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Abstract—Bayesian networks (BNs) are probabilistic graphical
models, which are regarded as one of the most effective theo-
retical models in the field of representing and reasoning under
uncertainty. Learning BNs structure is an NP-hard problem since
the search space of structure grows super-exponentially as the
increasing of the number of variables. Evolutionary algorithms
(EAs) are widely used to learn BNs structure while single-
solution searching methods may trap into local optima. This work
aims to propose an efficient knowledge-driven Genetic algorithm
(EKGA-BN) to solve the BN structure learning problem. The
proposed EKGA-BN uses a novel selection operator to keep
population diversity in order to learn a BN structure with higher
accuracy. The idea of Hill climbing algorithm (HC) is combined
in the selection operator so as to accelerate the convergence
rate. A novel knowledge-driven mutation procedure is proposed
to enhance the local search ability of EKGA-BN. Experimental
results on four well-known benchmark networks show that the
proposed method outperforms state-of-the-art algorithms in both
convergence rate and the accuracy of BNs structure.

Index Terms—Bayesian networks, Structure learning, Genetic
algorithm, Selection operator, Hill climbing algorithm

I. INTRODUCTION

Bayesian networks (BNs), as a method of reasoning under
uncertainty, is commonly considered to be one of the best
approaches to represent causal knowledge and is very popular
in the field of probability [1]. Directed acyclic graph (DAG),
in which nodes represent random variables and the existence
of arcs denote the dependence relationships between variables,
is usually used to represent BNs. These relationships are quan-
tified by a set of conditional probability distributions (CPD),
which is determined by its parent nodes for each variable.
Since the advantages of BNs in inference and learning ability,
it becomes increasingly popular in various research areas such
as bioinformatics research [2], medical problem [3], image
processing [4], etc. The structure of BNs can be provided by
experts manually but the accuracy cannot be guaranteed and
it is also time-consuming. Therefore learning a BN structure
from data is an important task and has been studied extensively
during last two decades.

Learning a completely correct BN structure from data is
an NP-hard problem when the number of variables increases
rapidly [5]. Many methods have been proposed to solve BNs
structure learning problem. Learning a BN structure equals
to learning the topology of the network. There are three

commonly used methods to approximately learn BNs structure
from data, which are constraint-based approaches, scored-
based approaches, and hybrid approaches.

Constraint-based approaches first identify conditional inde-
pendence relations between variables through statistical meth-
ods such as Pearson’s χ2 test [6]. Then a BN structure that
best fit those relations is constructed. Some widely known
algorithms are PC algorithm [7], Grow-Shrink algorithm (GS)
[8], etc.

The score-based algorithms evaluate the quality of candidate
network structure with a scoring metric. These approaches
regard BNs structure learning problem as a combinatorial
optimization problem. Traditional single-solution search algo-
rithms such as Hill climbing algorithm (HC) [9] and simulated
annealing may trap into local optima [1]. Some population-
based search algorithms are introduced to indentify optimal
structure, such as genetic algorithm (GA) [10], particle swarm
optimization (PSO) [11], and ant colony optimization (ACO)
[12]. Some of the best known score-based algorithms include
K2GA [13], Chain-model GA [14], etc.

The hybrid algorithms integrate score-based approaches and
constraint-based approaches together to searching the BNs
structure in a large search space [1]. One of the commonly
used strategy is to use constraint-based approaches to construct
a graph’s skeleton and then use a score-based approach to
search a optimal DAG with the highest score. Max-Min Hill
Climbing (MMHC) [15] and Sparse-Candidate (SC) algorithm
[16] are the representative hybrid algorithms. EAs-based al-
gorithms are also usually used in the search procedure of
hybrid algorithms such as Canonical GA [10], in which GA is
carried out after reducing the search space through conditional
independence test. And Contaldi [17] proposed AESL-GA
which relies on individuals with higher fitness for deleting
redundant parent nodes and adaptively adjusting the maximum
fan-in for each nodes.

In this paper, an efficient knowledge-driven Genetic algo-
rithm (EKGA-BN), which contains a novel diversity-guided
HC selection and an additional knowledge-driven mutation
procedure, is proposed to solve the BN structure learning
problem. The main contributions are summarized as follows.

1) A novel selection operator based on the population
diversity is proposed and the idea of HC algorithm is
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incorporated. Keeping the population diversity makes
the identified BNs structure with higher accuracy. The
convergence rate is significantly accelerated by introduc-
ing the idea of HC algorithm.

