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Abstract—The single-objective numerical optimization is an
important research field due to variety of real world applications.
One of the most promising classes of numerical optimization
algorithms is Differential Evolution. This paper proposes a new
algorithm called RASP-SHADE to solve the CEC 2020 Bound
Constrained Single Objective Optimization benchmark prob-
lems. The developed algorithm is based on the L-SHADE with
Distance-based success history adaptation, incudes parameter
adaptations of the jSO algorithm, and introduces several novel-
ties. The ranking of population and archive according to fitness
introduces the selective pressure, resulting in a new mutation
strategy. A new archive update rule is applied with replacing only
worst points and the parameters sampling scheme is changed.
The experiments show that RASP-SHADE modifications result
in significant improvements when compared to other state-of-the-
art algorithms.

Index Terms—optimization, differential evolution, selective
pressure, CEC 2020

I. INTRODUCTION

In recent decades the heuristic optimization methods have
shown promising results for variety of real-world problems,
with Differential Evolution (DE) being one of the most com-
monly used in case of numerical optimization. Since the first
proposal of DE in [1], a variety of modifications have been
proposed, which included novel mutation strategies and pa-
rameter adaptation mechanisms. Although the No Free Lunch
theorem [2] for optimization states that no single optimization
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algorithm could be considered to be superior compared to
others on all problems, it is still possible to develop efficient
algorithms for specific classes of problems, which is improtat
for practitioners. In most cases, the problem of constructing an
efficient search algorithm is a problem of keeping the balance
between exploration and exploitation.

In this paper the problem of tradeoff between exploration
and exploitation in DE is addressed by several modifications.
As a baseline, the L-SHADE algorithm originally presented in
[3], further improved in jSO [4] and DISH [5]. As stated in [6],
the L-SHADE class of algorithms represent one of the most
efficient DE versions. First, the Success-History parameter
adaptation is imrpoved by changing the sampling type for F
and Cr parameters. Second, a novel mutation strategy, current-
to-rank-arch/1 is proposed, which applies two separate fitness-
based rankings for the population and the archive. Third,
a new archive update rule is applied, according to which
only inferior individuals are replaced in the archive set. The
resulting algorithm is called Success Historty Adaptive Differ-
ential Evolution with Ranked Archive Selective Pressure and
distance-based success-history adaptation (RASP-SHADE).
The experimental results compare all proposed modifications
and their combinations with the baseline algorithm, showing
the effect of each of them.

The structure of the paper is organized as follows. In Section
II a short description of L-SHADE, jSO and DISH is given.
Section III presents the new modifications in detail, and the
ides behind them. The experimental setup and results using
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CEC 2020 benchmark problems is presented in Section IV.
Finally, Section V contains results discussion, conclusions and
directions of further research.

II. RELATED WORK

A. Differential Evolution

The Differential Evolution is a widely used Evolution-
ary Algorithm (EA), which is capable of achieving highly
competetive results for numerical optimization [7]. DE is a
population based heuristic optimization method, which uses a
set of solutions to perform the search. The main idea of DE is
to use difference vectors between members of the population
to generate new solutions. DE has three main parameters,
population size NP , scaling factor F and crossover rate Cr.
The algorithms starts by randomly initializing the population
of vectors xi,j , i = 1...NP , j = 1...D, inside the bound-
aries with uniform distribution, and then performs mutation,
crossover and selection steps, where D is the problem dimen-
sion. In the original DE [1] the rand/1 mutation strategy was
used, later more advanced strategies were proposed, including
current-to-pbest/1, introduced in JADE algorithm [8] and also
used in SHADE framework [9]. The current-to-pbest/1 strategy
generates mutant vector using scaling factor F ∈ [0, 1] as
follows:

vi,j = xi,j = F (xpbest,j − xi,j) + F (xr1,j − xr2,j) (1)

In (1) xi,j is the j-th coordinate of i-th individual, pbest is
the index of one of pb ∗ 100% best individuals, different from
index i, r1 and r2 are mutually different random indexes, also
different from i and pbest. After generating the mutant vector,
the crossover is performed to combine the genetic information.
Most DE algorithms use binomial crossover, in which the trial
vector u is created using parameter Cr ∈ [0, 1] as follows:

ui,j =

{
vi,j , if rand(0, 1) < Cr or j = jrand

xi,j , otherwise
(2)

