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Abstract—Genetic programming (GP) is considered the most
popular method for automatically discovering and construct-
ing dispatching rules for scheduling problems. Pareto Local
Search (PLS) is a simple and effective local search method
for tackling multi-objective combinatorial optimization problems.
Researchers have studied the application of PLS to multi-
objective evolutionary algorithms (MOEAs) with some success.
In fact, by hybridizing global search with local search, the
performance of many MOEAs can be noticeably improved.
Despite its preliminary success, the practical use of PLS in GP
is relatively limited. In this study, our aim is to enhance the
quality of evolved dispatching rules for many-objective Job Shop
Scheduling (JSS) through hybridizing GP with PLS techniques
and designing an effective selection mechanism of initial solutions
for PLS. In this paper, we propose a new GP-PLS algorithm
that investigates whether the fitness-based selection mechanism
for selecting initial solutions for PLS can increase the chance of
discovering highly effective dispatching rules for many-objective
JSS. To evaluate the effectiveness of our new algorithm, GP-
PLS is compared with the current state-of-the-art algorithms
for many-objective JSS. The experimental results confirm that
the proposed method can outperform the four recently proposed
algorithms because of the proper use of local search techniques.

I. INTRODUCTION

Job Shop Scheduling (JSS) [1] is a significant scheduling
problem which has a wide range of applications in many
industries such as manufacturing and cloud computing. A JSS
problem deals with a group of tasks or jobs by using different
resources or machines. The goal of a JSS problem is to design
a schedule where jobs can be processed in an optimal way
through a set of machines so that the predefined objectives
are optimized.

There is also a growing interest in industries to tackle
problems with many objectives [2], [3]. Some studies consider
that JSS by nature several potentially conflicting objectives
[4], such as makespan, mean tardiness, and mean flowtime.
The many-objective optimization problems (MaOPs) require
to find a set of non-dominating solutions, known as the Pareto-
front and the many-objective optimization algorithms provide
a good representative approximation of the Pareto-front.

JSS has been proven to be NP-hard [1]. Thus, heuristics
become a promising method to obtain near-optimal solutions
within a limited time budget. There have been a variety of
heuristics proposed for JSS [5], [6]. The dispatching rule is
a branch of heuristics which has been successfully used in
JSS due to its flexibility, scalability and quick response to

the dynamic environment. So far, there has been a variety of
dispatching rules designed for different JSS variants [5], [7].

A dispatching rule is a rule to decide which job in the
queue is to be processed by the idle machine at each decision
point. A dispatching rule can be seen as a priority function,
which assigns priority to each waiting job. The job then will be
selected based on the priority value. In designing a dispatching
rule for JSS, there are two main issues. First, dispatching
rules are time-consuming to design manually, especially for
optimizing multiple potentially conflicting objectives which
are frequently demanded in a manufacturing environment.
Second, the behavior of a dispatching rule can vary from
one scenario to another. For example, the rule which is good
at minimizing the mean flowtime may perform poorly in
minimizing the maximal tardiness [5].

In order to deal with these issues, hyper-heuristics have been
adopted to design the dispatching rules automatically, i.e., opti-
mize the priority function. A comprehensive survey of methods
for automatically designing dispatching rules is given in [8].
Genetic Programming (GP) has been a promising approach for
designing dispatching rules automatically thanks to its ability
of evolving priority functions with flexible representation [9],
[10]. The hyper-heuristic approach that uses GP to solve JSS
problems is known as GP-based Hyper-Heuristic (GP-HH) [8],
[9]. However, GP tends not to be very good at locally tuning
a solution [11]. Applying local search to GP [11] is major
technique to improve the quality of dispatching rules.

