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Abstract—We look into the novel paradigm of in vivo compu-
tation for tumor sensitization and targeting (TST), which aims at
detecting a tumor by considering TST as a computational process.
Nanorobots are utilized as computational agents to search for
the tumor in the high-risk tissue with the aided knowledge
of the tumor-triggered biological gradient field (BGF), which
is similar to an optimization process. All our previous work
is about the detection of tumor with a priori size, which is
not convincing enough as the exact size of the tumor targeted
cannot be obtained in advance. We focus on the TST for tumor
with unknown size by considering the tumor growth process
in this paper. The weak priority evolution strategy (WP-ES)
based in vivo computational algorithm proposed in our previous
work is utilized for the TST at three tumor growth stages for
two representative landscapes by considering the nanorobots’
lifespans and other realistic constraints. Furthermore, we propose
the “tension and relaxation (T-R)” principle, which is used for
the actuating of nanorobots in the TST process for the tumor
with unknown size. The experimental results demonstrate the
effectiveness of the proposed in vivo computational algorithm
and principle for the TST at different tumor growth stages.

Index Terms—Tumor sensitization and targeting, in vivo com-
putation, nanorobots, tumor growth stages, swarm intelligence
algorithm

I. INTRODUCTION

Although the overall cancer mortality has declined in the
past few decades, it is still a great challenge to achieve accurate
detection of early cancer because of the constraint imposed by
the poor resolution of traditional medical imaging techniques
[1], [2]. It is important to find new ways to realize early-stage
cancer detection as it plays a vital role in the cure of cancer.

With the development of nanotechnology, the nanomedicine
field has shown great potential in providing some breakthrough
solutions to complex medical problems that conventional
techniques cannot overcome. Nanorobots are designed to be
nano-scale devices capable of actuation, sensing, signaling
etc., and they are promising to significantly enhance the
performance of tumor targeting [3]. Though many different
kinds of nanorobots have been developed with distinct ac-
tuation principles in the past few decades, fuel-free mag-
netic nanorobots actuated by external magnetic fields have
shown promise for in vivo application as it has been proven
practicable to realize the in vivo imaging and actuation of a

swarm of magnetic nanorobots under rotating magnetic fields
in deep tissues [4]. However, it is a challenge to realize tumor
sensitization and targeting (TST) for microscopic tumors as
their location information cannot be obtained a priori because
of the resolution limit of medical imaging equipments [5].

To overcome the problem of TST for microscopic tumors,
we have proposed the nanorobots-oriented in vivo computation
framework in our previous work [6], [7]. It has been demon-
strated that the cancer cells and their local microenvironments
will become heterogeneous even at very early stages of tumor
growth. Small (< 1 mm) tumor nodules and microregions of
larger tumors can be considered as microecological niches
where some biological gradients can be generated, such as
certain critical metabolites (e.g., oxygen, glucose, lactate, and
H+ ions), nutrients, hormones, and growth factors, etc. [8].
Furthermore, some passive physical properties (tumor vessels
are more tortuous than normal capillaries, and their blood flow
velocity is lower than that of healthy tissues, etc.) of the host
environment and artificial changes of tumor microenvironment
triggered by specific “activator” nanomaterials (e.g., gold
nanorods) can also be used as in vivo characteristics of ma-
lignant tissues [7]. Thus, it is feasible to exploit these specific
microenvironments (i.e., biological gradient fields (BGFs)) in
order to enhance TST for microscopic tumors by in vivo
computation.

In the in vivo computation system shown in Fig. 1,
nanorobots play the role of computational agents in the
traditional optimization setting, and the tumor-triggered BGF
is used for fitness evaluation of the nanorobots, which are
navigated by the in vivo navigating strategies to find the
tumor (i.e., the global maximum or minimum of the in
vivo optimization problem). Nanorobots are actuated by an
external control/actuating system, such as a coil that can gen-
erate a uniform rotating magnetic field to steer the magnetic
nanorobots in fluid [9]. To locate the nanorobots, traditional
imaging equipment can be used [10]. Following this process,
each nanorobot will move towards the tumor step-by-step
aided by the knowledge (i.e., BGF) about the tumor and stop
at the target when it finishes the TST.