In (2) the jrand index is randomly chosen from [1, D] and
is required to make sure that at least one coordinate is taken
from the mutant vector. Otherwise, it is possible there will
be no difference between parent and child, and it will result
in unnecessary fitness calculations. To keep solutions inside
the boundaries, several bound constraint handling methods
could be used. In most studies, the following bound constraint
handling method (BCHM [10]) is applied: if the component
of the trial vector violates the boundary, its parent is used to
set the new value.

ui,j =

{
xminj+xi,j

2 , if ui,j < xminj
xmaxj+xi,j

2 , if ui,j > xmaxj
. (3)

In (3) the xminj and xmaxj are the lower and upper
boundaries of variable j. After calculating the fitness value
f(u) of the trial vector, the selection step is performed: if the

trial vector is better or equal to the parent in terms of fitness,
the i-th individual in the population is replaced.

xi,j =

{
ui,j , if f(ui,j) ≤ f(xi,j)

xi,j , if f(ui,j) > f(xi,j)
. (4)

Due to the greedy DE mutation, the fitness of the population
either improves or stays the same.

B. L-SHADE algorithm

One of the main problems of DE is its high sensitivity to
the parameter values. Following the ideas proposed in JADE,
the L-SHADE algorithm, winner of CEC 2014 competition,
has the following mechanisms for parameter adaptation. The
historical memory cells (MF,k,MCr,k) are maintained, each
containing a couple of F and Cr parameter values. The
memory size in L-SHADE is set to H = 5, h is the
current memory index. For every mutation and crossover new
parameter values are sampled as follows:

F = randc(MF,k, 0.1), randn(MCr,k, 0.1), (5)

where randc is a Cauchy distributed random value, and randn
is normally distribured, k is chosen in range [1, D] for every
individual. The values in memory cells are used as location
parameters of the distributions. If the generated F value is
below 0, it is generated again, however if F > 1 it is set to
1, also if Cr < 0 then Cr = 0 and if Cr > 1 then Cr = 1.

The values of F and Cr, which delivered an improvement
to the fitness of an individual, are stored in arrays SF and
SCr, as well as the fitness difference ∆f , and used at the end
of the generation to update the memory cells with weighted
Lehmer mean:

meanwL =

∑|S|
j=1 wjS

2
j∑|S|

j=1 wjSj

, (6)

where wj =
∆fj∑|S|

k=1 ∆fk
, ∆fj = |f(uj)−f(xj)| and S is either

SCr or SF . To avoid large changes in parameter values, the
previous are used, so that the new memory cells values are
defined as follows:

Mg+1
F,k = 0.5(Mg

F,k +meanwL(F )), (7)

Mg+1
Cr,k = 0.5(Mg

Cr,k +meanwL(Cr)), (8)

where g is the current generation number.
The JADE, SHADE, L-SHADE and their modifications use

the external archive to store the solutions replaced during
selection in an external archive A, usually of size NP . Initially
the archive is empty and it is filled as the algorithm works.
Every time a newly generated offspring replaces the parent,
the later is copied into the archive. If the archive is full, the
new individuals replace randomly selected ones. The archive
is used during mutation, where the r2 index in current-to-
pbest/1 strategy is randomly selected from the joined set of
the population and the archive.

The L-SHADE algorithm controls the population size NP
by linearly decreasing it (Linear Population Size Reduction,



LPSR). At the end of each generation the number of individ-
uals to be deleted is determined, and the worst in terms are
removed. The new population size is calculated as follows:

NPg+1 = round(
NPmin −NPmax

NFEmax
NFE +NPmax), (9)

where NPmin = 4 is the minimal number of individuals in
the population, NPmax is the initial population size, NFE
is the current number of function evaluations, NFEmax is
the maximal number of function evaluations. The idea of
population size reduction is to allow wide search at the
beginning to cover as much search space as possible, but
later decrease the population size for better convergence to
the best located optimum. The archive size NA is decreased
in the same way as in (9). In the next section recent and
most successful modifications of the L-SHADE algorithm are
presented.