Many researchers [12], [13] combine the local search with
MOEAs to avoid the MOEAs converging too fast to the Pareto-
optimal front. PLS is an effective local search method for
tackling multi-objective combinatorial optimization problems
such as JSS [12]. Researchers have studied the application of
PLS to MOEAs with some success [12]. In fact, by hybridizing
global search (MOEAs) with local search, the performance of
many MOEAs can be noticeably improved [12], [13]. Such a
hybrid algorithm is often referred to as memetic algorithms.
Despite the preliminary success of PLS, the practical use of
PLS on many-objective JSS is relatively limited. Based on our
survey in Section II, there is only one study that uses PLS in
GP-HH for many-objective JSS [14]. The study in [14] used a
random mechanism to select PLS solutions. Although random
sampling is simple, it may fail to select the solutions with the
greatest potential to be improved by PLS.

In this paper, we aim to propose an effective selection
mechanism for selecting the initial solutions for PLS. To
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achieve this goal, a new fitness-based selection mechanism
is proposed in this study. Our proposed fitness-based selec-
tion mechanism adopts convergence and diversity selection
strategies with penalty parameter which can properly balance
convergence and diversity criteria.

The research objectives of this paper are to: 1) develop
a new fitness-based selection mechanism in GP-PLS-F (GP-
PLS-Fitness), 2) investigate whether the inclusion of fitness-
based selection mechanism in GP-PLS-F can increase the
chance of discovering highly effective dispatching rules for
many-objective JSS, and 3) verify the effectiveness of GP-
PLS-F by comparing it with four existing many-objective
algorithms on a group of benchmark JSS problems.

The rest of the paper is organized as follows: Section II
gives the background, including the problem description and
related work. Section III describes the proposed algorithm
(GP-PLS-F). Section IV provides the experimental design.
Section V covers the results and discussions. Finally, Section
VI presents the conclusions and suggestion on future work.

II. BACKGROUND

In this section, the problem descriptions for JSS and many-
objective optimization are introduced and followed by the
related works.

A. Problem Description

1) Job Shop Scheduling: In a JSS problem, we are given
a set of N jobs and a set of M machines. Each job ji has a
sequence of m operations to be performed, i.e., {o1

i , . . . , o
m
i }

where 1 ≤ i ≤ N . Each operation oki has a fixed processing
time pki > 0 and has to be processed on a specific machine
mi, 1 ≤ i ≤M . Any solution to a JSS problem has to comply
with important rules, as described below.

• Each machine can only process at most one operation of
any job at any given time.

• All operations are non-preemptive. This means that once
an operation starts its processing on a machine, it cannot
be interrupted by other operations during this period of
time.

• All the M machines in the job shop are immediately
available to process new operations whenever they be-
come idle.

2) Many-Objective Optimization: The quality of the sched-
ules will then be evaluated with respect to a number of
objectives f = (f1, f2 . . . , fD), where D is the number of
objectives.

Without losing generality, we assume that all the dimensions
of f are minimized. Here, we considered D ≥ 4, i.e., there
are four or more objectives. In many-objective JSS with two
schedules ∆1 and ∆2, it is said that ∆1 dominates ∆2 if and
only if

∀i, 1 ≤ i ≤ D, fi(∆1) ≤ fi(∆2), (1)

and
∃i, fi(∆1) < fi(∆2). (2)

If a solution ∆∗ is not dominated by any other solution then
it is called a Pareto-optimal solution. The set of all Pareto-
optimal solutions jointly forms the Pareto-front in the objective
space and the Pareto set in the solution space.

B. Related Works

GP is considered the most popular method for discovering
and constructing dispatching rules for scheduling problems
[15], [11]. Previous studies have shown that GP has been
successfully used to evolve effective dispatching rules for JSS
problems automatically [16], [9].

GP shows its effectiveness not only in single-objective JSS
problems, but can also evolve useful rules for multi-objective
and many-objective JSS problems [17], [4]. Previous studies
have shown that the exploitation ability of GP is limited to
the population size but applying local search can improve its
exploitation ability [11], [14]. However, GP-based methods
for multi-objective and many-objective JSS overlooked the
opportunity of enhancing the quality of evolved rules through
local search.

