
Differential Evolution Algorithm for Multiple
Inter-dependent Components Traveling Thief

Problem
Ismail M Ali1, Daryl Essam2 and Kathryn Kasmarik3

School of Engineering and IT, University of New South Wales
Canberra, Australia

Email: 1Ismail.Ali@student.adfa.edu.au, 2d.essam@adfa.edu.au, 3Kathryn.Kasmarik@adfa.edu.au

Abstract—Differential evolution was mainly proposed for solv-
ing optimization problems with continuous decision variables
because of its Euclidean distance-based learning concept. This
made it unsuitable for many binary and discrete problems.
However, several studies approved the applicability of differential
evolution algorithm for effectively solving such problems. In this
paper, a new design of differential evolution, which incorporates
mapping and repairing methods, modified mutation operator
and local searches, is proposed to solve the complex multi-
components traveling thief problems that are characterized by
both binary and discrete parameters. Also, a novel initialization
and repairing method, which enables differential evolution’s
operators to only evolve solutions of one component and optimally
distribute/update the solutions of the other one with considering
the inter-dependency between both components, is introduced.
To judge the performance of the proposed algorithm, 13 strongly
correlated instances of traveling thief problems have been solved
and the results have been compared with those from 24 self-
designed and state-of-the-art algorithms. Results demonstrated
the competitive performance of the proposed algorithm in terms
of the quality of obtained solutions and computational time.

Index Terms—Differential evolution, Traveling thief problem,
Combinatorial optimization problem, Evolutionary algorithms

I. INTRODUCTION

Differential Evolution (DE) was first introduced in 1997 as
a method that optimizes a problem with continuous decision
variables by iteratively trying to improve a candidate solution
[1]. DE is a stochastic population-based search technique,
which is inspired by the biological model of evolution and
mimicked the natural selection model. As it has a long history
of successfully solving continuous optimization problems, DE
is considered a powerful tool for solving such problems [2].
In its process, DE adapted three main evolutionary operators,
namely: mutation, crossover and selection to direct the search
towards (near-) optimal solutions. The quality of the solutions
in DE is measured by a pre-defined fitness function, called the
objective function, and based on the obtained fitness values,
the solutions are ranked.

The Traveling Thief Problem (TTP) is an NP-hard Combi-
natorial Optimization Problem (COP) with both discrete and
binary decision variables [3]. TTP is a recent benchmark
for problems with multiple inter-dependent components. It
is a combination of two well-known optimization problems:
Traveling Salesman Problem (TSP) and Knapsack Problem

(KP). These two components are integrated in such a way
that the optimal solution for every single component (problem)
does not essentially lead to obtaining the optimal solution for
TTP. This means that these two components are interdependent
in the sense that a solution for one component affects the
quality of the solutions for other components, and hence the
quality of the solutions for the whole problem. Practically,
TTP reflects the complexity of real-world applications, which
contain more than single NP-hard problems. This can be
widely observed in many fields, such as planning, supply
chain, scheduling, routing, and transportation of water tanks
[4].

Several techniques have recently been developed for solving
the newly introduced TTP benchmark, which is providing
many test instances of the interdependent multi-components
problems of TTP [3]. The first attempt to tackle TTPs was in
2014, by Polyakovskiy et al. who applied several heuristic
and meta-heuristic techniques, such as simple constructive
heuristic (SH) and an iterative heuristic. In their work, they
incorporated the Random Local Search (RLS) with a simple
Evolutionary Algorithm (EA) to repeatedly create a single
new solution and record it as the best. In the next iteration,
the solution is improved by comparing the newly created
one with the best of the previous iterations [5]. In the same
year, another optimization problem solver, called CoSolver,
was introduced to solve the TTP by decomposing it into two
sub-problems and solve them by separate models while main-
taining the communication between them. Then it combines
the obtained solutions to create the overall TTP solution [6].
Moreover, a memetic algorithm with two-stage local search
and multi-complexity reduction approaches has been proposed
for solving large-scale instances of TTPs in a maximum of 10
minutes of computational time [7]. Recently, an Ant Colony
Optimization (ACO) algorithm with two hybridization levels
is also introduced for TTPs [8]. Further investigation of TTPs
has been conducted by using a meta-heuristic technique (i.e.
Genetic Algorithm (GA)) with multiple local searches, such as
2-OPT, insertion and bit-flip [24]. Because of its importance
in various applications and its ability to present the real-
world problems with their complexity, and although many
state-of-the-art techniques have been proposed, there is still
a recent and high demand to find an algorithm that can solve

