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Abstract—Evolutionary algorithms (EAs) often lose their su-
periority and effectiveness when applied to large-scale optimiza-
tion problems. In the literature, many research studies have
been proposed to improve the search performance of EAs,
such as cooperative co-evolution, embedding, and new search
operator design. Among those, memetic multi-agent optimization
(MeMAO) is a recently proposed paradigm for high-dimensional
problems by using random embeddings. It demonstrated high
efficacy with the assumption of “effective dimension”. However,
as prior knowledge is always unknown for a given problem,
this method may fail on the large-scale problems that do not
have low effective dimensions. Taking this cue, we propose an
evolutionary multitasking (EMT) assisted random embedding
method (EMT-RE) for solving large-scale optimization problems.
Instead of conducting a search on the randomly embedded space
directly, we treat the embedded task as the auxiliary task for
the given problem. By performing EMT with both the given
problem and the randomly embedded task, not only the useful
solutions found along the search can be transferred across tasks
toward efficient problem solving, but the effectiveness of the
search on problems without a low effective dimensionality is
also guaranteed. To evaluate the performance of newly proposed
EMT-RE, comprehensive empirical studies are carried out on
8 synthetic continuous optimization functions with up to 2,000
dimensions.

Index Terms—Large-Scale Optimization, Evolutionary Multi-
tasking, Random Embedding, Knowledge Transfer

I. INTRODUCTION

In the last decades, evolutionary algorithms (EAs) such as
differential evolution (DE) [1], [2], genetic algorithm (GA) [3],
and evolutionary strategy (ES) [4], have been successfully
applied to solve the numerical and combinatorial optimization
problems with low or medium dimensionality [5]. However,
many optimization problems in real life may involve a large
number of decision variables, which are known as large scale
optimization problems. Most EAs lose their superiority and
effectiveness when applied to those large-scale optimization
problems, suffering from the “curse of dimensionality” [6].

In the literature, there are some efforts to improve con-
ventional EAs for large-scale optimization problems, which
can be divided into two categories, i.e., decomposition and
non-decomposition [7]. Decomposition algorithms based on
the cooperative co-evolution (CC) method mainly decompose
the original problem into several subproblems that can be
handled easier by employing the idea of divide-and-conquer
(DC) [8]. According to different grouping strategies, the two
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main directions are random grouping [6], [9] and grouping
strategy based on variable correlation [10]-[14]. However,
such methods of decomposition rely on the decomposability
of decision variables, so they may fail to solve non-separable
problems. Besides, the dimensionality mismatch problem (i.e.,
the partial solutions to a subproblem can hardly be precisely
evaluated) is another major hurdle when applying DC to non-
separable problems, even though a self-evaluation evolution
approach is proposed to relieve the stress of evaluation [15].
The non-decomposition approaches have emerged next, such
as self-adapting the control parameters [16], designing new
search operators [17], introducing structured population and
migration strategy [18], [19], and embedding local search
strategy [20], [21].

Among the non-decomposition approaches, random embed-
ding techniques have been shown effective for tackling large-
scale optimization problems. With the assumption that most
dimensions in the high-dimensional problem do not change
the objective significantly and only a small subspace affects
the function value [22]-[24], different independently drawn
random embeddings are employed to identify the underly-
ing linear effective subspace [25]-[28]. However, real-world
problems may not have a certain effective subspace, and
it is hard to verify the existence of such effective dimen-
sions [29]. More recently, a memetic multi-agent optimization
(MeMAO) paradigm has been proposed in the literature to
improve the searching efficiency for high-dimensional opti-
mization problems with a “low effective dimensionality” [30].
By leveraging a memetic multi-agent learning system [31],
MeMAO first reformulates the target optimization problem
into multiple low-dimensional tasks (i.e., multi-agent environ-
ment) via random embedding methods and then constructs the
interaction mechanisms among agents for information sharing
while the individual search progresses online. Nevertheless,
since MeMAO conducts a search on the randomly embedded
space directly, the limitation of the assumption of “effective
dimension” has remained unresolved. Moreover, it is worth
noting that there is no guarantee on the preservation of the
original global optimum in the embedded low-dimensional
subspaces.