C. jSO and DISH algorithms

The jSO algorithm presented in [4] is the announced winner
of the CEC 2017 competition on numerical optimization. The
jSO introduces several new parameter control rules into the
L-SHADE framework and uses the new mutation strategy,
current-to-pbest-w/1, defined as follows:

vi,j = xi,j + Fw(xpb,j − xi,j) + F (xr1,j − xr2,j), (10)

with Fw defined as follows:

Fw =


0.7F, if NFE < 0.2NFEmax,

0.8F, if 0.2NFEmax ≤ NFE < 0.4NFEmax,

1.2F, otherwise.
(11)

The mutation strategy greediness is controlled by changing
the pb value as follows: pb = pbmax−pbmin

NFEmax
NFE+pbmin. The

minimal value is set as pbmin = pbmax/2, with pbmax = 0.25
in jSO.

The crossover rate Cr is chaned so that large crossover rates
are not allowed at the beginning of the search:

Cr =


max(Cr, 0.7), if NFE < 0.25NFEmax,

max(Cr, 0.6), if 0.25NFEmax ≤ NFE
and NFE < 0.5NFEmax.

(12)

The memory cells MF,k and MCr,k are initialized with 0.3
and 0.8 in jSO in contrast to 0.5 in L-SHADE. In addition,
one additional memory cell allways keeps the values of 0.9
for both F and Cr.

The DISH algorithm further improves the jSO by intro-
ducing the distance based weighting in the Lehmer mean
calculation. The weights are determined not by the ∆f , but
by the Euclidean distance between the offspring u and parent
xi as follows:

wE
n =

√∑D
j=1(un,j − xn,j)2∑|S|

k=1

√∑D
j=1(uk,j − xk,j)2

. (13)

This weight assignment method promotes exploration of
the search space, so that if two points were far away from
each other and there was an improvement, then the scaling
parameter and crossover rate get larger weights. In the next
section the proposed RASP-SHADE algorithm is described.

III. RASP-SHADE ALGORITHM

The RASP-SHADE uses all the presented features of the
L-SHADE, jSO and DISH algorithms and follows the ideas
used in L-SHADE-RSP [11], ranked 2nd best algorithm during
the CEC 2018 competition. In [12] it was shown that the
selective pressure is capable of improving the convergence
capabilities of DE, especially for larger dimensions. The L-
SHADE-RSP algorithm changes the probabilities of selecting
individuals from the population for the r2 index in eq. (10),
when an individual is chosen from the population, according to
the fitness-based ranking. If the individual is chosen from the
archive, no selective pressure is applied. The RASP-SHADE
further develops this idea and uses the current-to-ranked-
archive/1 mutation strategy, defined as follows:

vi,j = xi,j + Fw(xr1,j − xi,j) + F (xr2,j − xr3,j), (14)

where Fw is defined in the same way as in eq. (11). Each
of the indexes r1, r2 and r3 is selected from the archive
set with probability pA = |A|

|A|+NP , otherwise selected from
the population. The population and the archive receive inde-
pendent rankings according to the fitness values. The ranks
assignment could be performed in several ways, described in
[12]. In this case, the linear ranking is used, so that ranki = i,
i = 1...NP , the largest rank assigned to the best individual
(having smallest goal function value in case of minimization).
The RASP-SHADE uses linear ranking for all three indexes
r1, r2 and r3. The probabilities of individuals being chosen
are calculated as follows:

pseli =
ranki∑NP
j=1 rankj

. (15)

The probabilities for archive will be further reffered to
as pselA,i, and for population pselP,i. It is possible to use non-
linear ranking procedures, as reported in [12], for example
exponential ranking, or use tournament selection. However,
large selective pressure in DE usually leads to premature
convergence.

The Cr parameter sampling scheme was changed, so that
larger standard deviation σ = 0.2 is applied. So, in RASP-
SHADE, the parameters are sampled as follows:

F = randc(MF,k, 0.1), Cr = randn(MCr,k, 0.2). (16)

The perofrmed experiments have shown that sampling Cr
with parameters larger then 0.1 may improve convergence
properties on several problems.

Another important modification used in RASP-SHADE is
the archive update rule. Instead of replacing the first randomly
chosen individual in the archive, the update rule in RASP-
SHADE generates random indexes, untill an individual which
is worse than the replaced parent, is found. If there is no such



individual, then a randomly selected individual is replaced.
The search for the worst individual is performed randomly for
|A| iterations, i.e. depends on the current archive size.

The pseudocode of the RASP-SHADE algorithm is pre-
sented in Algorithm 1. The next section contains the experi-
mental setup, parameter settings, results and discussion.