2) A knowledge-driven mutation procedure is designed to
improve the local search ablity. A common BN structure
is identified by individuals with better performance,
which contains the information of correct BN structure.
The common BN structure therefore is used to reduce
the redundant search space which makes searching more
effectively and enhance exploitation.

The remainder of this paper is organized as follows: Section
II introduces BNs and commonly used hybrid approaches
to learn BNs stricture with GA. In Section III, a detailed
description of the proposed EKGA-BN is provided. And the
benchmark problems, the compared algorithms, the exper-
imental results, and analysis are presented in Section IV.
Finally, conclusion is drawn in Section V.

II. PROBLEM STATEMENT

Let G = (X,E) be a DAG where X = {x1, x2, ..., xn}
is a node set representing variables and E = {eij} is
an directed edges set representing independence relationship
between these variables. The relationships are represented by
E, which is combined with directed arcs ei,j from parent
node Xi to child node Xj . And Pa(Xi) is defined as the
parent nodes set of Xi. The dependence relationship between
Xi and Xj can be quantified with conditional probability
distribution P (Xi∥Pa(Xi)). If (G,P ) satisfies the Markov
condition, (G,P ) can be called as a BN [11], where joint
probability distribution P is combined by a product of local
conditional probability distributions according to (1)

P (x1, x2, ..., xn) =

n∏
i=1

P (xi|Pa(xi)) (1)

Score-based approaches defined a score metric to evaluate
the matching rate between the network and the observed data,
then get a BN strcture which has a highest score during the
procedure.

The score metric can be categorized into two classes called
Bayesian and Information-theoretic scoring functions. The
Akaike’s Information Criterion (AIC) [18], Bayesian Informa-
tion Criterion (BIC) [19], and Minimum Description Length
(MDL) [20] are several well-known examples of Information-
theoretic scoring metrics. For Bayesian scoring metric, given a
training dataset D, its general idea is to compute the posterior
probability distribution of a graph G and penalize this score
by the complexity of the BN according to (2)

p(G|D) =
p(D|G)p(G)

p(D)
∝ p(D|G)p(G) (2)

where p(G) is the prior probability on different graph struc-
tures, and p(D|G) is the parameter prior that puts a probability
on different parameters Θ given a graph G. According to
Bayes theorem, p(D|G) =

∫
θ
p(D|G, θ)p(θ,G)dθ, which is

the marginal likelihood that averages the probability of the
data D over all possible parameter assignments to G [11].

A. Learning BNs structure based on GA

Using scoring metric to learn BN structure can be regarded
as a combinatorial optimization problem. GAs are effective
methods to learn BN structure. The normally used procedure
can be summarized as follows:

1) Encoding for BN structure learning problem like com-
monly applied adjacency matrix or a set of edges ex-
isting in DAG. A BN structure with n variables can be
represented by a n×n adjacency matrix. An individual
therefore is able to be represented by string (3)

xi = a11a12...a1na21a22...aij ...ann (3)

where aij denotes whether node i is the parent of node
j and it can be calculated using (4)

aij =

{
1 if i is a parent of j

0 otherwise
(4)

2) Constructing the initial population randomly and using
predefined N as population size to limit the number
of initialized individuals. Randomly initialization may
generate invalid individuals with cycles. Then it is
necessary to remove cycles with little changes in DAGs.
Each individual is encoded as (3) and the fitness can be
calculated according to the predefined scoring metric.

3) Using selection operator to keep individuals with higher
fitness alive. For instance, roulette wheel selection and
tournament selection are two widely used selection
operator. The selection operator is to insert an individual
with higher score into the new population ,which will
be transferred to next generation

4) The crossover operator and mutation operator is carried
out for each individual to generate new individuals,
which may also introduce cycles into DAGs. Removing
cycles procedure therefore is also needed after crossover
and mutation operators to make individuals valid.

5) For each individual in next generation, repeat step 3 and
step 4 until the termination condition is satisfied and
output the individual with highest score as final solution.