As the external control systems are aiming at generating
a uniform magnetic field to control the movement of all
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Fig. 1. Pictorial illustration of the nanorobots-oriented in vivo computation
for TST.

the nanorobots at any operating moment, it is inevitable to
consider the effect of the homogeneous magnetic field acting
on the nanorobot swarms. Thus, we proposed a novel evolution
strategy, named weak priority evolution strategy (WP-ES), to
overcome the constraint of the state-of-the-art nanorobotics
controlling technology [11]. However, the previous work is
focusing on the TST for tumor with a priori size (e.g., the
tumor radius is assumed to be 0.25 mm in [11]) leaving the
topic of TST for tumor with unknown size unstudied. As the
latter reflects the fact that the real size of early tumor cannot
be obtained before the implementation of TST, it is reasonable
to do some research on this topic, which is just the starting
point of this paper.

This article is organized as follows. In Section II, we revisit
the modeling of in vivo computation, summarize its charac-
teristics and provide two artificial representative functions of
BGFs. In Section III, we analysis the growth of microscopic
tumor vessels and model the tumor vascular networks at three
tumor growth stages. In Section IV, we analysis the process of
TST and propose the T-R principle for in vivo computation.
In Section V, the T-R principle based in vivo computational
algorithm is developed. In Section VI, we provide numerical
examples to demonstrate the effective of the proposed algo-
rithm for TST at different tumor growth stages. Finally, some
concluding remarks are drawn in Section VII.

II. FUNDAMENTALS OF In Vivo COMPUTATION

To establish the framework of in vivo computation, we map
the process of TST to a min/maximization problem with
the tumor being the min/maximum required. However, in
vivo computation has its own characteristics, which make it
different from the mathematical optimization problem though
they share some similar procedures.

A. Problem Formulation

In the nanorobots-oriented in vivo computation process,
each nanorobot is controlled by an external control/actuating
device according to the BGF value measured at its location,

which is acquired by the external tracking/positioning system.
Each nanorobot updates its location step by step until the
stopping criteria (it detects the tumor or the maximum number
of iterations is reached) are met. This process can be expressed
as an optimization problem as below (for consistency and
without loss of generality, we use the minimization operation)
[7]:

U (x; A) = UT (x) + ε (x; A) (1)

and

x∗ = arg min
x

U (x; A) , (2)

where U is an apparent objective function measured by agent
A; x ∈ P is a vector to be adjusted (i.e. the agent position
coordinate), and P is the search space of the agents; UT (x) is
the true objective function, which is unaffected by the agents;
ε (x; A) is the random compensation error; x∗ is the location
of the global optimal solution that remains unchanged in the
optimization process.

B. Characteristics of In Vivo Computation

Unlike a traditional optimization problem, the nanorobots-
oriented in vivo computation has several peculiar properties in
the process of TST.

In term of the BGF landscape, it may be altered because
of some physical, chemical, and biological interactions be-
tween the nanorobots and the tissue microenvironment as the
nanorobots are always fabricated with natural materials to
ensure their functionality. The in vivo computation is executed
by nanorobots in the human microvascular network, which is
a discrete search space. This constraint means that the BGF
landscape should be discrete, and it is an inevitable factor for
the in vivo computation process.

In term of the agents (nanorobots), firstly, their moving
speeds in fluid environments are always finite [9]. This is
different from the traditional optimization process, where each
agent can move to any location in one step instantaneously
according to the search strategy used. Secondly, the nanorobots
are actuated by a common actuating field in every iteration at
the same time, which has been studied in our previous work
[11]. Thirdly, the control accuracy and imaging resolution of
the external devices may introduce some errors in each update
of the nanorobot locations. Furthermore, with the search
progressing, some nanorobots may diffuse and degenerate in
the tissue microenvironment leading to their “out of work” in
the TST process. These factors can be summed up as the finite
lifespans of agents.

C. Representation of BGFs

BGFs induced by the tumor can be used to derive biological
cost functions for the in vivo computation. As there are no
widely-accepted, quantitative models of the biological cost
functions in this initial research stage, we resort to two
representative artificial landscapes (as shown in Fig. 2) in this
paper to perform in vivo computation as these functions have



been routinely applied in almost all catalogs of standard test
problems. The circular region with an unknown radius (i.e., r)
in the center of each landscape denotes the tumor targeted.

Fig. 2. Illustration of the two representative BGF landscapes. (a) Landscape
1: Rotated Hyper-Ellipsoid Function and (b) its contour plot; (c) Landscape
2: Ackley Function and (d) its contour plot.

1) Landscape 1: Rotated Hyper-Ellipsoid Function
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2) Landscape 2: Ackley Function

UT (x, y) =


0,

√
x2 + y2 ≤ r and (x,y) ∈ V

−4exp
(
−
√

2x2 + 2y2/10
)
/3 + e/15

+4/3 − exp (1/2 (cos (2πx) /15
+ cos (2πy) ,

√
x2 + y2 > r and (x,y) ∈ V.