Evolutionary multitasking (EMT) as a recently emerged
research topic that contends to conduct an evolutionary search
on multiple search spaces corresponding to different tasks



concurrently, which utilizes the seamless transfer of knowl-
edge among tasks to speed up the evolutionary process [32].
Taking this cue, if we treat the randomly embedded space as
the auxiliary task for the target problem, by performing EMT
with both the original problem and the embedded task in the
multi-task scenario, the large-scale optimization problems can
be solved with the following benefits: 1) The useful solutions
found along the search can be transferred across tasks toward
efficient problem solving; 2) The effectiveness of the search
on problems without a low effective dimensionality is also
guaranteed.

Inspired by this, here we propose a large-scale optimiza-
tion method via evolutionary multitasking assisted random
embedding, namely EMT-RE. Specifically, we construct sev-
eral simple forms of the problem (i.e., reformulate it into
different low-dimensional problems) by random embeddings
and take them into account as auxiliary tasks of the original
problem. These tasks work together to build an evolutionary
multitasking environment. Next, domain-specific solvers are
used for evolving selfish genetic materials of each task, while
a unified solution representation is designed as a general solver
to represent multiple task domains simultaneously. Further,
the knowledge transfer across tasks is conducted implicitly
through the chromosomal crossover with two solutions pos-
sessing different skill factors along the evolutionary search
process. To evaluate the efficacy of the proposed method,
comprehensive empirical studies on 8 synthetic continuous
optimization functions are conducted. Experiment results high-
light the significant improvement of the proposed EMT-RE
method compared to MeMAO, thus verifying the superior
search performances of the proposed evolutionary multitasking
assisted random embedding for large scale optimization, in
terms of both solution quality and convergence speed.

The rest of this paper is organized as follows. Section II
gives the background of random embedding and the existing
implicit evolutionary multitasking paradigm. Next, the detailed
design of the proposed EMT-RE framework is illustrated in
Section III. Section IV provides comprehensive empirical stud-
ies on the commonly used synthetic optimization functions.
Finally, we discuss the concluding remarks of the paper in
Section V.

II. PRELIMINARIES

This section first presents a brief introduction to the concept
of random embedding, especially the practice in [30]. Next,
an introduction of the evolutionary multitasking optimization
and the existing implicit EMT paradigm is also presented.

A. Random Embedding

For high-dimensional optimization problems, the search
space will grow exponentially as the dimension increases.
Random embedding methods are commonly used for dimen-
sionality reduction. Previous studies [23], [27] have shown that
it is feasible to optimize a high-dimensional function with low
effective dimensionality by using random embedding which

requires a simple modification (i.e., multiplication by a ran-
dom embedding matrix). Given a high-dimensional function
f : RP — R with low effective dimensionality d. and a
random matrix A € RP*9 of normally distributed random
numbers and d < d,. For any x € RP, there always exists a
y € R? such that f(x) = f(Ay).

Based on the existing study, MeMAO [30] employs the
random embedding matrix A € RP*? to reconstruct the
original high-dimensional optimization problem f(x),x €
RP, into several low-dimensional tasks g(y),y € R% in
multi-agent environment. D and d represent high dimension
and low dimension respectively, and there exists a y € R?
satisfying f(x) = f(Ay) for any x € RP”. Notably, all
low-dimensional optimization tasks on different agents, em-
bedded from the target high-dimensional problem by different
random embedding matrices, are faced with entirely different
searching landscapes. Therefore, when conducting the meme
transmission process, the genetic materials cannot be simply
transferred from one agent to another (denoted as agt(1) and
agt(2)). Instead, the information is firstly embedded into the
searching space of the target high-dimensional optimization
problem by agt(1)’s random embedding matrix A; and then
mapped back to the search space of target agent agt(2) by
the pseudo inverse matrix pinv(As), where pinv(A) equals
to (ATA)7LAT,