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

TTPs in a more efficient way and less computational time.
Additionally, to our best of knowledge and according to the
literature, no DE-based algorithms have been proposed for
solving TTPs. So, this paper should be the first one that
tackles TTPs using a DE algorithm. However, recent discrete
versions of DE algorithm have successfully been applied
for solving other COPs, such as motor train-sets [9], multi-
skill resource-constrained project [10], TSP [11], [12] and
Resource-Constrained Project Scheduling Problem (RCPSP)
[13] with very promising results. Also, a binary version of
DE has been proposed for solving different instances of
binary KPs with outstanding performance compared with other
algorithms [14]. The defined limitations, in the literature, of
applying discrete versions of DE algorithms for solving COPs,
such as slow convergence and becoming trapped in local
optima, and the promising results, achieved by discrete DE
in other problems, have formed the main motivation of this
work.

In this paper, a novel design of DE, which incorporates
several effective components to efficiently solve TTPs, is
proposed. These components enable the proposed DE to solve
TTPs in both discrete and binary domains, so it can be
called Discrete-Binary DE (DB-DE). In DB-DE, the following
components are incorporated: 1) a dual representation is
adapted to represent every solution in both binary and discrete
populations; 2) a mapping function is applied for mapping
DE’s continuous decision variables into discrete and binary;
3) a novel initialization and repairing function is proposed
in the aim of reducing the evolutionary process of DE and
hence the computational time by modifying only TSP solutions
and distributing KP solutions based on them. Finally, the
performance of the proposed DB-DE is compared with those
of 3 DE-based and 21 state-of-the-art algorithms for solving
13 instances of TTP with different scales.

The rest of the paper is structured as follows. Section
II explains the definition and mathematical model of TTPs.
The proposed DE algorithm is described in Section III. The
experimental results are provided in Section IV. Finally, the
conclusion and future work of this study are presented in
Section V.

II. TRAVELING THIEF PROBLEM

Traveling Thief Problem (TTP) is a class of COPs, which
comprises a combination of two of the most famous optimiza-
tion problems, namely TSPs and KPs.

According to its definition in [5], TTP can be formulated
as a set of cities (N = 1, ..., n) for which a distance (dij)
between any pair of cities (i.e. cities i and j, where i, j ∈ N)
is known. Every city i contains a set of items (Mi = 1, ..., ki)
and each item k positions in i is characterized by its profit
(pik) and weight (wik), thus item Iik ∼ (pik, wik). The thief
had to visit each city exactly once, starting from the first city
and returning to it at the end of the trip. Any item can be
placed in the knapsack at any city as long as the total weight
of the collected items did not exceed the maximum possible
weight (W). A renting rate (R) is paid each time when an item

is added. vmax and vmin denote the maximum and minimum
speeds, respectively, at which the thief can move. The main
objective is to find a trip that achieves the maximum profit
value.

Let yik ∈ 0, 1 denotes a binary variable equals to one when
item k is picked up in city i and Wi is the total weight of
the collected items when the thief left that city. Therefore, the
objective function for a trip (II = (x1, ..., xn), xi ∈ N) and
packing plan (P = (y21, ..., ynmi

)) is:

Z(II, P) =

n∑
i=1

mi∑
k=1

Pikyik −R(
dxnx1

vmax − vWxn

+

n−1∑
i=1

dxixi+1

vmax − vWxi

) (1)

where V = vmax−vmin

W is a constant value.

III. PROPOSED DIFFERENTIAL EVOLUTION

In this section, the framework of the proposed DB-DE a
new initialization and repairing method for KP population, is
described. The main components of the proposed framework
are shown in Fig. 1 and discussed in the following sub-
sections.

A. Solution Representation and Initial Population

Initially, the TTP solution is presented by two vectors,
binary and discrete. The binary vector represents the picking
plan of KP that decides which item will be taken (=1) and
which will not (=0), where the length of the binary vector
equals the total number of items (M). The discrete vector
represents the order of the cities to be visited in TSP, where
its length equals the total number of cities (N). Example of
both binary and discrete solution representations is shown in
Fig. 2.