(4)

The term V denotes the discrete vascular network (shown in
Section III) in the high-risk tissue, which is the search domain
of the nanorobots. The Rotated Hyper-Ellipsoid function and
Ackley function represent the scenarios that BGFs change
smoothly and with fluctuation, respectively.

III. TUMOR VASCULAR NETWORKS AT DIFFERENT
TUMOR GROWTH STAGES

The vasculature within early tumors is similar with normal
vessel except that it may exhibit a little regression. Angiogen-
esis occurs in tumors that have reached 1 to 2 mm in diameter
when tumor vessels develop by sprouting or intussusception
from pre-existing vessels. As the tumor grows, the vasculature
within the core of tumor will undergo dramatic regression
and the center of tumor will be bereft of vessels gradually.
However, the tumor periphery will display robust angiogenesis
as a contrast [12].

To describe tumor vascular network, fractal analysis is
always used as it can reduce the network to a set of number
(known as fractal dimensions) to describe the self-similar

nature of the network. The fractal dimension measurements
in tumor vasculature indicate that it has a percolation-like
nature, which is a local growth process [13]. Thus, we can
use invasion percolation to model the growth process of tumor
vascular network as shown in [14].

In Fig. 3(a), the tumor at stage I is represented by a
black dotted circle with the diameter of 0.6 mm, where the
vessel regression results in 30% deprivation of vessels. In
Fig. 3(b), the tumor at stage II has a diameter of 1 mm and
the vessels are regressed by 40%. Angiogenesis occurs in the
tumor periphery represented by a square with a side length of
1.4 mm. In Fig. 3(c), the tumor at stage III has a diameter
of 1.4 mm with 50% of vessels regression, and the vessels
regression also extends to the tumor periphery with a ratio of
30%. Then angiogenesis extends to the surrounding healthy
tissue represented by a square with a side length of 3 mm.
Furthermore, the intercapillary distances of healthy tissue and
tumor periphery are set to be 100 µm and 50 µm, respectively.

Fig. 3. Vascular networks at three tumor growth stages. (a) stage I (only
vessel regression occurs); (b) stage II (vessel regression and angiogenesis both
occur); (c) stage III (vessel regression and angiogenesis are both enhanced).

IV. ITERATIVE PROCESS OF TST

In the computational framework of TST, nanorobots are
maneuvered by an external actuating system to operate in
the mode of intended actuating (IA) or unintended actuating
(UA). Then the external tracking system makes them operate
in imaging and tracking (IT) mode [7]. For the IA/UA mode,
each agent’s trajectory is determined by the angle deviation
relative to a principal axis denoting an intended steering vector
upon the agent, which indicates a uniform actuating field in
the search space. Without loss of generality, we take agent A1
as an example and its initial location is ®x1

(
tIA,1

)
as shown in

Fig. 4(a).
From tIA,1 to tIT,1 , A1 works in the IA mode, which is the

UA mode for the other agents. ϕ
(
tIA,1

)
denotes the steering

direction, and ∆ϕ
(
tIA,1

)
denotes an angle deviation, which is

a random variable summarizing all steering imperfections and
it is assumed to be normally distributed with variance σ2

∆ϕ and
zero mean. ®e1

(
tIA,1

)
is the position “quantization” error due to

the discrete lattice pattern of the vasculature. As described in
[7], the vascular network is of taxicab geometry, which means
‖ ®d1

(
tIA,1

)
+ ®e1

(
tIA,1

)
‖1 = ‖ ®d1

(
tIA,1

)
‖1.



From tIT,1 to tIA,2, A1 works in the IT mode. In this mode,
there is no steering force on the agents and A1 follows a
random walk in the lattice. Its location in the search space
is estimated by the external tracking system with an error of
∆®x1, whose horizontal and vertical components are assumed
to be independently and identically distributed Gaussian with
variance σ2

∆x
and zero mean for simplicity.

Fig. 4. Updating of a nanorobot in the taxicab vascular network. (a) The
processes of IA/UA and IT; (b) T-R principle in the process of TST.

Though our previous work demonstrated the effectiveness
of the proposed WP-ES for TST, the most efficient scheduling
mechanism for the tumor with unknown size under this
umbrella remains unstudied. Thus, we attempt to overcome
this issue by exploring the displacements of nanorobots in the
IA/UA and IT modes in each iteration, as the process of TST
is composed of these two motion modes.