PLS is very effective for tackling NP-hard multi-objective
JSS problems [18]. In particular, [13] showed that suitable
candidates for local search should be carefully selected based
on certain scalarization mechanisms. [19] applied PLS and
improved the overall quality of the evolved Pareto-front.
However, only one research work [14] has been studied PLS
in GP-HH for many-objective JSS. The study in [14] used
a random selection mechanism for PLS solutions. Although
random sampling is simple, it may not select the solution of
all the sub-regions of the objective space and mainly affects the
solution’s diversity. Further, this study may not show clearly
how the local search contributes to the final Pareto solutions.
To address this limitation, we investigate the effectiveness of
the fitness-based selection mechanism for the solutions of PLS
in GP-HH in our current study. The investigation in this paper
is expected to inspire many future studies on PLS in GP-HH
for many-objective JSS.

III. PROPOSED ALGORITHM

This section describes the general framework of the pro-
posed algorithm which combine GP with PLS.

A. Representation of Rules

In GP, dispatching rules can be represented as a GP tree.
In line with the tree-based representation of dispatching rules,
the function set in GP includes {+,−,×, /} (the protected
division operator returns 1 if the denominator is zero), the 2-
argument “min” and “max” operators and the 3-argument “If”
operator that returns the second argument if the first argument
is positive, and the third argument otherwise. The terminals
are summarized in Table I.

Consider the popular manually-designed 2PT+WINQ+NPT
rule [5] in Fig. 1 where the terminals in the tree are {2, PT,
WINQ, NPT} (please refer to Table I for a summary of all
terminal types used in this paper) and the functions are {+, ∗}.



TABLE I: Terminal set for GP for JSS.

Attribute Symbol

Processing time of the operation PT
Processing time of the next operation NOPT
Ready time of the next machine NMRT
Work Remaining WKR
Number of operation remaining NOW
Work in the next queue WINQ
Number of operations in the next queue NOINQ
Flow due date FDD
Due Date DD
Weight W
Number of operations in the queue NOIQ
Work in the queue WIQ
Ready time of the machine MRT

Fig. 1: The GP tree representation of the 2PT+WINQ+NPT rule.

B. General framework of GP-PLS-F

The framework of GP-PLS-F is shown in Algorithm 1. GP-
PLS-F starts with the initialization by using the ramped-half-
and-half method. To evaluate the quality of dispatching rules
in terms of each objective (lines 1 and 6 of Algorithm 1), it
is applied to a set of JSS training instances Itrain to generate
schedules for them. Then, for each objective, the quality of a
rule p is defined as the average objective value of the schedules
generated across all training instances.

C. Pareto Local Search

The PLS is described in lines 11 to 23 of Algorithm 1.
First, PLS selects K individuals based on their fitness values
from the archive (Pk). Then, for each p in the archive, the
restricted mutation is used to generate a neighboring rule
around p. A maximum of stepmax such neighbors can be
generated, and the new neighbors (pnew) are compared with
p. If the new neighbor (pnew) is better than p, then it is
added into Pbest. This local search mechanism will help to
enhance the exploitation ability and explore promising rules in
the proximity of each selected candidate rule. The PLS steps
are discussed here:

1) Fitness-based selection: In GP-PLS-F, we used the fol-
lowing steps for the selection of K initial solutions.

i. Determines search direction of each solution: In this
study, the decomposition-based approach is used to split
the objective space into a number of independent sub-
regions according to a set of reference points. This de-
composition of the objective space determines the appro-
priate search direction of each solution. For example, the
two solutions, s1 and s2, have identical search directions
if they are associated with the same reference point. The
reference points are positive and appear inside the first
quadrant, therefore, population Rg is normalized (as seen
in the line 6 of Algorithm 2) before it is partitioned into
2N sub-populations (Rg1, Rg2,. . . ,Rg2N ) by associating