B. Evolutionary Multitasking Optimization

Inspired by biocultural models of multifactorial inheritance,
evolutionary multitasking optimization, which conducts evo-
lutionary search concurrently on multiple search landscapes
corresponding to different optimization problems or tasks, has
been proposed to improve problem-solving performance across
multiple optimization problems by seamlessly transferring
knowledge among them. Currently, knowledge sharing across
tasks in EMT algorithms is commonly realized by the implicit
genetic transfer through chromosomal crossover [32], [33].
The implicit EMT usually employs a population of individuals
with a unified solution representation for solving multiple
tasks. To compare population members in the multi-task sense,
a set of properties for every individual are defined as follow:

e Factorial Cost: For a given task T;, the factorial cost f;;
of an individual p denotes its fitness or objective value
on this task.

e Factorial Rank: The factorial rank 7’; of an individual p
on task 7; denotes the index of p in the list of popula-
tion members sorted in ascending order with respect to
factorial cost on this specific task.

e Scalar Fitness: The scalar fitness ¢, of an individual p
is defined as ¢, =1/ minje(1,. K} rg; based on the best
rank over all tasks, where K is the number of tasks.

o Skill Factor: The skill factor 7, denotes the task on
which p is most effective, where 7, = argmin; ri, JjE
{1,...,K}.

According to the above definitions, performance comparison

can be carried out straightforwardly based on the scalarized
fitness (i.e., Scalar Fitness) [32]. For example, individual p;



is considered to dominate p, in a multitasking environment
if ¢1 > ¢o. Further, the general structure of implicit EMT
algorithms is provided next.

Algorithm 1: General Structure of Implicit EMT

1 Generate an initial population of NV, individuals as P
in a unified search space Y;

2 for every p; in P do

3 Assign the skill factor 7; of p; ;

4 Evaluate p; for task 7; ;

s while stopping conditions are not satisfied do

6 Apply genetic operators, i.e., assortative mating,
on P to generate an off-spring population C'
(Refer to Alg. 2);

7 for every c; in C do

8 Determine the skill factor 7; of c; based on
vertical cultural transmission (See Alg. 3);

9 Evaluate c; on task 7; only;

10 Intermediate population T'= P U C;;

11 Update the scalar fitness and skill factor of
individuals in 77

12 Select the fittest /V,, individuals from T to survive
into the next generation P;

As shown in Algorithm 1, the implicit genetic transfer is
implemented via two features of multifactorial inheritance
acting. In particular, assortative mating allows individuals with
distinct skill factors to mate with some probability, and vertical
cultural transmission denotes that offspring can then randomly
select a parental skill factor for imitation. Details of these
features are referred to Algorithm 2 and Algorithm 3, respec-
tively. Taking the advantages of EMT, this paper proposes an
evolutionary multitasking assisted random embedding method
for the large-scale optimization problem. Besides the original
problem, several low-dimensional subproblems are formed by
random embeddings to assist target optimization in a multi-
task scenario. Notably, for more details of the existing EMT
algorithm, interested readers can refer to the study in [32],
[34]-[36].

III. PROPOSED METHOD

In this section, the design of the proposed EMT-RE model
is presented. In particular, we first give an overview of the
EMT-RE framework, which reformulates the original prob-
lem into multiple low-dimensional auxiliary tasks by random
embeddings and performs EMT on both the original and
the formulated tasks. Next, two features of multifactorial
inheritance, namely assortative mating and vertical cultural
transmission, are detailed respectively.

A. Overview of the proposed EMT-RE

Fig. 1 illustrates the framework of the proposed EMT-
RE paradigm. As can be observed, for a given large-scale
optimization problem with high dimension (i.e., f(x),x €
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Fig. 1. The illustration of EMT-RE framework. N low-dimensional subspaces
are randomly embedded as helper tasks for the given high-dimensional prob-
lem. EMT-RE is performed on both single task evolutionary and knowledge
transfer across tasks.