The push-pull theory is the most important macroscopic
theory in demography in terms of studying the causes of
population mobility, where the factors that help to improve
living conditions into the land are the “tension”, and the
unfavorable living conditions of the outflow are the “thrust”
[15]. These two forces cause the population movement aiming
at improving living conditions. Inspired by this phenomenon,
we propose the “tension and relaxation (T-R)” principle in the
process of TST. It means that the effects of IA/UA and IT

modes on the displacements of nanorobots should maintain a
certain balance to give rise to an optimal performance of TST.

To clarify, the interferences of TST are not taken into
consideration in this part, and the velocity magnitude of
nanorobots caused by the external actuating field (denoted by
®va) and the magnitude of blood velocity denoted by ®vb are
assumed to be constants in all the IA/UA and IT modes. As
shown in Fig. 4(b), agent A1 moves from ®x1

(
tIA,1

)
to ®x1

(
tIT,1

)
with the displacement length of ‖®l1

(
tIA,1

)
‖1 in the taxicab

vascular network in the first IA/UA mode. Subsequently, it
moves from ®x1

(
tIT,1

)
to ®x1

(
tIA,2

)
with the displacement length

of ‖®l1
(
tIT,1

)
‖1 in the IT mode. As ®l1

(
tIA,1

)
is caused by ®va

and ®vb , it can be decomposed into ®s1
(
tIA,1

)
and ®d1

(
tIA,1

)
.

Thus, the T-R principle proposed can be expressed as

‖®s1
(
tIA,1

)
‖1 + ‖ ®d1

(
tIA,1

)
‖1 = ‖®l1

(
tIT,1

)
‖1 (5)

or
(va + vb) · T1 = vb · T2, (6)

with T1 and T2 being the IA/UA and IT durations, respec-
tively.

V. ALGORITHM DESIGN

Swarm Intelligence inspired by the swarming, flocking and
herding phenomena of biological systems is a distributed
intelligent paradigm for solving optimization problems. In this
paper, we use the WP-ES based GSA (WP-GSA) proposed in
[11] as a representative in vivo computational algorithm to
demonstrate the effectiveness of the T-R principle proposed
for TST at different tumor growth stages.

In this algorithm, each agent is considered as an object
with its performance being represented by the virtual mass.
The position of the agent corresponds to a solution of the
problem and its virtual mass is determined by its fitness. All
the objects attract each other by their virtual gravity forces and
the external actuating system control the movement of agents
according to the WP-ES, which will cause a global movement
of them towards the optimal solution.

In an in vivo computation system with N nanorobots
(agents) whose positions are denoted by { ®x1, ®x2, · · · , ®xN }, the
virtual masses are calculated by

mi (t) =
f iti (t) − worst (t)

best (t) − worst (t)

Mi (t) =
mi (t)

N∑
j=1

mj (t)
, (7)

where i = 1,2, · · · ,N , f iti (t) represents the fitness of agent
®xi , worst (t) and best (t) are defined as follows{

best (t) = maxi∈1,2, · · · ,N f iti(t)
worst (t) = mini∈1,2, · · · ,N f iti(t).

(8)

The force acting on agent ®xi from ®xj is defined as

®Fi j = G(t)
Mi(t) × Mj(t)

Ri j(t) + ε
(
®xj (t) − ®xi (t)

)
(9)



and
G(t) = G0 × e−αt/T , (10)

where Ri j(t) is the Euclidean distance between ®xi and ®xj ; ε
is a small constant; G(t) is the gravitational constant reducing
with time; G0 is set to 10; α is set to 5; and T is the maximum
operation time. To obtain a stochastic characteristic, the joint
force acting on ®xi is defined as

®Fi (t) =
N∑

j=1, j,i
randj

®Fi j (t) , (11)

where randj is a random number in the interval [0,1]. Then
the acceleration of agent ®xi at time t is calculated by

®ai (t) =
®Fi (t)

Mi (t)
. (12)

The evolution equations of agents (nanorobots) for in vivo
computation (i.e., WP-GSA) are as follows
IA/UA mode{

®vi (t + 1) = k ®aj (t) /
®aj (t)


2

®xi (t + 1) = ®xi (t) + T1 · (®vi (t + 1) + ®vb (t + 1)) .
(13)

IT mode
®xi (t + 1) = ®xi (t) + T2 · ®vb (t + 1) , (14)

where ®vb (t + 1) is the blood flow velocity at time (t + 1);
®aj (t) is the acceleration of the selected agent by WP-ES at
time t; k is the speed of nanorobots actuated by the external
actuating field solely; T1 is the IA/UA duration, and T2 is the
IT duration.