Algorithm 1: The framework of GP-PLS-F.
Input : training set Itrain

Output: A set of non-dominated solutions (rules) P ∗

1 Initialize of rules and Evaluate the population P0;
2 g ← 0;
3 while g < gmax do
4 Pbest ← ∅;
5 Apply genetic operators to Pg to generate

offspring Qg;
6 foreach Q ∈ Qg do Evaluate rule Q;
7 Combine Pg and Qg (Rg=Pg ∪Qg);
8 archive= Solution-selection(Rg);
9 Select K individuals based on their fitness values

from archive and save in PK ;
10 /∗ Apply the Pareto local search on PK ∗ /;
11 foreach p ∈ PK do
12 pnew ← p;
13 for step = 1→ stepmax do
14 p′ ← mutate(p); // neighbors
15 evaluate(p′);
16 if p′ is better than pnew then
17 pnew ← p′ ;
18 end
19 if pnew is better than p then
20 Pbest \ p ;
21 (Pbest)g ← (Pbest)g ∪ pnew
22 end
23 end
24 g ← g + 1;
25 end
26 return The non-dominated individuals P ∗ ⊆ Pgmax ;

Fig. 2: Example showing how to associate an individual r with
a reference points.

each individual with its closest reference point. The
association of r is described in Fig. 2.
The acute angle measures the association between an
individual and the reference points [20], [21]. In our pro-
posed algorithm, the vector angle reflects the similarity
of search directions between two individuals. The angle
information between two individuals in the objective
space is then later used to maintain the diversity. The
acute angle can be calculated as:

cosθi,j =
ri,j · wi,j

‖ ri,j ‖
, (3)



Algorithm 2: Solution-selection(Rg).
Input : A set of non-dominated solutions (rules) Rg

Output: archive of selected solutions for
neighbourhood

1 Generate reference points W /∗ Population Partition
for j =1 to ‖ R ‖ do

2 Calculate the ideal point Zmin
j =minr∈R fj(r);

3 Calculate the worst point Zmax
j =maxr∈R fj(r)

4 end
5 for i = 1 to PopSize do
6 ˆf(i)=

fi−Zmin
j

Zmax
j −Zmin

j
;

7 end
8 foreach r ∈ Rg do
9 foreach w ∈W do

10 compute the acute angle 〈 ˆf(r), w〉;
11 end
12 Assign ŵ = w : argminw∈W 〈 ˆf(r), w〉;
13 Assign θr = 〈 ˆf(r), w〉;
14 save r in E(ŵ)
15 end
16 /∗ fitness of individual from each sub-region ∗/;
17 foreach w ∈W do
18 foreach r ∈ E(ŵ) do
19 Compute the convergence criteria C(r) ;
20 Compute the diversity criteria D(r) ;
21 Compute the fitness of each individual FV (r)

by using equation (6)
22 end
23 end
24 foreach w ∈W do
25 Select solutions according to the FV (r) add

selected solutions(P1, P2, . . . , PN ) from each
subspace into the archive

26 end
27 return archive;

Fig. 3: Distance measure in the context of minimization with
respect to a reference direction.

If the individuals ri,j and wi,j have a minimal acute angle
among all the reference points (wi,j), then ri,j becomes
the member of the sub-population Rg,k.

ii. Obtain fitness value of each solution:
Once the population Rg is partitioned into 2N sub-
populations, associated solutions are selected from each

subregion using Equation (4).

(Nt) =

(
number of solution from each subspace

Total population

)
×N,

(4)
where t = 1 , 2 . . . , 2N
The selection criteria based on the fitness value (FV) are
designed based on two sub-criteria: (1) the convergence
criterion (d1 in Fig. 3) and (2) the diversity criterion
(d2 in Fig. 3). The d1 is represented by the distance
from the solution (ri,j) to the ideal point (Z∗) ,i.e.,
‖ ri,j − Z∗ ‖. Similarly, d2 is represented by the inverse
of the acute angle between (ri,j) and wi,j , i.e., θi,j . In
order to balance between the convergence criterion (C(r)
= d1) and the diversity criterion (D(r) = d2), the total FV
of each individual can be formulated as a scalarization
function:

FV = d1 +
d2

θm
, (5)

where θm is used in equation (5) to normalize θi,j . This
angle normalization process is adopted from RVEA [22]
which is meaningful when some of the reference points
are densely distributed. As a result, angles between the
candidate solutions and the reference points are either
extremely small or extremely large.