IV. EXPERIMENTAL SETUP AND RESULTS

The experiments were performed in accordance with the
CEC 2020 competition on single objective bound-constrained
numerical optimization, presented in [13]. The benchmark
contained 10 functions defined for D = 5, D = 10, D = 15
and D = 20. The computational resource is set to 5 · 105

function evaluations for 5D, 106 for 10D, 3 ·106 for 15D and
107 for 20D. Functions 6 and 7 for 5D are excluded from the
competition. Unlike previous competitions, in the CEC 2020
the amount of computational resource scales exponentially
with the problem dimension, with the goal of determining the
abilities of algorithms to correctly use the increased resource.

The was 30 independent algorithm runs performed, and
the best function values were recorded after D

k
5−3NFEmax

function evaluations, k=0,...,15 for each test function. The
population size was set to NP = 30D1.5, maximum archive
size NA = 0.7NP . The algorithm was implemented in C++
with GCC and run on PC with Ubuntu 19.04, Intel Core
i7 8700k processor and 48GB RAM, results post-processing
performed using Python 3.6.

The results of RASP-SHADE for all dimensions are pre-
sented in Tables I-IV.

TABLE I
RESULTS OF RASP-SHADE FOR 5D

Func. Best Worst Median Mean Std
1 0.0 0.0 0.0 0.0 0.0
2 0.023946 6.8356 0.364606 0.563579 1.175281
3 5.14823 5.7578 5.352665 5.337707 0.171504
4 0.004675 0.158992 0.110297 0.103801 0.038458
5 0.0 0.624099 0.0 0.0832132 0.212152
8 0.0 0.0 0.0 0.0 0.0
9 100.0 100.0 100.0 100.0 0.0

10 300.0 347.367 347.367 344.2092 11.815405

TABLE II
RESULTS OF RASP-SHADE FOR 10D

Func. Best Worst Median Mean Std
1 0.0 0.0 0.0 0.0 0.0
2 0.0624636 3.66478 0.312279 0.944419 1.316179
3 10.4359 11.7546 11.1883 11.140753 0.358079
4 0.177174 0.37063 0.276787 0.272218 0.057311
5 0.0 0.624429 0.416286 0.340375 0.173219
6 0.0211657 0.298681 0.196276 0.159378 0.093905
7 8.724e-07 0.004154 0.000771 0.000894 0.000958
8 100.0 100.0 100.0 100.0 0.0
9 100.0 100.0 100.0 100.0 0.0
10 397.743 398.009 397.743 397.760733 0.066352

The RASP-SHADE algorithm was able to find the exact
solution for the first function (unimodal bent cigar) in all

Algorithm 1 RASP-SHADE
1: Set NPmax, NFE = 0, NP = NPmax D, NFEmax,
2: H = 5, A = ∅, MF,r = 0.5, MCr,r = 0.8, r = 1...H
3: MF,H+1 = 0.9, MCr,H+1 = 0.9, NA = 0.7NP
4: g = 0
5: Initialize population P0 = (x1,j , ..., xNP,j) randomly
6: while NFE < NFEmax do
7: SF = ∅, SCr = ∅
8: Rank population according to fitness, set pselP

9: Rank archive according to fitness, set pselA

10: for i = 1 to NP do
11: Current memory index r = randint[1, H + 1]
12: Cr = randn(MCr,r, 0.2)
13: Cr = min(1,max(0, Cr))
14: repeat
15: F = randc(MF,r, 0.1)
16: until F ≥ 0
17: F = min(1, F )
18: Get Fw from eq. (11)
19: Limit Cr according to eq. (12)
20: repeat
21: for k=1 to 3 do
22: if rand[0, 1] < |A|

|A|+NP then
23: rk from archive with pselA

24: else
25: rk from population with pselP

26: end if
27: end for
28: until i 6= r1 6= r2 6= r3

29: for j=1 to D do
30: vi,j = xi,j + Fw(xr1,j − xi,j) + F (xr2,j − xr3,j)
31: end for
32: Get ui from eq. (2) with Cr, calculate f(ui)
33: if f(ui) < f(xi) then
34: repeat
35: rA = randInt[1, |S|]
36: until f(rA) > f(xi) or NP attempts made
37: xi → A, xi = ui, F → SF , Cr → SCr