Fig. 2 represents a TTP solution, which can be interpreted as
follows: the order of cities to be visited by a salesman is 5, 2,
1,. . . , 8 and will eventually return to city 5 with the following
items picking plan: in city 5, no items are picked, in cities 2,
1 and N , items 2, 3 and M are respectively collected.

An initial population of TSP candidate solutions of size PS
is randomly generated. Also, a matrix of the distances between
all cities and each other is defined as (D), where di,j is the
distance between i and j cities.

B. TSP’s Solutions Repairing Method

Having individuals with good qualities within the initial
population is very essential to increase the DE convergence
speed towards the optimal solutions and hence a significant re-
duction in the required computational time [11]. Consequently,
the k-means clustering, previously proposed in [11], [12], is
applied as a repairing method for TSP solutions. According
to the conducted parametric analysis of these papers, applying
k-means clustering to 10% of PS in the TSP population is
recommended. In this method, the solution/path of the TSP
is divided into several sub-paths, where all cities with short

Start

Generate a random initial population for TSP
(subsection III.A)

Apply k-means clustering method for repairing
10% of the solutions in TSP population

(subsection III.B)

Apply proposed KP initialization method to
generate KP solutions according to their

corresponding TSP solutions (subsection III.C)

TTP’s objective values evaluation of combined
TSP and KP solutions (subsection III.D)

Ensemble of mutations
(subsection III.G)

Apply BMV mapping
method to mutant TSP

solutions (subsection III.G)

Crossover
(subsection III.G)

Satisfy termination
conditions?

(subsection III.E)

Selection
(subsection III.I)

New TSP and KP Populations

Apply 3-Opt local search to best TSP
solution and KP initialization method

to generate its corresponding KP
solution (subsection III.F)

End

Yes

No

Apply proposed KP initialization method and
re-evaluate TTP’s objective values of combined

TSP and KP solutions (subsection III.H)

Fig. 1. Framework of proposed DE algorithm for TTPs

Fig. 2. Individual representation of KP and TSP

distances between them are gathered to form a sub-path/group.
Then, the formed sub-paths are iteratively merged to form a
less number of groups, which comprises a greater number of
cities. This process continues until a full path (one group)
that contains all the cities, with the minimum total distances
between them, is achieved.

C. KP’s Solutions Initialization Method

In this step, KP individuals are randomly generated with
binary values and PS size to form the KP population. In order
to maintain the dependency between the TTP’s components,
the generated KP solutions are repaired according to their
items’ profits, weights and locations from the destination city
(their carry distance). Location of each item in KP solution
can be known by its corresponding city in TSP solution.
The proposed repairing method is implemented according to
Algorithm 1 through four main steps.

• Step 1: Generate a random KP population of PS solu-
tions.

• Step 2: in each TSP solution, the distance between each
city and the destination city (end of route) is measured
and recorded in (CDis), where CDisi is the distance
between city i and the destination (last city), and the

order of cities to be visited is also recorded.
• Step 3: For each item in KP solution, the TTP objective

value, based on the item’s current location from the
destination, profit and weight values, is calculated by
equation 1. After that, the items are sorted according to
their objective values.

• Step 4: The KP population is re-generated/re-distributed
as follows: for each KP solution, distribute the items to
the cities according to the resultant order of items.

Algorithm 1 Pseudo-code of KP solution initialization and
repairing method

1: KP Pop ← Generate a random KP population of PS
solutions //—Step 1—

2: for i = 1 : PS do
3: Full Path← TSP Pop(i)+TSP Pop(1) //Step 2-
4: for j = 1 : N do
5: distance← Dis(j, j + 1)
6: CityOrder ← j
7: Fit← Fit(i) + distance(j)
8: end for
9: for s = 2 : N + 1 do

10: CDisi ← CDiss−1 + distances−1

11: end for
12: DisToEnd(i)← Fit(i)− CDisi
13: for item = 1 : M do
14: ItemLoc← Cities(item) //—Step 3—
15: CityOfItem← CityOrder(ItemLoca)
16: ItemDtoEnd← DisToEnd(CityOfItem)
17: Obj(item) ← (ItemDtoEnd/(vmax − witem ×

(vmax − vmin)/W));
18: ItemDis(item)← values(item)−R× t;
19: OrderedItem← sort(ItemDis, descend)
20: end for
21: f ← 1; //—Step 4—
22: Wremain ←W
23: while Wremain ¿0 and f < M do
24: Item← OrderedItem(f)
25: if (Wremain − wItem) > 0 then
26: f ← f + 1; //continue
27: end if
28: Wremain ←Wremain − wItem

29: KP Pop(i, Item)← 1
30: end while
31: end for

D. Fitness Evaluation and Population Sorting of TTP

Once the solutions of TTP are generated and repaired,
the quality of each solution (TSP and its corresponding KP
solutions) is measured by calculating its fitness using equation
1. After that, the solutions in both populations are sorted ac-
cording to the objective values (fitness values), where solutions
with high objective values are ranked first.

