075, α = 0.01, β = 1.25

10 9.035 0.271 9.020 0.383 7.992 9.808 Gravitational Search with G = 0.75, α = 0.01

30 37.76 8.891 34.93 4.318 30.7 95.61 Gravitational Search with G = 1.0, α = 0.01

TABLE III
HYPER-HEURISTIC PERFORMANCE IN DIFFERENT OPTIMISATION PROBLEMS AND NUMBER OF DIMENSIONS, WHEN CUSTOMISING METAHEURISTICS

WITH A CARDINALITY OF TWO. VALUES IN BOLD REPRESENT THE BEST RESULT BETWEEN DATA FROM TABLE II TO IV.

Problem Dim. Avg. St. Dev. Med. IQR Min. Max. Best Search Operators

De Jong

2 4e-79 3e-78 4e-82 6e-81 6e-92 2e-77 Spiral Dynamic with r0 = 0.24825, θ = 90◦, σ = 0.5
Differential Mutation/current-to-best/1 with F = 2.0

10 38.88 19.07 36.58 23.8 5.489 95.43 Inertial Swarm Dynamic with ω = 0.1, φ1 = 3.35, φ2 = 1.1
Central Force Dynamic with G = 0.005, α = 0.01, β = 1.75

30 818.9 252 777.2 315.7 324.8 1661 Constricted Swarm Dynamic with κ = 0.775, φ1 = 4.1, φ2 = 1.85
Central Force Dynamic with G = 0.01, α = 0.0075, β = 1.5

Griewank

2 0.000 0.000 0.000 0.000 0.000 0.000 Differential Mutation/rand-to-best/3 with F = 0.5
Differential Mutation/best/2 with F = 0.5

10 0.143 0.085 0.117 0.084 7e-03 0.546 Inertial Swarm Dynamic with ω = 0.775, φ1 = 1.85, φ2 = 1.85
Constricted Swarm Dynamic with κ = 1.0, φ1 = 1.1, φ2 = 4.1

30 1.949 0.590 1.847 0.535 1.178 4.642 Differential Mutation/current-to-best/1 and F = 1.5
Constricted Swarm Dynamic with κ = 0.325, φ1 = 2.6, φ2 = 3.35

Ackley

2 0.000 0.000 0.000 0.000 0.000 0.000 Differential Mutation/best/2 and F = 2.0
Constricted Swarm Dynamic with κ = 1.0, φ1 = 1.85, φ2 = 4.1

10 0.294 0.621 3e-03 0.013 4e-05 2.319 Differential Mutation/rand-to-best/3 with F = 0.5
Inertial Swarm Dynamic with ω = 0.1, φ1 = 1.1, φ2 = 2.6

30 11.16 1.131 11.17 1.611 7.667 13.49 Random Walk with ri ∼ U(−1, 1), α = 0.1
Differential Mutation/current-to-best/1 with F = 0.5

Rosenbrock

2 1e-06 9e-06 8e-21 9e-17 2e-31 9e-05 Differential Mutation/rand-to-best-and-current/3 with F = 2.0
Spiral Dynamic with r0 = 0.4955, θ = 179◦, σ = 0.125

10 16.49 53.83 6.401 3.02 0.013 487 Local Random Walk with p = 0.5, α = 0.1
Inertial Swarm Dynamic with ω = 0.1, φ1 = 1.1, φ2 = 2.6

30 29.88 3.798 29.17 0.784 26.98 55.13 Gravitational Search with G = 1.0, α = 0.02
Gravitational Search with G = 0.75, α = 0.04

including other SOs from the literature and a diverse set of
selectors. Also, we shall seek a way for considering cardinality
and population size, for example, as design variables. Hence,
the HH would find not only a proper set of SOs but obtain
the cardinality and population size whilst operating. We also
expect to complement the proposed strategy with Data Science
techniques to enhance the exploration of the heuristic space.
Besides, we look forward to implementing a landscape-based
classifier for tackling unseen problem instances, e.g., Black-
Box Optimisation Benchmarking problems. In such a tier, a
robust learning approach could be used when tuning the HH.
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