RP, D = 3 and represented by a cube), a number of random
embedding matrics A; € RP*? are employed to reformulate
it into NV low-dimensional subtasks (i.e., g(y), h(y), and z(y),
y € R%d = 2 and represented by squares) as auxiliary
tasks for the original problem. Note that every solution of
the subtask is evaluated by mapping it back to the original
high-dimensional space. In the multi-task scenario, EMT-RE
performs both evolutionary search on a single task for self-
evolution and knowledge transfer across tasks for sharing
beneficial solutions, which is drove by assortative mating with
a predefined probability rmp, along the evolutionary search
process. As for the former, shown at the bottom of Fig. 1,
tasks hold their domain-specific representations. By employing
genetic operators, including mutation, crossover, and selection,
multiple domain-specific solvers are used for evolving selfish
genetic materials of each task. The particular evolutionary



solvers used herein are all DE with a strategy of DE/rand/1 [1].
For the latter, depicted on the top of Fig. 1, a general solver
is operated directly on the unified representation by using the
same DE as the basic solver. The knowledge transfer across
tasks is triggered implicitly through the generation of the
difference vector by two solutions possessing different skill
factors and the binomial crossover. Domain-specific represen-
tations must be encoded within a unified representation scheme
(i.e., mapping solutions of subtasks back to the original high-
dimensional space by the corresponding random embedding
matrix A;). After producing an offspring solution, vertical
cultural transmission is conducted by selective imitation to
evaluate the offspring for the selected task only. Further, the
elitist strategy makes sure that only the best individuals sur-
vive through the generations. Details of genetic mechanisms
(assortative mating) and selective evaluation (vertical cultural
transmission) of EMT-RE shall be presented in the next two
subsections.

B. Genetic Mechanisms

Algorithm 2: Assortative Mating for EMT-RE

1 for every individual p; in current population P do

2 Get the skill factor 7, of p; to identify the current
task;
Get the skill factor 7, of the expert task;
if (1, == 7,) or (rand(0, 1) > rmp) then
5 | Vi =x0 4 Fox (xy = x75)
6 else
7 u; = Ay (X7 — X73) 3
8 if p; belongs to the original task (i.e., with
high dimension) then
9 va:xfl—l—qui;
10 else
1 | Vi =xP + F x (pinv(Ay)w;) ;
12 Perform binomial crossover on v% to produce an
offspring c.

After the population initialization step, every individual is
endowed with a vector of high dimension D random vari-
ables. By employing different random embedding matrices A,
several low-dimensional optimization tasks with the specific
representation are embedded from the original problem and
differentiated by distinct skill factors.

A key to implicit EMT is that two parents must meet certain
conditions to undergo crossover [32], which follows the prin-
ciple of assortative mating [37]. In EMT-RE, the assortative
mating is realized based on the DE/rand/1 mutation strategy
and binomial crossover. Different from classical assortative
mating in general implicit EMT, which completely select
random parent candidates to undergo crossover [38], EMT-RE
identifies the expert task holding the best fitness performance
to interact with the current task. The learn-from-the-elitist
principle [39] guarantees that useful solutions found along

the search can be transferred across tasks toward efficient
problem-solving. After that, if the current task and the expert
task share a common skill factor, solutions are all randomly
selected in this task to generate a mutant vector. In contrast, if
their skill factor differs, the difference vector is formed by two
random individuals from the expert task, which only occurs
with a specified random mating probability (rmp). After the
DE/rand/1 mutation, the binomial crossover is performed to
generate an offspring. The detailed rules of assortative mating
for proposed EMT-RE are provided in Algorithm 2.