III. THE PROPOSED EKGA-BN

In this section, inspired by the idea of the HC algorithm [9],
the proposed selection operator keeps population diversity so
as to increase the accuracy of final identified BN structure,
while combining HC algorithm to accelerate the convergence
rate. And a novel knowledge-driven mutation procedure, which
is carried out after mutation operator, is designed to enhance
the local search ability and the effectiveness of search. The
proposed algorithm which is detailed in this section, can be
regarded as a extended version of the SiRG method [21] denote
as EKGA-BN.

According to (3), using logic operators to reproduce each
individual is available. The truth table of logic operators is
show in Table I and in this paper we use the signs

⊗
,
⊕

,+
to denote the AND, XOR, and OR logic operator, respectively.



TABLE I
LOGIC OPERATOR

X Y XOR(X,Y) AND(X,Y) OR(X,Y)

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 1

A. Overview of EKGA-BN

The procedure of EKGA-BN is shown in Fig. 1. Main steps
are summarized as follows.

Fig. 1. Procedure of EKGA-BN.

• Mutual Dependencies. It uses statistical tests to build an
undirected graph structure, which is referred to a super-
structure (SS) and is help to reduce search space [10]. If
node i and node j is conditional independent, undirected
edge eij is added to SS = {eij}. Each edge in SS has 3
states which are A← B, A→ B, and A ↮ B.

• Randomly initialization. For each undirected edges in
SS, one of the state is randomly chosen to initialize
population.

• Remove cycles. During initialization, crossover, and mu-
tation procedure, cycles may be introduced. And the
nodes with the number of parent nodes larger than
the predefined Nmp might be produced, where Nmp
denote the maximum number of parent nodes for each
node. Consequently a procedure to remove cycles in
the invalid individuals is necessary. The removing cycles
procedure randomly drops redundant parent nodes at first
and then solves the minimum cycles set problem with
an improved GR algorithm [10]. The removing cycles
algorithm prefers to remove edges between nodes with
more children and fewer parents for the sake of further
minimizing the number of changes.

• Compute fitness. BDeu score (with equivalent sample size
of 1) is used to evaluate the fitness of each individual
after carrying out initializing, crossover, and mutation
procedure at each generation.

• Selection. The proposed tournament selection operator,
which can maintain the population diversity and introduce
the idea of HC algorithm to speed up convergence rate,
is applied to select individuals to next generation with
better performance.

• Crossover. Uniform crossover is adopted for this al-
gorithm. N new individuals are constructed with the
strategy of uniform crossover, each bit in the offspring
is randomly chosen from its two parents.

• Form elite set. Using predefined elite eligibility threshold
α to produce elite set. Appending individuals whose score
higher than α ∗ fmax into elite set, where fmax denotes
the highest fitness among the population.

• Mutation. An adaptive mutation scheme from Site-
specific Rate Genetic (SiRG) algorithm [21], which retain
the balance of exploration and exploitation of the search,
is adopted. The mutation rate of each bit is determined
by their fitness and the distribution of edges across the
elite set.

• Knowledge-driven mutation procedure. After the muta-
tion operator, the proposed mutation procedure is car-
ried out to identify a common structure determined by
elite set. The knowledge of the correct BN structure is
contained among the individuals in elite set. Differences
between each individual and the common structure can be
identified. Single-point mutation is used so as to search
the difference area therefore enhance the local search
ability.

Repeating these steps until the termination condition is
satisfied, and then the final solution with highest BDeu score
is selected as the identified BN structure.

B. The diversity-guided HC selection

The improved tournament selection operator is proposed
to keep population diversity and speed up convergence rate
by HC algorithm. In order to avoid making all individuals
be the same, the maximum number of same individuals is
predefined to prevent this situation and therefore maintaining
the population diversity. We also combine the idea of HC
algorithm with selection operator to accelerate convergence
rate. In HC algorithm, only the edge that increases the score
mostly will be changed each time. Therefore in the selection
operator, each individual is replaced with those having the best
score among all individuals who have only one different edge
comparing to itself.

Generally speaking, the next generation obtained by com-
bining HC algorithm with the selection operator in BNs
structure learning problem maintains the optimal solution in
each niche, and keeps the population diversity. In the evolution
process, it has higher probability to identify better structure
and speeds up the convergence rate. The proposed selection
operator can be summarized as follows:



1) Individuals are randomly selected from the population
and grouped into groups X1, X2, ..., Xt, and select the
individual Xwin with the highest score.