iii. Introduces penalty parameter: It is a good idea to
apply high selection pressure on convergence during
the exploration phase and push the population toward
the Pareto-front of the search process. However, during
the exploitation phase, the constant pressure applies to
diversity. Therefore, we introduce the penalty parameter

g
gmax

in equation (6) which can regulate the proportion
of convergence and diversity information in a good way.
Therefore, the new FV is defined as:

FV = d1 +
g

gmax
× d2

θm
. (6)

where g is a current generation and gmax is a maximum
number of generations.

iv. Determine K representatives for Neighborhood explo-
ration: In the early stage, FV determines the convergence
value (d1) because g << gmax, therefore the diversity
criterion (d2) ≈ 0. However, when g approaches gmax,
the penalty parameter gradually increases to emphasize
the importance of the diversity criterion θi,j . After getting
the fitness values of each individual, then N solutions
are selected and saved in the archive. From the archive,
K solutions are selected based on their fitness values
and saved in Pk. These solutions are selected for the
neighborhood exploration. The value of K is determined
by sensitivity analysis in Section IV-D.

2) Neighborhood Solution: In GP-PLS-F, a neighboring
rule of any given rule p is obtained by using the restricted
mutation operator [14]. When the restricted mutation is applied
to rule p, we randomly select a node in p whose corresponding
sub-tree has a depth of 2. A randomly generated depth-2 sub-



tree then replaces the selected node and its sub-tree. With
the help of this restricted mutation, GP-PLS-F can effectively
prevent a new neighboring rule discovered during the local
search process from being significantly different from the
original rule.

3) Exploration: In the local search algorithm, the explo-
ration strategy determines the size of the neighborhood for
exploration. One can either explore the neighborhood entirely
(best-improvement) [19] or only partially until the termination
criterion is met [19]. In this study, the partial strategy is used
since the entire neighborhood is infinitely large. Specifically,
we sample a neighbor based on the dominance relation from
the neighborhood repetitively until the maximum number of
steps (stepmax) is reached, and return the best neighbor
sampled so far. The reason for using partial strategy is because
it is less computationally expensive than the best improvement
strategy, especially for a problem with a large number of
features.

4) Comparison: For comparing two rules p′ and pnew
during PLS (e.g. line 16 of Algorithm 1), we consider the
replacement strategy [12] which is based on the dominance
relation. Whenever we compare two rules pnew and p′, there
are three possible outcomes:

i. if pnew dominates p′, choose pnew;
ii. if p′ dominates pnew, choose p;

iii. if pnew and p′ are incomparable, choose one randomly.
It is obvious that replacing the current rule p with any

neighborhood rule pnew that dominates it in the PLS archive
(Pk) imposes selection pressure on the Pk and push it towards
the Pareto-front. The new population Pbest combined with
PN/best creates a new population Pg+1.

IV. EXPERIMENT DESIGN

In this section, experimental studies will be conducted to
compare the proposed algorithm GP-PLS-F with GP-NSGA-
III, GP-A-NSGA-III, GP-PLS-s [14], and GP-PLS-r [14].
Here GP-PLS-s refers to the variation of GP-PLS where
the scalarization approach is used for selection in [14]. On
the other hand, GP-PLS-r represents the variation where the
replacement strategy is used for selection in [14]. GP-A-
NSGA-III [23] is an adaptive extension of GP-NSGA-III. The
following subsections, we will describe the dataset used in
the experiments, parameter settings of the algorithms, initial
results, and discussions.

A. Dataset

In this paper, the widely used Taillard static (TA) job
shop benchmark set [24] is selected as the dataset for the
experiments. There are 80 indexed problem instances in the
TA set which can be further divided into eight groups (denoted
as the TA-1, TA-2, . . . , TA-8 groups). The problem instances
in the same group have the same number of jobs and machines,
but the processing time matrices were generated by using
different random seeds. Across different groups, the number of
jobs varies from 15 to 100, and the number of machines varies
from 15 to 20. In the experiments, the total 80 instances were

divided into the training set and the test set, each consisting
of 40 instances. Specifically, the training set consists of all
the instances with the odd ID, and the test set contains all the
instances with the even ID.