E. Termination Conditions

In this study, in order to save computational time, two
termination conditions are set and applied simultaneously. 1)
Maximum allowed number of objective function evaluations
(cfe), as the algorithm is terminated if cfe > MaxFit, where
MaxFit is the maximum number of fitness evaluations. 2)
The performance’s progress of the algorithm, as the algorithm
is terminated if no improvement occurs in 100 consecutive
iterations.

If the termination conditions of the DE evolutionary loop are
not fulfilled, the following evolutionary process will continue
to be applied to TSP population only. In that way, around
half of the consumed computational time required to evolving
solutions in both TSP and KP populations will be saved, as
solutions of KP population can be directly updated by the
proposed KP initialization and repairing method (subsection
III-C).

F. Local Search

In order to enhance the exploitation capability of the pro-
posed DE, the well-known 3-Opt local search [20] is applied
to further explore the best obtained TSP solution (the TSP part
in the best TTP solution). Then, the corresponding KP solution
is updated/repaired by redistributing its items according to the
exploited TSP solution (subsection III-C).

G. Mutation, Mapping Method and Crossover

In mutation, due to its outstanding performance to repro-
duce TSP solutions with better qualities than their parents,
the ensemble of mutation strategies, previously proposed in
[11], is applied. The mutation combines three frequently used
mutations, namely: DE/rand/1, DE/best/2 and Trigonometric
mutation and adaptively applied them based on their perfor-
mances. The utilization of such mutation operator provides a
great balance between exploration and exploitation processes
in DE, which increase the capability of the proposed DE to
quickly converge towards optimal solutions without getting
stuck in a local optima.

The produced mutant vectors from the DE mutation operator
usually contain real values because of its Euclidean distance-
based learning concept. In order to cope with the discrete
nature of TSP solutions, the Best-Matched Value (BMV) map-
ping method [18] is applied to map the newly produced con-
tinuous values to discrete ones with unique numbers (without
repetition of cities). In BMV, the population is directed towards
the optimal solution by sharing some bits/characteristics of the
current best solution with the current mutant solution.

A crossover operator is applied to modify the
mapped/discrete mutant vectors for obtaining better solutions.
In the proposed DE, the binomial crossover [19] is used
to construct trial vectors (new offspring) by taking some
genes/elements from a mutant vector with probability cr and
other genes from the current target vector with probability
1−cr, as shown in equation 2.

−→u j
i,g+1 =

{−→v j
i,g+1, rand(j) ≤ cr or j = aj

−→x j
i,g, otherwise

(2)

where j = 1, 2, . . . , N and i = 1, 2, . . . , PS, with cr is the
crossover possibility in the range of [0,1], rand(j) is the jth

evaluation of a uniform random number generated within [0,1]
and aj is a randomly selected dimension, to ensure that at
least one element of −→u i,g+1 is chosen from the mutant vectors
defined in equation 2.

H. Fitness Re-evaluation and Sorting

After perturbing solutions of TSP population, the new
produced solutions are stored in a new population. Also,
the KP solutions are reproduced by redistributing their items
according to the TSP solutions in the new population, using
the proposed ”KP solution initialization and repairing method”
in subsection III-C. This process will guarantee much less
computational time, as the above DE evolutionary operations
are required only to deal with solutions of TSP population,
whereas the KP one is updated accordingly using the repairing
method.

After obtaining the updated populations of KP and TSP
solutions, their fitness values are re-evaluated using equation
1. Then, they are sorted according to their objective (fitness)
values, where the KP and TSP individuals with high fitness
values are ranked first in both populations.

I. Selection

Finally, in the selection process, comparisons between so-
lutions of TSP and KP in both new and old populations
are conducted in terms of the TTP objective value (fitness
values) achieved by the combined solution of each TSP and KP
individuals. In this comparison, each TSP and KP solutions is
only accepted if their TTP objective/fitness value is better than
the old one. If so, the solutions from the new populations take
the place of the old ones in the next generation. So, this process
aims to decide the final survival TSP and KP individuals,
which will form the populations of the next generation to
continue the evolutionary process of the DE algorithm.