38: end if
39: end for
40: Get NPg+1 from eq. (9)
41: Recalculate maximum archive size NAg+1

42: if |A| > NAg+1 then
43: Remove random individuals from the archive
44: end if
45: if NPg > NPg+1 then
46: Remove worst individuals from the population
47: end if
48: if SF 6= ∅ and SCr 6= ∅ then
49: Update MF,k and MCr,k with eq. (13)
50: end if
51: k = k + 1, g = g + 1
52: if k > H then
53: k = 1
54: end if
55: end while
56: Return best solution xbest



TABLE III
RESULTS OF RASP-SHADE FOR 15D

Func. Best Worst Median Mean Std
1 0.0 0.0 0.0 0.0 0.0
2 0.083274 4.71995 0.271543 1.023448 1.334323
3 15.567 16.3923 15.72265 15.808616 0.228542
4 0.240077 0.46057 0.37005 0.363859 0.045738
5 0.468353 3.45323 1.38525 1.325446 0.837661
6 0.237946 1.14647 0.678188 0.616672 0.208141
7 0.499952 0.91628 0.708143 0.728940 0.124301
8 100.0 100.0 100.0 100.0 0.0
9 300.0 386.085 300.0 333.180666 40.757435

10 400.0 400.0 400.0 400.0 0.0

TABLE IV
RESULTS OF RASP-SHADE FOR 20D

Func. Best Worst Median Mean Std
1 0.0 0.0 0.0 0.0 0.0
2 0.031228 0.218599 0.124914 0.138446 0.045385
3 20.3872 21.2422 20.4979 20.530463 0.188792
4 0.348645 0.561976 0.459255 0.453013 0.041777
5 0.312256 5.39114 1.30721 1.413648 1.249984
6 0.050391 0.310306 0.162172 0.170902 0.057422
7 0.171816 1.1439 0.831667 0.726503 0.240382
8 100.0 100.0 100.0 100.0 0.0
9 300.0 383.742 360.523 341.7386 35.123196
10 413.657 413.657 413.657 413.656999 1.1368e-13

dimensions, as well as for hybrid function 8 in 5D case. Also,
exact solutions were sometimes found for hybrid function 5
in 5D and 10D, and at least one relatively good solution was
found for hybrid function problem 7 in 10D. For composition
functions 8-10 in most cases the RASP-SHADE algorithm was
able to find suboptimal solutions.

To compare the results of RASP-SHADE with other ap-
proaches, several experiments have been performed. First, as
long as RASP-SHADE is a modification of jSO, DISH and
LSHADE-RSP algorithms, these methods were tested. The
population sizes for all these approaches were set in the same
manner, i.e. NP = 30D1.5, all other parameters were set
as described in the original papers, exept for the pbmax in
LSHADE-RSP set to 0.25 instead of 0.17. In addition to this,
all modifications introduced in the RASP-SHADE were tested.
The comparison between methods was performed using two-
tailed Mann-Whitney rank sum statistical test with significance
level p = 0.01, normal approximation and tie correction. The
statistical test was performed for every function independently
based on 30 resulting values at the end of each run, the Z
and p value were reported. Table V shows the comparison
of jSO, DISH, LSHADE-RSP and three versions of RASP-
SHADE: with random archive update and σ = 0.1 for Cr
sampling (RA, 0.1), with new archive update searching for
worst individual and σ = 0.1 (WA, 0.1), and with new
archive update rule and σ = 0.2 (WA, 0.2). All algorithms
are compared to jSO, which was taken as a baseline.

In Table V the total number of wins (+), non-significant
differences (=) and losses (-) summed over all functions ac-

TABLE V
STATISTICAL COMPARISON OF RASP-SHADE WITH OTHER

APPROACHES, MANN-WHITNEY TEST, JSO AS BASELINE

D 5D 10D 15D 20D
DISH 0+/8=/0- 0+/10=/0- 1+/9=/0- 1+/9=/0-

LSHADE-RSP 0+/8=/0- 0+/10=/0- 0+/10=/0- 1+/9=/0-
RASP-SHADERA,0.1 0+/7=/1- 2+/7=/1- 1+/6=/3- 1+/9=/0-
RASP-SHADEWA,0.1 0+/7=/1- 3+/7=/0 1+/9=/0- 3+/7=/0-
RASP-SHADEWA,0.2 0+/8=/0 4+/6=/0- 1+/9=/0- 3+/7=/0-