2) If the number of existing individuals in the next gen-
eration Pnext, which is as same as Xwin, exceeds the
predefined population size by 1/5, Xwin cannot be
transferred to the next generation and repeat Step 1.
Otherwise adding Xwin to Pnext and repeat the Step
1-2 until the population size reaches N .

3) Each individual Xi in the population is compared with
the remaining individuals Xj . If the edge number of
structure differences between Xi and Xj is less than
or equal to one and the Bayesian score of Xi is higher
than Xj , adding Xi to the set Pnew. As shown in Fig. 2,
assuming Fig. 2(a) is the original BN, and the Bayesian
scores of BNs in Fig. 2(b), Fig. 2(c), and Fig. 2(d) are
all higher than Fig. 2(a). Selecting a BN with highest
score to take place of Fig. 2(a). Whether the score of
Fig. 2(e) is higher than Fig. 2(a), the BN in Fig. 2(a)
will not be replaced for there are two different edges
comparing to the original BN. Individuals are selected
through the procedure given in Algorithm 1.

(a) original BN (b) BN with one edge
added

(c) BN with one edge
deleted

(d) BN with one edge re-
versed

(e) BN with two edges
changed, which will not
be compared

Fig. 2. The idea of HC in selection operator

Algorithm 1 Diversity-guided HC Tournament Selection

Require: Population, Pt;
Population number, N ;
Tournament size, T ;

Ensure: Population after selection, Pnew;
1: Initialize i = 1 and Pnew to be an empty list;
2: repeat
3: Get T individuals from Pt and select the best one as

Pnew
i which has highest bayesian score;

4: Get number of individuals Nsame which are as same as
Pnew
i in Pnew;

5: if Nsame < N/5 then
6: append Pnew

i to Pnew;
7: i++;
8: else
9: continue;

10: end if
11: until (i ≥ N )
12: for i = 1 to N do
13: initial Lbetter as an empty list;
14: for j = 1 to N do
15: Calculate the number of different edges between Xi

and Xj accroding to Dis = Sum(Xi

⊕
Xj) −

Sum((Xi

⊕
Xj)

⊗
(Xi

⊕
Xj)

T )/2;
16: if Dis < 2 then
17: Append Pj to Lbetter;
18: end if
19: end for
20: Get an new individual whose fitness score is highest in

the list Lbetter and replace the original Pi in Pnew;
21: end for

C. Knowledge-driven mutation procedure

The proposed knowledge-driven mutation procedure is used
to strengthen the local search ability which is executed after
the mutation operator taken from SiRG algorithm [21] based
on the information of correct BN structure contained on the
elite set. We notice that individuals will quickly converge to
the best individual when the individuals in elite set are stag-
nant. To tackle this problem, Searching the area between the
individual and the common BN structure, which is constructed
by elite set, to ensure the diversity of each niche. The proposed
procedure makes search more effective and enhances the local
search ability. First of all, a BN common structure is defined
by voting at each gene bits with each individual in elite set.
Second, single-point mutation is performed at every different
gene bits, which is identified by the difference between each
individual and the constructed common structure. This limited
search space contains the knowledge of individuals with better
performance and lead the mutation direction, therefore makes
local search more efficient. As shown in Fig. 3(a), it represents
the common structure of the elite set. Fig. 3(b) is the original
BN, there are 2 edges identical in both Fig. 3(a) and Fig.
3(b). Accordingly the dotted line in Fig.3(c) shows the edges
that might mutate. Algorithm 2 illustrates the process of the
knowledge-driven mutation procedure.

(a) Common BN struc-
ture

(b) original individual (c) Edges which might
be mutated

Fig. 3. Knowledge-driven mutation procedure, mutate gene bits

Algorithm 2 Knowledge-driven mutation Procedure

Require: Population before knowledge-driven mutation pro-
cedure, Pt;
Population number, N ;
Elite set, E;
Elite set number, NE ;



Ensure: Population after knowledge-driven mutation proce-
dure, Pnew;

1: Initialize i = 1 and Pskel as same as first individual in E;
2: for i = 1 to NE do
3: Pskel = Pskel

⊗
Ei;

4: end for
5: for i = 1 to N do
6: Pi is the ith individual in Pt;
7: Focused edge set Mdiff = Pi

⊕
Pskel;

8: Mutation rate m = 1
sum(Mdiff+ϵ) ;