The selection also decides which mutation from the ensem-
ble of mutations will be selected to modify the population
in the next generation according to the performance of the
three applied mutation operators. The selection process can be
accomplished by adopting the greedy selection strategy that is
shown in equation 3.

−→x i,g+1 =

{−→u i,g+1, f(−→u i,g+1) ≤ f(−→x i,g)
−→x i,g, otherwise

(3)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To demonstrate the effectiveness of our proposed DB-DE
algorithm, 13 TTPs with different dimensions (N= 51, 52,
70, 76, 99, 100, 101, 105, 107, 150, 198, 280, and 783 Cities)
and N -1 knapsack items, were solved. The problems are
selected from the hard strongly correlated category from the

online benchmark that is available on http://cs.adelaide.edu.
au/∼optlog/CEC2014COMP\ InstancesNew/ through http://
www.cec2017.org/. The algorithm was coded in MATLAB
R2017b and run on a PC with 16 GB memory and i7 processor.
For each problem, the algorithm was executed 30 times with
10,000 fitness evaluations in each run.

A. Parameter Tuning

The proposed DB-DE has three main parameters that may
affect the quality of the obtained results: population size
(PS), crossover rate (cr) and mutation rate (F). Table I
presents the proposed values of these parameters. In order to
determine the best combination of these parameter values, we
use the Minitab statistical software to apply the Taguchi design
method, which is a popular method that uses orthogonal arrays
to find the best combination of parameters’ values. 25 experi-
ments with different combinations of the parameter values was
implemented. For each combination of the orthogonal array,
3 instances were randomly chosen from 13 to calculate the
average objective value.

TABLE I
COMBINATION OF PARAMETER VALUES

Parameters Factors
1 2 3 4 5

PS 25 50 75 100 150
cr 0.1 0.3 0.5 0.7 0.9
F 0.2 0.4 0.6 0.8 1

The proposed DB-DE was run 30 runs, for each run,
the best-obtained TTP objective value was recorded. The
numerical results for 25 parameter combinations are presented
in Table II and the trend of each parameter is plotted in Fig.
3 based on the average objective values of each combination.
As the higher the objective value, the better the performance,
it can be concluded from Fig. 3 that the largest value of
the average objective was achieved by PS= 50, cr= 0.3 and
F= 0.2. Selecting these values are making a great balance in
the performance of the proposed DE, as if the value of PS
was lower than 50, the population diversity will be quickly
reduced, while the larger values will take more computational
time to handle all the candidate solutions. The small values of
cr and F make a good balance between the exploration and
exploitation processes of DE. Considering the above analysis,
the best combinations of parameter values are PS= 50, cr=
0.3, and F= 0.2.

TABLE II
ORTHOGONAL TABLE AND AVERAGE OBJECTIVE VALUES

Experimental number Factors Average objective value
PS cr F

1 25 0.1 0.2 8274
2 25 0.3 0.4 8786
3 25 0.5 0.6 6683
4 25 0.7 0.8 8065
5 25 0.9 1 7535
6 50 0.1 0.4 8132
7 50 0.3 0.6 8215
8 50 0.5 0.8 7982
9 50 0.7 1 9014
10 50 0.9 0.2 9307
11 100 0.1 0.6 8902
12 100 0.3 0.8 8780
13 100 0.5 1 7365
14 100 0.7 0.2 8921
15 100 0.9 0.4 8238
16 150 0.1 0.8 9015
17 150 0.3 1 8074
18 150 0.5 0.2 8969
19 150 0.7 0.4 6752
20 150 0.9 0.6 8160
21 200 0.1 1 7247
22 200 0.3 0.2 9212
23 200 0.5 0.4 7228
24 200 0.7 0.6 8133
25 200 0.9 0.8 9307

Fig. 3. Factor level trend of DB-DE based on average objective value

B. Comparisons

In this subsection, in order to demonstrate the efficiency
of the proposed DE, several comparisons with DE-based and
state-of-the-art algorithms have been conducted.

1) Self-comparisons: Several versions of DE have been
implemented to evaluate the effect of each added component
on the performance of DE while solving TTPs. Four DE
versions were designed and are described in Table III.