cording to Mann-Whitney test are reported for all algorithms.
On CEC 2020 problems applying the Euclidean distance based
parameter adaptation, introduced in DISH algorithm only gives
significant improvement for one problem in 15D and 20D,
namely function 5. The LSHADE-RSP algorithm, which does
not use the Euclidean distance weighting, is still capable of
showing better performance then jSO for one 20D function,
namely F9. The usage of other mutation strategy in the RASP-
SHADE algorithm changes its behaviour, resulting in several
performance improvements and deteriorations. Adding the new
archive update rule and larger σ for Cr sampling improves the
performance, resulting in up to 4 improvements for 10D and
3 improvements for 20D, in particular for functions 5, 6 and
9.

In addition to the Mann-Whitney test, the ranking proce-
dure from Friedman statistical test was used to compare the
algorithms. All 6 algorithms’ results were ranked on every
function and every dimension independently, and the sum of
all ranks was averaged aand summed over all functions, with
smaller ranks assigned to better goal function values. Table VI
shows the final ranks of all used algorithms.

TABLE VI
COMPARISON OF RASP-SHADE WITH OTHER APPROACHES, FRIEDMAN

RANKING

D 5D 10D 15D 20D
jSO 14.1960 16.2745 15.0980 17.1960

DISH 14.7647 16.5490 14.3921 14.9509
LSHADE-RSP 14.2254 15.6764 14.7941 16.3529

RASP-SHADERA,0.1 15.3137 15.1568 16.2843 15.7941
RASP-SHADEWA,0.1 15.3529 12.4803 14.3921 12.0098
RASP-SHADEWA,0.2 14.3823 12.0980 13.2745 11.9313

From Table VI it could be seen that for 5D the jSO is better
than other approaches, but the difference is small, while the
last modification of RASP-SHADE achieves the best results
for other dimensions. Also, it could be mentioned that the
modified archive update rule has the largest effect on the
performance.

Table VII shows the complexity analysis of RASP-SHADE
algorithm, performed according to the CEC 2020 competition
rules.

The most computationally intensive new modification in the
RASP-SHADE is the fitness-based ranking and probabilities
assignment for the current-to-ranked-archive/1 mutation strat-



egy. The contribution of other parts, including the archive
update rule, is minor.

In Figures 1 and 2 the convergence graphs of jSO, DISH,
LSHADE-RSP and RASP-SHADEWA,0.2 are presented for
10-dimensional and 20-dimensional functions.
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Fig. 1. Convergence graphs for all functions, 10D.

TABLE VII
COMPUTATIONAL COMPLEXITY OF RASP-SHADE

D T0 T1 T2 (T2− T1)/T0
D = 5 0.303 0.024 190.8 0.3326
D = 10 0.303 0.035 262.2 0.5683
D = 15 0.303 0.059 340.2 0.8267
D = 20 0.303 0.090 436.4 1.1432

From Figures 1 and 2 it could be seen that RASP-SHADE
demonstrates different convergence properties, especially for
functions 5, 6, 7 and 9, which are complex hybrid and
composition functions. The RASP-SHADE converges slower,
however it maintains its explorative properties much longer,
allowing to achieve better performance in several scenarios.
The main reason of the improved explorative properties is the
current-to-ranked-archive/1 mutation strategy, and the conver-
gence speed is improved by introducing the selective pressure
and new archive update rule.
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Fig. 2. Convergence graphs for all functions, 20D.

V. CONCLUSIONS

The RASP-SHADE algorithm introduced in this paper has
several significant differences, compared to the L-SHADE
class of algorithms. First is the novel mutation strategy, which
uses both the population and the archive for all three vectors
in the equation, improving the exploration properties. The
selective pressure, on the other hand, is aimed at exploiting the
known information, while also taking into consideration the
information contained in the archive. Second, the new archive
update rule is focused on saving the information in the archive
by replacing only inferior solutions. With increased crossover
rate scalinig parameter, the RASP-SHADE outperforms sev-
eral state-of-the-art algorithms, which were considered one
of the best on previous CEC competitions. The directions
of further work may include the search for new mutation
strategies and selective pressure mechanisms, understanding
their behaviour, as well as new archive set handling techniques.
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