9: for e in Mdiff do
10: if (Pi(e1, e2) = 1 or Pi(e2, e1) = 1) and rand<m

then
11: Randomly change edge type of Pi(e), for instance

e1 ← e2 change to e1 → e2 or e1;↮ e2;
12: end if
13: end for
14: Append Pi to Pnew;
15: Get an new individual whose fitness score is highest in

the list Lbetter and replace the original Pi in Pnew;
16: end for
17: Pnew=Remove-arc(Pnew);

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

Four BNs with different sizes are chosen for evaluation
from Bayesian Network Repository [22]. The four BNs are
listed in Table II and include a small BN with 8 nodes and
8 edges (ASIA) [23], a medium BN with 37 nodes and 46
edges (ALARM) [24], a large BN with 70 nodes and 128
edges (HEPAR II) [25] containing 500 cases, and a very large
network with 223 nodes and 338 edges (ANDE) [26] with 300
cases, respectively.

TABLE II
DATABASE USED IN EXPERIMENTS

Databases Original
network

Number
of cases

Node
number

Arc
number Score

Asia-500 Asia 500 8 8 -1147.34
Alarm-500 Alarm 500 37 46 -6111.6
HeparII-500 HeparII 500 70 123 -17215.9
Ande-300 Ande 300 223 338 -30127.5

B. Experimental settings

We compare the proposed EKGA-BN with six BNs struc-
tures learning algorithms, which are Maximum weight span-
ning tree (MWST) [27], Tree Augmented Naive Bayes (TAN)
[28], K2 algorithm [29], HC algorithm [9], Max-min hill
climbing algorithm (MMHC) [15], and GA-based algorithm
AESL-GA [17]. MMHC is implemented in the Causal Ex-
plorer system [30] and the others are implemented by BNT
Structure Learning Package (BNT-SLP) [31], which is devel-
oped on the Bayes Net Toolbox for Matlab [32].

The parameter settings of EKGA-BN and AESL-
GA(according to Contaldi) are given in Table III. GA-based
algorithms use the same population size n = 100, the maxi-
mum number of generation m = 100, and the CI test threshold
for CB phase ε = 0.5. The maximum parent node number is 4
as ut is the average number of parent nodes by the model we
used. HC, MWST, TAN and MMHC are implemented in the
BNT-SLP and Causal Explorer system and default parameters
are used. The order of node for K2 is generated randomly.
BDeu score is used in experiments as described in Section II.
Each algorithm is executed 20 times independently for each
dataset and the average values are recorded for final result.

For the propose of fair comparison, the performance of the
algorithm is compared by the score and structure differences
between the final output network and the original network
structure. F1-score, sensitivity, and specificity [33] are taken
as the measurements.

The proposed algorithm is implemented with BNT-SLP.
The first experiment is to test the effectiveness of proposed
operators. The second experiment is to compare the proposed
EKGA-BN with GA based hybrid structure learning algorithm
and a series of well-known and widely used structure learning
algorithms. All the algorithms run on Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz with 31GB RAM.

C. Effects of the proposed selection operator and knowledge-
driven mutation procedure

SiRG is taken as the baseline algorithm. First, adding
the knowledge-driven mutation procedure in SiRG, and then
replacing tournament selection with proposed Diversity-guided
HC tournament selection, which forms the proposed EKGA-
BN. The experimental results with mean values and standard
deviations are presented in Table IV.

From the results in Table IV, average Bayesian scores are
same as each other among three methods on the ASIA500,
which denotes that both of them are able to get global
optimal in small dataset. As for larger datasets, evaluation
metrics improve obviously in the order of SiRG, SiRG with
knowledge-driven mutation procedure, and EKGA-BN, es-
pecially in ALARM500 dataset. Therefore both knowledge-
driven mutation procedure and Diversity-guided HC tourna-
ment selection are effective and EKGA-BN is easier to identify
the BN structure with highest Bayesian score and F1 score.

The standard deviations of the means for SiRG, SiRG with
knowledge-driven mutation procedure, and EKGA-BN in both
3 datasets is in a decreasing manner. The lower standard
deviations of the means are, the more stable output is. The
result shows EKGA-BN has the most stable final solution
comparing to other baselines.