B. Parameter Settings

For all competing algorithms, the crossover, mutation and
reproduction rates are set to 85%, 10%, and 5%, respectively,
based on previous works [4]. The maximal tree depth is set
to 8. As a common practice, the population is initialized
by the ramp-half-and-half method. In each generation, the
parents are selected by the tournament selection method with a
tournament size of 7. For GP-NSGA-III and GP-A-NSGA-III,
the population size is set to 1000 and the maximal number
of generations is set to 100. For GP-PLS-F, the population
size is set to 1000 but a maximal number of generations
will be set after the sensitivity analysis (as discussed in
Section IV-D). GP-PLS-F has two additional parameters, size
of the archive (K) and the maximum number of local search
steps (stepmax). The parameter settings for GP-PLS-s and
GP-PLS-r are taken from [14]. In our experiment, we aim
to minimize four objectives, i.e., the mean flowtime (Obj1),
maximal flowtime (Obj2), mean weighted tardiness (Obj3),
and maximal weighted tardiness (Obj4). Existing work [4]
showed that the four objectives are mutually conflicting.

C. Performance Measures

There are a variety of performance measures proposed
for evaluating multi-objective optimization algorithms from
different perspectives. In this paper, following a common
practice, we choose the Hyper-Volume (HV) [25] and Inverted
Generational Distance (IGD) [26] as the two main perfor-
mance measures. Theoretically, a set of tradeoff dispatching
rules should have a larger HV value and a smaller IGD value.

D. Sensitivity analysis

In a hybridized algorithm, it is important to understand how
to divide the available computation time between the local
search and the global search. In order to prevent the local
search from spending almost all available computation time,
we decide to use the partial strategy, which restricts the number
of iterations in the local search. If we use a very small value of
stepmax (e.g., stepmax= 1 ), the local search procedure may
be terminated sooner than desired. On the contrary, if we use
a large value of stepmax (e.g., stepmax= 10 ), the local search
procedure tends to evaluate more solutions than necessary.

Given the above, we need to carefully adjust the com-
putation time spent by the local search procedure in our
hybrid algorithm. Therefore, in this experiment, we examined
different combinations of the parameters where population size
is equal to 1000. The combination values of (K, stepsmax,
generations) are (1000,3,25), (500,2,50), and (250,4,50). The
sensitivity analysis applies to GP-PLS-F and select parameters
are later used in the algorithm. The three-parameter settings
have the same total number of fitness evaluations (100000).
For a fair comparison, the number of fitness evaluations is



TABLE II: The mean and standard deviation over the average
HV and IGD values on different combinations in the four-
objective experiment. The significantly better results are shown
in bold.

HV (x̄± s) IGD (x̄± s)

Comb1-(1000,3,25) 0.684±0.015 0.00127±0.00012
Comb2-(500,2,50) 0.676±0.015 0.00130±0.00024
Comb3-(250,4,50) 0.7133±0.0102 0.00120±0.00006

kept identical to GP-NSGA-III and GP-A-NSGA-III. In the
sensitivity analysis, for each combination of the parameters,
30 independent runs were performed to produce 30 final sets
of dispatching rules. The Wilcoxon rank-sum test [27], with
the significance level of 0.05 is applied to the HV and IGD of
the Pareto-front evolved by the three compared combinations
for PLS.

For the case of (1000,3,25), GP-PLS-F uses the whole popu-
lation during the local search with three stepmax for exploring
the neighborhood solutions. For the case of (500,2,50), GP-
PLS-F can explore the solution space very well through 50
generations of evolution but has a small number of local
searches. In contrast with the first two parameter combinations,
(250,4,50) has a proper balance between global search (50
generations) and local search (4 steps during the local search)
capabilities.

From the results summarized in Table II, we found that
the total number of generations and the maximum number of
local search steps is highly influential on the performance of
GP-PLS-F. They together provide varying trade-offs between
global and local searches in GP-PLS-F. The result showed
that GP-PLS-F could not search the solution space extensively
with a small number of generations in (1000,3,25). On the
other hand, if GP-PLS-F cannot perform a sufficient number
of local search steps in (500,2,50), the power of local search
cannot be effectively utilized. Further the result showed that a
combination (250,4,50) performed significantly better in terms
of HV and IGD as compared to the other two combinations
for PLS.