TABLE III
DESCRIPTION OF THE FOUR VERSIONS OF DE

DE version Description
DE+BMV Standard DE and the BMV mapping method

as described in Chapter [18]
DE+BMV+2Opt DE+BMV with adapting the 2-OPT local

search [21] to explore the best TSP solution
DE+BMV+3Opt DE+BMV with adapting the 3-OPT local

search 20 to explore the best TSP solution
DE+BMV+3Opt+ Repair-
ing Method (DB-DE)

The last DE version with incorporating the
proposed initialization and repairing method
(subsection III-C)

Table IV shows how the performance of the DE algorithm
can be enhanced by incorporating extra heuristic mechanisms,
such as 2-Opt and 3-Opt local searches while solving complex
COPs (i.e. TTPs). From the table, it can be noticed that the
standard DE (DE+BMV) achieved negative objective values
for all the tested cases of TTPs, which indicates that DE
cannot minimize the total travelled distance in TSP component
to be less than the total profit values of the collected items
in KP part. By adding the local searches, DE exploitation
capability improved and was able to achieve positive objective
values for some instances of TTPs. Considering the inter-
dependency between the TSP and KP components of TTP,
which attained by implementing the proposed initialization and
repairing method, has significantly improved the DE perfor-
mance for TTP by radically increasing the obtained objective
value of all TTP instances. Fig. 4 graphically presents the
average objective values for 3 DE-based algorithms and DB-
DE. Numerically, DB-DE can achieve better average objective
values for the 13 TTPs by 94.51%, 16.38% and 9.15%
percentage differences than DE+BMV, DE+BMV+2Opt and
DE+BMV+3Opt, respectively.

TABLE IV
AVERAGE OBJECTIVE VALUES OF 3 DE-BASED ALGORITHMS AND DB-DE

TTPs DE+BMV DE+BMV+2Opt DE+BMV+3Opt DB-DE

eil51 -2092.86 2695.21 2849.76 4019.4
berlin52 -2943.48 2070.53 1979.25 3790.96
st70 -16678.29 722.06 1003.68 3481.09
eil76 -14013.66 472.91 1548.55 3620.88
rat99 -16334.84 5132.22 5132.22 8211.38
kroA100 -41177.98 148.8 534.74 4259.31
eil101 -23018.22 1265.47 2595.18 5183.33
lin105 -45229.86 769.13 810 3826.58
pr107 -44419.67 5988.42 5988.42 7347.93
kroA150 -71458.73 -845.17 2332.14 7907.57
d198 -101811.5 6846.46 5759.42 14792.69
a280 -216549.34 363.88 8689.42 17053.37
rat783 -1445131.8 -37561.14 -11552.66 34968.69

2) Comparisons with the state-of-the-art algorithms: In or-
der to show the competitive performance of the proposed DB-
DE algorithm, the objective values of the 13 TTPs obtained
from DB-DE were compared with the maximum, minimum
and mean objective values obtained from 21 algorithms drawn
directly from [22]. Table V shows the average objective values

Fig. 4. Performance improvement of DE algorithm (from Standard DE to
DB-DE) for 13 TTPs strongly correlated instances

TABLE V
AVERAGE OBJECTIVE VALUES AND COMPUTATIONAL TIMES IN SECONDS

OF DB-DE, AND THE BEST, MEAN AND WORST OF 21 ALGORITHMS IN
[22] FOR 13 TTPS

TTPs
Average Objective Values Computational Time (sec.)

DB-DE
Objective values of 21 algorithms

DB-DE 21 algorithms
Min Mean Max

eil51 4019.4 3796.66 3820.45 3844.23 16.35 600
berlin52 3790.96 3629.19 3822.98 4016.77 17.08 600
st70 3481.09 3091.14 3218.04 3344.93 18.87 600
eil76 3620.88 3134.96 3465.42 3795.88 25.66 600
rat99 8211.38 6203.88 7240.36 8276.84 26.3 600
kroA100 4259.31 4268.9 4352.39 4435.88 26.54 600
eil101 5183.33 4337.96 4669.07 5000.18 22.29 600
lin105 3826.58 3462.72 4588.14 5713.56 22.97 600
pr107 7347.93 5630.31 6725.81 7821.3 25.14 600
kroA150 7907.57 8135.86 8198.60 8261.34 30.53 600
d198 14792.69 10156.39 10913.23 11670.06 61.94 600
a280 17053.37 15539.35 16971.10 18402.84 45.18 600
rat783 34968.69 39366.77 40629.09 41891.4 204.46 600

and the computational times in seconds of the proposed DE
(DB-DE) and the best, mean and worst objective values
achieved by the 21 algorithms. In this table, the bold and
underlined values indicate the best-obtained value, while the
bold values indicate that the obtained value is better than the
mean value. Consequently, from the table, we can notice that
DB-DE obtained the best average objective values for 4 TTPs,
and better values than the mean for other 4 TTPs.