D. Comparison EKGA-BN and the other learning algorithms

The experimental results by seven algorithms are shown
in Table V and the bold evaluate metrics are those with
the highest values. According to the result in Table V, the
proposed algorithm achieves the best scores on three datasets
which are ASIA500, HEPARII500, and ANDE300. Although



TABLE III
PARAMETER SETTINGS FOR EKGA-BN AND AESL-GA

Experiment Population size Maximum number of
generation Tournament size CI test threshold

for CB phase
Elite eligibility

threshold
Maximum parent

node number

EKGA-BN 100 100 4 0.01 0.5 4
AESL-GA 100 100 N/A 0.01 0.9 12

TABLE IV
EFFECTS OF THE PROPOSED OPERATORS (BEST RESULTS IN BOLD)

Methods
Asia-500 Alarm-500 HeparII-500

F1 Score Bayesian score F1 Score Bayesian score F1 Score Bayesian score

SiRG 0.7875
(0.057)

-1146.521
(0)

0.6460
(0.096)

-6192.384
(61.107)

0.3004
(0.020)

-16428.873
(6.972)

SiRG with
knowledge-driven

mutation procedure

0.8063
(0.062)

-1146.521
(0)

0.7048
(0.072)

-6166.432
(46.648)

0.3119
(0.025)

-16426.336
(5.476)

EKGA-BN 0.825
(0.0645)

-1146.521
(0)

0.7761
(0.061)

-6142.239
(46.571)

0.3242
(0.017)

-16423.024
(4.388)

TABLE V
COMPARING EKGA-BN WITH OTHER ALGORITHMS

Method Asia-500 Alarm-500 HeparII-500 ANDE-300

EKGA-BN

F1 Score 0.825 (0.0645) 0.7761 (0.0610) 0.3230 (0.01733) 0.5232 (0.018)
Sensitivity 0.825 (0.06454) 0.7478 (0.0534) 0.2293 (0.01259) 0.4722 (0.019)
Specificity 0.9642 (0) 0.9945 (0.004) 0.9945 (0.001) 0.9960 (0.0002)

Score -1146.521 (0) -6142.028 (47.8710) -16423.024 (4.389) -30094.437 (71.464)

AESL-GA

F1 Score 0.775 (0.053) 0.6659 (0.031) 0.3040 (0.029) 0.3213 (0.022)
Sensitivity 0.775 (0.053) 0.6674 (0.040) 0.2154 (0.020) 0.2970 (0.019)
Specificity 0.9643 (0) 0.9854 (0.004) 0.9934 (0.001) 0.9941 (0.0003)

Score -1146.521) (0) -6278.734 (53.379) -16434.180 (4.914) -31713.014 (153.050)

MWST

F1 Score 0.2267 (0.167) 0.3732 (0.040) 0.2552 (0.022) 0.2636 (0.013)
Sensitivity 0.2125 (0.156) 0.3326 (0.036) 0.1991 (0.017) 0.2183 (0.011)
Specificity 0.9286 (0) 0.9924 (0) 0.9873 (0) 0.9972 (0)

Score -1172.951 (0) -6602.342 (0) -16457.470 (0) -31673.124 (0)

TAN

F1 Score 0.2762 (0.1305) 0.2803 (0.045) 0.1331 (0.025) 0.1918 (0.009)
Sensitivity 0.3625 (0.1713) 0.3565 (0.0572) 0.1406 (0.027) 0.2216 (0.011)
Specificity 0.7321 (0.035) 0.9361 (0.003) 0.9568 (0.001) 0.9883 (0.0001)

Score -1180.902 (10.658) -7012.498 (173.336) -17018.265 (339.869) -32527.118 (263.307)

K2

F1 Score 0.3482 (0.150) 0.3501 (0.0517) 0.1719 (0.041) 0.2568 (0.017)
Sensitivity 0.3625 (0.150) 0.4087 (0.054) 0.1333 (0.032) 0.2973 (0.017)
Specificity 0.8643 (0.050) 0.9619 (0.007) 0.9850 (0.002) 0.9889 (0.001)

Score -1157.091 (6.187) -6464.332 (102.595) -16510.977 (31.371) -30269.058 (112.3962)

HC

F1 Score 0 (0) 0.4842 (0)

running out of time running out of time
Sensitivity 0 (0) 0.5 (0)
Specificity 0.8929 (0) 0.9863 (0)

Score -1151.431 (0) -6130.914 (0)

MMHC

F1 Score 0.7143 (0) 0.6667 (0) 0.2530 (0) 0.4595 (0)
Sensitivity 0.625 (0) 0.6522 (0) 0.1707 (0) 0.4024 (0)
Specificity 1 (0) 0.9894 (0) 0.9958 (0) 0.9968 (0)