V. RESULTS AND DISCUSSIONS

For each algorithm in the experiment, 30 GP runs were
conducted to obtain 30 sets of dispatching rules. Then, the
rules were tested on the 40 test instances.

A. Performance of Obtained Dispatching Rules

Tables III shows the mean and standard deviation of the
training performance in terms of HV and IGD of the rules
obtained by GP-NSGA-III, GP-PLS-s, GP-PLS-r, GP-PLS-F,
and GP-A-NSGA-III. The Wilcoxon rank-sum test [27], with
the significance level of 0.05 is applied to the HV and IGD
of the Pareto-front evolved by the five compared algorithms.

Table III reveals that GP-PLS-F performs significantly better
than other competing algorithms in terms of both HV and IGD.
This is because GP-PLS-F select rules from each subspaces
based on their convergence and diversity. Then, GP-PLS-F will
locally tune a rule that is closer to the Pareto-front.

Fig. 4: Frequency of terminals in GP-NSGA-III, GP-PLS-s,
GP-PLS-r,GP-A-NSGA-III GP-PLS-F.

Table III also reveals that GP-PLS-r is highly competitive
with GP-PLS-F. Both algorithms (GP-PLS-r and GP-PLS-F)
use the replacement strategy. Therefore, we can confirm that
the replacement strategy is more effective than the scalariza-
tion strategy.

From Table III, we can see GP-PLS-F performed signifi-
cantly better than GP-A-NSGA-III in terms of HV and IGD
because GP-A-NSGA-III may not evolve a well-distributed set
of Pareto-optimal solutions. This limitation is also introduced
in [23].

GP-PLS-F also outperformed GP-NSGA-III in terms of HV
and IGD because the local search enhances the exploitation
ability of the GP-PLS. Further, the fitness-based selection of a
solution from each search direction explores promising rules
from evolved Pareto-front.

Table III also summarizes the testing performance of all
algorithms in terms of IGD and HV. The obtained test results
exhibit the same patterns as the training performance results.
In the case of HV, GP-PLS-F performs significantly better than
the other compared algorithms. However, in the case of IGD,
GP-PLS-F is significantly better than GP-NGA-III and also
better than GP-A-NSGA-III, GP-PLS-s, and GP-PLS-r.

B. Further Analysis

To further investigate how PLS with fitness assignment
affects the GP search process, we analysis the occurrence of
relevant terminals in each algorithm to optimize the flowtime
and tardiness objectives in Fig. 4. Further, we plotted (a) the
average HV and IGD of non-dominated solutions evolved by
GP-PLS across multiple generations in Figs. 5(a) and 5(b)
and (b) parallel coordinate plots of non-dominated solutions
evolved by all algorithms on training instances in Figs. 6(a)
to 6(e).

1) Analysis of dispatching rules: The bar chart in Fig. 4
shows the percentage of terminals in evolved rules from each
algorithm. From the frequency of terminals, we can further
analyze the relevant and irrelevant terminals.

According to the existing studies [5], [28], MRT, PT, WKR,
WINQ, NOINQ, FDD, and NOPT are useful terminals for
optimizing flowtime objectives. Specifically, PT, WINQ, and
WKR are the most important three terminals for optimizing the
flowtime objective. On the other hand, WINQ, NOINQ, NOPT,



TABLE III: The mean and standard deviation over the average HV and IGD values on training and test instances of the
compared algorithms in the four-objective experiment. The significantly better results are shown in bold.

Training Test

HV (x̄± s) IGD (x̄± s) HV (x̄± s) IGD (x̄± s)

GP-NSGA-III 0.68850±0.0221 0.00128±0.00015 0.52422±0.02423 0.00177±0.00020
GP-A-NSGA-III 0.70467±0.0115 0.00126±0.00016 0.55996±0.02336 0.00162±0.00025
GP-PLS-s 0.69048±0.0160 0.00127±0.00013 0.53625±0.02445 0.00164±0.00027
GP-PLS-r 0.70513±0.0130 0.00124±0.00012 0.56844±0.02147 0.00161±0.00016
GP-PLS-F 0.7133±0.0102 0.00120±0.00006 0.59744±0.02317 0.00160±0.00016

W, PT, MRT, and DD are the useful terminals for optimizing
tardiness objectives. Of these, PT, DD, and W are the most
useful terminals for optimizing tardiness objectives.