In this case, the parameter rmp is predefined to balance
depth and breadth of the evolutionary searching. A smaller
value of rmp implies more internal evolution that only indi-
viduals sharing a common skill factor (i.e., x£, and x%;) are
allowed to conduct differential evolution for the single task
evolutionary (see line 5 in Alg. 2). Conversely, a greater value
of rmp leads to a higher frequency of knowledge transfer
between the current task and the expert task. We generate a
random number of rand between 0 and 1. If rand is less than
predefined rmp, seamless information transmission from one
task to another occurs.

Since domain knowledge of tasks is typically represented
as the population-based genetic materials, the process of
knowledge transfer across tasks is implemented through chro-
mosomal information transmission. Firstly, two random and
mutually exclusive individuals (i.e., x%, and x%;) are selected
from the expert task (i.e., under the skill factor 73) to create the
difference vector. Since multiple low-dimensional optimization
subtasks are embedded from the target problem via different
random embedding matrices A;, they are confronted with
completely different landscapes. We cannot directly transfer
the genetic materials across tasks, but only encode the transfer-
able information from the first step into the unified searching
space by embedding matrix of the expert task A; (see line 7
in Alg. 2). If the current task is exactly the original task (with
high dimension), the mutant chromosome Vf for it individual
p; is simply generated from intermediate vector u; by:

vl =xP + F x u,, €))

where x2; is a randomly chosen individual from the current
task, and F' is the differential weight for controlling the
amplitude of difference. If not, on the other hand, u; will

Algorithm 3: Vertical Cultural Transmission via Se-
lective Imitation

1 Given an offspring ¢ mutated either from the current
task 7, or the expert task 7, (see Alg. 2) ;

2 if c is mutated from T, then

3 L ¢ imitate skill factor 7, ;

4 else

5 c imitate skill factor 7, ;
6 u. = A,vl;

7 | vl =pinv(Ay)u, ;




be mapped into the embedded space of the current task by the
pseudo inverse of random embedding matrix pinv(A,):

vl =xP + F x (pinv(Ap)w;), @

where pinu(A) is approximated by (ATA) "AT.

Once the trial vector vf is created, the binomial crossover
is performed on it to produce an offspring ¢ with the same
dimension of the current task.

C. Selective Evaluation

Evaluating every individual for every optimization task
in EMT is computationally expensive. Hence, most EMT
algorithms are designed to be efficient by reducing the total
number of function evaluations. Specifically, the evaluation is
performed only on selected tasks for which the individual is
most likely to get high performance, as it is unlikely to perform
well on all tasks. Taking the inspiration from vertical cultural
transmission [40] in which the phenotype (e.g., skill factor)
of an offspring is directly influenced by the phenotype of its
parents, we propose a selective imitation strategy for EMT-
RE. It allows offspring to imitate the skill factor of either the
current task or the expert task and be evaluated for the selected
task. If an offspring is mutated from only the current task, it
will be evaluated only for task 7,. While for the expert task,
in addition to inheriting the skill factor of 73, the chromosome
of offspring is firstly mapped back to the unified searching
space and then decoded to a task-specific phenotype space
(i.e., the expert task). The steps involved are summarized in
Algorithm 3.

IV. EMPIRICAL STUDY

In this section, we conduct comprehensive empirical stud-
ies to evaluate the performance of the proposed EMT-RE
paradigm. Details of experimental configuration and results
are discussed herein.

A. Experiment Setup

In this paper, the MeMAO paradigm [30], which addresses
high-dimensional optimization using random embeddings, is
considered as the baseline for comparison. Accordingly, most
of the experimental settings in our empirical study, including
testing optimization problems and basic evolutionary solver,
are the same as MeMAO to ensure a fair comparison.