VI. PERFORMANCE ANALYSIS

We use several numerical examples to elaborate on the
TST performance at three tumor growth stages with WP-GSA,
which is compared to the benchmarking scenario (i.e., the
brute-force search), and demonstrate the effectiveness of the
T-R principle proposed.

In the simulation, 12 agents with lifespans obeying expo-
nential distribution (i.e., τ (A) ∼ Exp

(
5 × 10−4)) are employed

in the surveillance region, -5 mm ≤ x, y ≤ 5 mm. The initial
deployment region is x ∈ [−5,−4] , y ∈ [−4,−3], within which
the initial positions of the agents are uniformly generated.
The speeds of nanorobots and blood flow velocity are 30
µm/s. The direction of blood flow is assumed to be from
bottom left to top right of the search space. The durations
of IA/UA mode (i.e. T1) and IT mode (i.e. T2) are set to
be 20 seconds. The maximum search time allowed and the
number of simulation runs are set to be 500 seconds and 1000,
respectively. Two performance metrics η and Pd are used to
represent the efficiency of TST (i.e., the ratio of the amount
of agents completing TST to the amount of agents deployed
and the ratio of the number of tumor targeted successfully to
the total number of simulations).

For the benchmarking scenario, the agents detect the tumor
in the vascular network relying on the driving of blood flow

without any aided knowledge generated from the interaction
between agents and the BGFs.

Fig. 5(a) shows the typical curves of the employed agents’
average fitness over iterations for the rotated hyper-ellipsoid
function landscape at tumor growth stage I by two different
search strategies: the brute-force search and WP-GSA. The
average fitness of agents relying on WP-GSA reaches the
maximum at 250 s and it is higher than that of agents
relying on the brute-force search in the whole process of TST,
which means that WP-GSA performs better than the brute-
force search for this scenario. After 500 seconds, the final
locations of the agents in the search space are shown in Fig.
5(b), where we can see WP-GSA can effectively target the
tumor with many agents swarming around the tumor, while the
performance of brute-force search is not so good with many
more agents flowing away. To illustrate it better, we present
the trajectories of the agent swarm centers, from which we can
see the trajectory of WP-GSA passes through the tumor while
that of the brute-force search can only bypass the tumor.

Fig. 5. TST result for landscape 1 at tumor growth stage I. (a) Average fitness
of the agents input over iterations, (b) Final locations of agents input in the
search space after one run: Agent 1 is the brute-force search agent; Agent 2
is the WP-GSA agent; Trajectory 1 and 2 are the trajectories of the swarm
centers of agent 1 and 2, respectively.

TABLE I
TST RESULTS AT THREE TUMOR GROWTH STAGES

Landscape Algorithm Tumor Growth Stage (η/Pd (%))
I II III

1 WP-GSA 22.4 / 94 58.6 / 99.8 78.3 / 100
2 21.6 / 92 54.7 / 99.2 77.8 / 100

1&2 Brute-force search 10.5 / 72.1 22.6 / 96.4 30.4 / 98

To compare the search algorithms quantitatively, we have
carried out the simulation for 1000 runs and presented the
statistical results. Table I shows the TST results at three tumor
growth stages for the two landscapes presented in Section II-C.
It is obvious that WP-GSA performs better than the brute-force
search at three tumor growth stages for the landscapes tested.

To demonstrate the effectiveness of the T-R principle pro-
posed, we carry out the TST with a series of IA/UA durations
between 0 and 40 seconds (i.e., 0 ≤ T1 ≤ 40 s) and a constant
IT duration of 20 s (i.e., T2 = 20 s). Thus, according to (6),
the best IA/UA duration should be 10 s as va = vb = 30
µm/s. The statistical results of the TST efficiencies at three
tumor growth stages for two landscapes are shown in Fig. 6.



Fig. 6. Statistical results of the TST performances at three tumor growth
stages for two landscapes. Landscape 1: (a) and (b); Landscape 2: (c) and
(d).

It is obvious that when the IA/UA duration is 10 s, the TST
performance is the best, which demonstrates the effectiveness
of the T-R principle.

VII. CONCLUSION

We complete the TST by converting it into a computation
process (i.e., in vivo computation). Considering the specific
constraints of the nanorobots and landscape, we use the WP-
GSA to realize the TST at three tumor growth stages for two
representative BGF landscapes. Furthermore, we propose the
T-R principle to overcome the issue of TST with unknown
size. The statistical results of the TST performances at three
tumor growth stages demonstrate the effectiveness of the T-R
principle proposed.

Future work may include the validation of the proposed TST
by real experiments to justify further its clinical relevance.
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