Score -1164.500 (0) -6248.543 (0) -16492.764 (0) -30232.257 (0)



the score of HC algorithm in ALARM500 is highest, the F1
score, sensitivity, and specificity of EKGA-BN in ALARM500
outperforms HC algorithm. As F1 score and sensitivity are
concerned, EKGA-BN obtains the best performance for all of
the eight measures. As for Aisa network, EKGA-BN is able
to find a Bayesian score equal to other GA based algorithm.
On ALARM500 and ANDE300 datasets, EKGA-BN is able
to find a BN which performs much better than the second
best result in the field of structure differences. In other words,
EKGA-BN is the best-performing algorithms in maximizing
F1 score and the identified BN structure is able to reflect the
reality most, while it can also achieves the highest Bayesian
score consistently comparing to other algorithms.

Due to the limit of data, the F1 score and Bayesian score
of TAN and MWST is poor, which denotes that constraint
based algorithms may perform bad when the training data
is insufficient. K2 and HC are both efficient single-solution
searching methods. K2 optimize Bayesian score effectively,
but the final solution does not match the original BN well and
therefore has low F1 score. HC is able to identify BN structure
with lower Bayesian score comparing to K2 in ASIA500 and
ALARM500, but runs out of time in larger datasets.

The F1 score of MMHC performs best among K2, HC,
MWST, and TAN, which means the BN structure identified
by MMHC is closer to the representation of reality and thus
the accuracy is higher. But its F1 score performs worse than
EA based algorithm in large datasets.

Fig. 4 illustrates the convergence rate of the algorithms
with four datasets. The convergence graphs present the av-
erage scores obtained by EKGA-BN, AESL-GA, K2 and

HC using databases ASIA-500, ALARM-500 and HEPARII-
500. MWST and TAN are constraint-based algorithms, which
therefore are not shown in Fig. 4. As the number of variables
increases, the convergence speed of K2 algorithm and HC
algorithm decrease obviously. Although K2 algorithm conver-
gence faster than EKGA-BN in ASIA500, ALARM500, and
HEPARII500, the score is much lower than EKGA-BN and
AESL-GA in four datasets. And the HC algorithm is forced to
stop after 36 hours spent on a single run in large datasets such
as HeparII500 and ANDE300, while in small and medium
problems it performs well and can search a BN with high
score. The convergence rate for EKGA-BN is obviously faster
than AESL-GA and HC algorithm in all four datasets and is
more likely to get highest Bayesian score.

The experimental results show that the proposed algorithm
is superior to other compared algorithms on the quality and
performance measure. The result of MMHC algorithm is not
shown in the result since the Causal Explorer system only give
the executable file rather than source code. Generally speaking,
the convergence rate of EKGA-BN is much faster while the
score of the constructed networks is also improved comparing
with other widely used BNs structure learning methods such
as MWST, TAN, K2, HC, MMHC, and AESL-GA.

V. CONCLUSION

This paper has proposed a series of new operators into
a novel efficient knowledge-driven GA for BNs structure
learning problem. We fist predefined a maximum number
of same individuals to maintains the population diversity.
The higher population diversity makes EKGA-BN easier to
overstep the local extreme, and therefore the identified BN

(a) ASIA (b) ALARM

(c) HEPARII (d) HEPARII

Fig. 4. Convergence rate of different algorithms in benchmark networks



structures will have a better performance. Then, the idea of
HC algorithm is introduced to speed up searching each niche,
which accelerate the convergence rate. Moreover, the elite set,
which composed of well-performed individuals, is analysed to
construct a common BN structure. The common BN structure
is used to lead the search direction and enhance the local
search ability. The experimental results reported in Section IV
shows that the performance of EA based algorithm performs
generally better than single solution score based search algo-
rithms and constraint based algorithms. Comparing to other
EA based algorithms, EKGA-BN is capable of constructing
a near optimal networks with higher BDeu score and has
faster convergence speed over four datasets. And EKGA-BN
also shows robust and significant results especially in datasets
which have higher number of variables.

However it is still a challenge to find the optimal structure
in large data size. For future research, we would like to
study the optimization mechanism of other state-of-the-art EA
algorithms, and extend our study for BN learning problem
with large data size.
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