Numerically, Table V demonstrates the competitive per-
formance of the proposed DB-DE, which achieves objec-
tive values that are better or very close to those ob-
tained from the best algorithm in [22]. For example, DB-
DE obtained higher objective values than others, such in
“eil51n50bounded”, “st70n69bounded”, “eil101n100bounded”
and “d198n197bounded”. On average, DB-DE achieved better
objective values by 6.51% than the minimum value and is
far from the maximum by 6.33%. On the other hand, the

Fig. 5. Objective values obtained from DE+BMV+3Opt, DB-DE, best and
worst algorithms in [22] for 13 TTPs

proposed DB-DE got its results in much less computational
time than other algorithms, as reported in [22], the authors run
all the algorithms for 10 minutes (600 seconds) as a time limit,
while DB-DE spent, on average, 41.79 seconds for solving
the 13 TTPs. Consequently, DB-DE could save more average
computational time by 93.03% (= 600−41.79

600 ×100) than other
algorithms. Fig. 5 graphically presents the objective values
obtained from DB-DE, DE with 3-Opt, the best and worst of
21 algorithms.

Moreover, the Friedman rank test [23] has been applied to
locate the rank of the proposed DB-DE among the other 21
algorithms. The results in Table VI show that the DB-DE is
ranked second in terms of the objective values and first for the
computational time. Apparently, the average objective values
of DB-DE can be improved by extending its run time limit up
to 600 seconds.

TABLE VI
FRIEDMAN RANK TEST BASED ON THE AVERAGE OBJECTIVE VALUES AND

COMPUTATIONAL TIMES

Algo.
Objective values Computational time
Mean Rank Order Mean Rank Order

DB-DE 2.08 2 1.00 1
Max 1.23 1 2.50 2
Mean 2.14 3 2.50 3
Min 2.69 4 2.50 4

V. CONCLUSION AND FUTURE WORK

In this paper, a new design of discrete-binary DE (DB-DE)
for solving the multi-components TTPs, is proposed. Several
functions have been adapted to enrich DE exploration and
exploitation capabilities, such as mapping methods, repairing
methods, ensemble of mutations and local searches. In DB-
DE, a novel repairing method has been designed and adapted
in the aim of reducing the time complexity of DE while solving
complex problems, such as TTP. The proposed repairing
method allows the DE evolutionary operators to only evolve

the solutions of one component (TSP-population) instead of
evolving both KP and TSP solutions. At the end of each
generation (before fitness evaluation), the repairing method
is used to update the KP solutions, based on the locations
of TSP cities, items’ profits and weights. The produced KP
solutions are optimally generated to fit the current visiting
order of the cities and to achieve the maximum profit of the
picked items. The experimental results showed that DB-DE
has a very promising performance and can overcome many
limitations of standard DE. Moreover, they claimed that the
proposed repairing method has a great role in enabling DE to
effectively solve TTPs and obtain good quality solutions, and
radically reducing the computation time required by DB-DE
to solve them. They also have demonstrated the applicability
of DB-DE to solve complex problems with both binary and
discrete decision variables (i.e. TTPs).

In the future, the performance of each component of the
proposed DE will be more investigated in order to further
enhance its capability to solve more complex COPs. Also,
the proposed DE will be tested to solve COPs with multiple
objectives.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, pp. 341-359, 1997.

[2] K. R. Opara and J. Arabas, “Differential Evolution: A survey of
theoretical analyses,” Swarm and evolutionary computation, vol. 44, pp.
546-558, 2019.

[3] M. R. Bonyadi, Z. Michalewicz, and L. Barone, “The travelling thief
problem: The first step in the transition from theoretical problems to
realistic problems,” in proceeding 2013 IEEE Congress on Evolutionary
Computation, 2013, pp. 1037-1044.