It can be seen in Fig. 4 that more than 10 per cent of evolved
rules from each algorithm have W and PT terminals. Also, it
can be seen from Fig. 4 that the number of occurrences of W,
WINQ, PT, DD, MRT, NOPT and FDD terminals are higher
in the local search algorithms (GP-PLS-r and GP-PLS-F) than
in the GP-NSGA-III and GP-A-NSGA-III algorithms. This is
because all the GP-PLS algorithms enhanced the exploitation
ability and evolved significantly better rules as compared to
the other algorithms in terms of HV and IGD. Therefore,
these algorithms select the rules which are well-optimized.
As a result, there are more chances of occurrences of useful
terminals in GP-PLS-F algorithms. Further, it can be seen from
Fig. 4 that GP-PLS-F has more useful terminals (W, PT, DD,
FDD, and WINQ) than GP-PLS-s, GP-PLS-r. This analysis
shows the effectiveness of a selection of solutions based on
the fitness value.

2) Convergence Curves: Fig. 5(a) and Fig. 5(b) reveal
that GP-PLS-F has better convergence behaviors in terms of
both HV and IGD than other competing algorithms. These
also show that the GP-PLS-F achieved better performance
than GP-PLS-r and GP-PLS-s in terms of HV and IGD.
These results reveal that the selection of the solutions based
on FV (convergence and diversity) can improve the overall
performance of the GP-PLS-F algorithm. Moreover, in the
last few generations, when the solutions were very close to
the Pareto-front, GP-PLS-F achieved significantly better HV
and IGD.

3) Parallel Coordinate Plots: The parallel coordinate plots
in Fig. 6(a) to Fig. 6(e) depict the non-dominated set of
dispatching rules obtained by all the competing algorithms.
As it can be observed from Fig. 6, the rules evolved by GP-
PLS-F and GP-PLS-r show a more diversified solutions and
cover a much wider range of the objective space than other
compared algorithms. Meanwhile, GP-A-NSGA-III manages
to cover a much wider range of values for objective 2 and
objective 4 as compared to GP-NSGA-III and GP-PLS-s. Fig.
6 also reveals that GP-PLS-F obtained better coverage for the
third and fourth objectives (i.e. mean weighted tardiness and
maximum weighted tardiness) than GP-PLS-r.

VI. CONCLUSIONS AND FUTURE WORK

In this current study we successfully investigate the effec-
tiveness of fitness-base selection mechanism in GP-PLS.

In this paper, we combine GP with a PLS for solving many-
objective JSS problems. The key idea of this approach is
to perform multiple local search steps and effectively find
the neighborhood of non-dominated dispatching rules. This
local search mechanism helps create excellent exploitation
abilities in GP-PLS. Similarly, GP-PLS-F features the use of
a newly designed fitness-based selection approach. A fitness-
based selection criterion was proposed for selecting initial
solutions for neighborhood exploration — the selection criteria
based on convergence and diversity. Extensive experiments
have been performed to understand the effectiveness of the
proposed GP-PLS-F by using the Taillard static job shop
benchmark set. Experiment results showed that GP-PLS per-
formed significantly better than other compared algorithms in
terms of both HV and IGD. The proposed algorithm has been
further analyzed to reveal the different preferences over the
use of terminals. It is a first step investigation of PLS with the
fitness-based selection mechanism in GP.

In future studies, we will enhance the performance of
our proposed PLS by developing an intelligent local search
operator to guide exploitation based on recently evaluated rules
and adaptive selection methods. To unleash the great potential
of the local search techniques on many-objective GP-HH, more
investigations are required.
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(c) GP-A-NSGA-III.
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Fig. 6: Parallel coordinates of non-dominated front obtained
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