Firstly, 8 single-objective synthetic optimization functions,
including Sphere, Ackley, Rastrigin, Weierstrass, Rosenbrock,
Griewank, Schwefel, and Levy functions, are employed to
testify the efficacy of the EMT-RE framework for the large-
scale optimization problem. All of the functions are randomly
rotated at first. With a high dimensionality of D = 2,000,
the global optimal value is randomly generated within the
range of [—0.2,0.2]" to avoid being located at 0. Further,
by leveraging random embedding methods, multiple low-
dimensional tasks (i.e., d = 30) are embedded randomly
from the given optimization problems in the search scope of
[—0.3,0.3]. Detailed configurations of random embedding are
referred to [23], [29].

Next, the traditional DE is employed as the fundamental
population-based evolutionary solver, using DE/rand/1 opera-
tor. Further, to ensure a fair comparison, the number of tasks
in EMT-RE, and the number of agents in MeMAO are both
configured to 5 in the following experiment. Besides, other
evolutionary operators and parameters in this study are kept
consistent with MeMAO and summarized as follows.

1) Population size: N, = 100.

2) Maximum generations: MaxzGen = 100.

3) Independent number of runs: runs = 20.

4) Fand CR in DE: F =0.5,CR =0.9.

5) Random mating probability in EMT-RE: rmp = 0.2.

B. Results and Discussions

Table I summarizes the performance of the proposed EMT-
RE, MeMAO, and DE in terms of averaged objective value
and standard deviation on the single-objective optimization
benchmarks over 20 independent runs. Since DE has been
employed as the basic solvers in the proposed algorithm for
tackling multiple tasks in each benchmark, the results obtained
by single-task DE on the original high-dimensional problems
are also presented in the table for comparison. Further, the
Wilcoxon Rank Sum Test [41] with a 95% confidence interval
is conducted on experimental results to verify the statistical
significance of strategy variance. Symbols “~x”, “+”, and “-”
denote the compared method statistically similar, better, and
worse than the proposed EMT-RE, respectively.

It can be observed in Table I, compared to MeMAO and
single-task DE, the proposed EMT-RE achieved superior per-
formance on most optimization problems in terms of averaged
objective value. It is mainly because that EMT-RE treats
the randomly embedded subproblem as a helper task for the
original problem, and the useful solutions found along the
search can be transferred across tasks. The improved solution
quality confirmed the effectiveness of conducting implicit
EMT for both the given problem and the randomly embedded
tasks.

To assess the efficiency of the proposed EMT-RE, the
average convergence traces of EMT-RE, MeMAO, and DE
on all high-dimensional optimization functions are presented
in Fig. 2. In the figure, the Y-axis denotes the averaged
objective values obtained in log scale, while the X-axis gives
the respective computational effort incurred in terms of the
generation made so far. As can be observed, the traditional
DE obtains better performance at the very beginning of the
evolutionary process. However, with the useful solution trans-
ferring across tasks, the random embedding based methods
including MeMAO and the proposed EMT-RE catch up from
behind and exhibit superior performance over DE on most
of the problems. Moreover, as MeMAO conducts searching
on the embedded space directly and cannot guarantee the
preservation of the original global optimum in the subspaces,
the improvements in terms of convergence speed achieved by
it are limited. Therefore, it is clear that EMT-RE converges
much fast than MeMAO on almost all the problems except
for the Schwefel function in Fig. 2(g), which is complicated



TABLE I

THE AVERAGED OBJECTIVE VALUE AND STANDARD DEVIATION OBTAINED BY THE PROPOSED EMT-RE ALGORITHM, MEMAO, AND DE ON THE
LARGE-SCALE OPTIMIZATION PROBLEMS AFTER COMPLETING 10,000 FUNCTION EVALUATIONS. SYMBOLS “+”, “-”, AND “~” DENOTE THE COMPARED

METHOD IS SIGNIFICANTLY BETTER THAN, SIGNIFICANTLY WORSE THAN, AND STATISTICALLY TIED BY EMT-RE.