[4] J. Stolk, I. Mann, A. Mohais, and Z. Michalewicz, “Combining vehicle
routing and packing for optimal delivery schedules of water tanks,” OR
Insight, vol. 26, pp. 167-190, 2013.

[5] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and
F. Neumann, “A comprehensive benchmark set and heuristics for the
traveling thief problem,” in proceeding Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, 2014, pp. 477-
484.

[6] M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and A. Wierzbicki,
“Socially inspired algorithms for the travelling thief problem,” in pro-
ceeding Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, 2014, pp. 421-428.

[7] Y. Mei, X. Li, and X. Yao, “Improving efficiency of heuristics for
the large scale traveling thief problem,” in proceeding Asia-Pacific
Conference on Simulated Evolution and Learning, 2014, pp. 631-643.

[8] W. Zouari, I. Alaya, and M. Tagina, “A new hybrid ant colony algorithms
for the traveling thief problem,” in proceeding Proceedings of the
Genetic and Evolutionary Computation Conference Companion, 2019,
pp. 95-96.

[9] C. Zhang, H. Yang, and J. Li, “Hybrid Discrete Differential Evolution
Algorithm for Motor Train-Sets Scheduling,” in proceeding 2018 37th
Chinese Control Conference (CCC), 2018, pp. 3245-3248.

[10] P. B. Myszkowski, Ł. P. Olech, M. Laszczyk, and M. E. Skowroński,
“Hybrid differential evolution and greedy algorithm (DEGR) for solving
multi-skill resource-constrained project scheduling problem,” Applied
Soft Computing, vol. 62, pp. 1-14, 2018.

[11] I. M. Ali, D. Essam, and K. Kasmarik, “A novel design of differential
evolution for solving discrete traveling salesman problems,” Swarm and
Evolutionary Computation, vol. 52, p. 100607, 2020.

[12] I. M. Ali, D. Essam, and K. Kasmarik, ”New Designs of k-means Clus-
tering and Crossover Operator for Solving Traveling Salesman Problems
using Evolutionary Algorithms,” DOI: 10.5220/0007940001230130. In
Proceedings of the 11th International Joint Conference on Computational
Intelligence (IJCCI 2019), pages 123-130.

[13] I. M. Ali, S. M. Elsayed, T. Ray, and R. A. Sarker, “A differential
evolution algorithm for solving resource constrained project scheduling
problems,” in proceeding Australasian Conference on Artificial Life and
Computational Intelligence, 2016, pp. 209-220.

[14] I. M. Ali, D. Essam, and K. Kasmarik, “An Efficient Differential Evo-
lution Algorithm for Solving 0–1 Knapsack Problems,” in proceeding
2018 IEEE Congress on Evolutionary Computation (CEC), 2018, pp.
1-8.

[15] S. S. Reddy, “Optimal power flow using hybrid differential evolution and
harmony search algorithm,” International Journal of Machine Learning
and Cybernetics, vol. 10, pp. 1077-1091, 2019.

[16] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE transactions on evolutionary computation, vol.
15, pp. 4-31, 2010.

[17] H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” Journal of global optimization, vol. 27, pp. 105-
129, 2003.

[18] I. M. Ali, D. Essam, and K. Kasmarik, “A novel differential evolution
mapping technique for generic combinatorial optimization problems,”
Applied Soft Computing, vol. 80, pp. 297-309, 2019.

[19] Opara, K.R. and Arabas, J., 2019. Differential Evolution: A survey of
theoretical analyses. Swarm and evolutionary computation, 44, pp.546-
558.

[20] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations research, vol. 21, pp. 498-516,
1973.

[21] C.-W. Chiang, W.-P. Lee, and J.-S. Heh, “A 2-Opt based differential
evolution for global optimization,” Applied Soft Computing, vol. 10,
pp. 1200-1207, 2010.

[22] M. Wagner, M. Lindauer, M. Mısır, S. Nallaperuma, and F. Hutter, “A
case study of algorithm selection for the traveling thief problem,” Journal
of Heuristics, vol. 24, pp. 295-320, 2018.

[23] Mack, G.A. and Skillings, J.H., 1980. A Friedman-type rank test for
main effects in a two-factor ANOVA. Journal of the American Statistical
Association, 75(372), pp.947-951.

[24] Mei, Y., Li, X. and Yao, X., 2016. On investigation of interdependence
between sub-problems of the travelling thief problem. Soft Computing,
20(1), pp.157-172.