Funcs. Sphere Ackley Rastrigin | Weierstrass | Rosenbrock | Griewank Schwefel Levy
EMT-RE Mean 1.91E+00 6.01E+00 1.66E+02 1.17E+01 3.97E+02 6.05E+00 4.35E+03 3.07E+00
Std. 6.61E-01 7.07E-01 3.48E+01 1.39E+00 1.22E+02 1.79E+00 1.10E+03 1.10E+00
MeMAO Mean | 1.05E+01- | 1.13E+01- | 2.42E+02- 2.39E+01- 1.47E+03- 2.59E+01- | 4.90E+03~ | 1.45E+01-
Std. 2.84E+00 1.54E+00 1.27E+01 1.23E+00 7.34E+02 9.63E+00 1.15E+03 3.71E+00
DE Mean | 3.09E+01- | 1.57E+01- | 2.59E+02- 3.41E+01- 9.69E+03- 7.64E+01- 6.42E+03- 4.52E+01-
Std. 4.67E+00 5.87E-01 1.35E+01 9.53E-01 1.82E+03 8.65E+00 5.99E+02 7.15E+00
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Fig. 2. Convergence traces of the proposed EMT-RE, MeMAO and single-task DE on eight high-dimensional problems. y-axis: log(objective value); x-axis:
generation.

proposed EMT-RE. For example, in Fig. 3(d) and Fig. 3(e),
the superior solutions obtaining better objective values are
transferred across tasks at the beginning of the evolution,
thereby leading a clear drop of the objective value in the
convergence trend.

with many local minima closed to the global minimum [42].
On the other hand, on functions such as Rastrigin, Weierstrass,
Levy, etc., an obvious drop of objective value can be observed
in the convergence traces of the proposed EMT-RE method,
which could be contributed to the effectiveness of the search

on problems without a low effective dimensionality. V. CONCLUSION

In contrast to MeMAO, which is a memetic multi-agent op-
timization paradigm for high-dimensional optimization prob-
lems with the low effective dimensions, this paper has pro-
posed an evolutionary multitasking assisted random embed-
ding method (EMT-RE) for solving large-scale optimization
problems. Instead of conducting a solution searching on the
randomly embedded space directly, we treat the embedded
subproblem as a helper task for the given problem and
perform the implicit EMT on both the given problem and
the randomly embedded task. Not only the useful solutions
found along the search can be transferred across tasks for
efficient problem solving, but also the effectiveness of the
search on problems without a low effective dimensionality
can be guaranteed. To verify the effectiveness of the proposed
EMT-RE, comprehensive empirical studies on 8 synthetic

Further, to depict intuitive understanding of the improving
performance of the EMT-RE for large-scale optimization prob-
lems, we present the best transferred solution across tasks
of sampled generations and the corresponding best existing
solution in the population on 8 target high-dimensional op-
timization problems, shown in Fig. 3. As can be observed,
the transfer of useful solutions across tasks happens along
the whole evolutionary search process in EMT-RE, and the
transferred solutions are generally close to the best existing
solutions in the population on each problem. Therefore, the
proposed EMT-RE performs competitively against indepen-
dent evolutionary methods. On the other hand, the high-quality
transferred solutions, which possess lower objective values
than the existing best solutions in the population, maybe
precisely the point of the superior convergence speed of the
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Fig. 3. TIllustration of the best transferred solution across tasks and the existing best solutions in the population on eight benchmarks. y-axis: log(objective
value); x-axis: generation.

optimization problems have been conducted. The obtained
results show that the embedded task assisted the original
problem, and the knowledge transferred across tasks in EMT-
RE provides a significant improvement in problem-solving,
which has confirmed the efficacy of the proposed algorithm.

In the future, besides random embedding, there are many
ways for the problem reformulation, either mathematically
or other efficient learning approaches, which can be further
explored. To improve the implicit genetic transfer in EMT,
we would like to borrow ideas of explicit autoencoding or
more autonomous knowledge sharing methods. Further, how
to apply EMT-RE to solve large-scale optimization problems
in real life, such as hyperparameter optimization [43], is also
a research interest with great promise.
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