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Abstract—Recently, many deferential evolution-based algo-
rithms have been developed to solve constrained optimization
problems. The performance of these methods outperforms the
performance of single operator and/or algorithm-based ones.
However, they do not perform consistently for all the problems
tested in the literature. Also, the process of using the appropriate
selection of algorithms and operators may be time-consuming
since their designs are undertaken mainly through trial and error.
In this paper, we propose an improved optimization algorithm
that uses the benefits of multiple deferential evolution operators,
with the best one is emphasized based on the quality and
diversity of the population. The performance of the proposed
algorithm is tested by solving 57 real-world constrained problems
with different dimensions, number of equality and equality
constraints, with its results showing a high success rate and that
it outperformed different state-of-the-art algorithms.

Index Terms—evolutionary algorithms, differential evolution,
adaptive operator selection, constrained optimization.

I. INTRODUCTION

The constrained optimization problems (COPs) are an im-
portant part of any problem in many fields including engi-
neering and computer science [1]. The presence of additional
constraints (inequality and equality) and their interrelation-
ship with the objective function makes these problem more
challenging than their unconstrained counterparts. These con-
straints functions are used to generate the feasible region that
may be a well-shaped big space, a big irregular space, a tiny
space, or a number of disjointed sets. Mathematically COPs
can be represented by

minimize f(−→y )

subject to: gk(
−→y ) ≤ 0, k = 1, 2, ...,K

he(
−→y ) = 0, e = 1, 2, ..., E (1)

Lj≤yj≤Uj , j = 1, 2, ..., D (2)

where s is the number of inequality constraints, gk(−→y ), q
equality constraints, he(−→y ), and each variable, yj , has a lower
and upper bound, Lj , Uj , respectively. The target of a COP,
is to determine the values of all variables, y1, y2, ..., yD, that
minimize (or maximize) the objective function, f(−→y ), while
satisfying all the constraints, including the boundary ones.

COPs posses different mathematical characteristics and
proprieties, such as that their objective functions and con-
straints may be uni-modal or multi-modal, continuous or
discontinuous, linear or nonlinear, and their variables can be
discrete or real [2], [3]. The constraints functions are used
to generate the feasible region that may be a well-shaped big
space, a big irregular space, a tiny space, or a number of
disjointed sets.These different characteristics make the process
of locating the optimal solution challenging.

Computational intelligence (CI) based-methods, such as
evolutionary algorithms (EAs), are widely used and have been
successfully applied for COPs, since they have some essen-
tial advantages over traditional mathematical programming
methods [4]. However, there is no guarantee that they will
obtain optimum solutions and the quality of their solutions
relies on the particular algorithm’s design, the selection of its
operators and its parameter settings. Among existing, differ-
ential evolution (DE), which is an population-based technique
that use some sort of mutation, crossover and selection to
generate new solutions and to guide them during the search
to reach an optimal solution. Of them, DE has been exten-
sively implemented in several fields, has gained popularity
for solving problems in continuous domains and has proven
its superiority over other well-known algorithms for solving
complex optimization problems with different properties [5]–
[7]. However, no single DE operator (or parameter) performs
best for all types of test problems [1], [8]–[10]. This motivated
researchers to introduce frameworks that use the strengths
of different operators. Although they commonly enhance the
optimization process, they still do not ensure reliable results
for a wide range of test problems [11], [12] which reflects the
need for better designs.

Considering the above-mentioned points, a multi-operator-
based DE algorithm is introduced, that uses the strength of
more than one DE operator, with more weight given to the
better-one during the search process by dynamically updating
the size of each sub-population based on two indicators, the
quality of solutions and the diversity of each sub-populations.
At the end of every generation, all sub-populations are gath-
ered and then randomly redivided based on the new sub-
population sizes. Indeed, to maintain the diversity of the
population at the early stages of the optimization process and
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speed up convergence at later ones, a linear reduction of the
population size is carried out. To handle constraints, instead
of using all constraints to calculate the total violations, the
algorithm starts with a subset of the most violated constrained
are considered and gradually considers all of them. The perfor-
mance of the proposed algorithm is judged by solving 57 real-
world constrained problems taken from [13] competition on
non-convex constrained optimization problems from the real-
world. The results demonstrate that this algorithm statistically
outperforms existing algorithms.

The rest of this paper is organized as follows: a brief litera-
ture review on related research studies is presented in Section
II; the proposed approach and details of its components in
Section III; the experimental results and analyses in Section
IV; and, finally, the conclusions and future work in V.

II. LITERATURE REVIEW

Research on multi-operator differential algorithm (MODE)
is still at its cuddle stage. Although there are opulence of
works on MODE for unconstrained optimization problem,
similar works on constrained optimization problem is still
almost meagre. Among few, Elsayed et al. [3] proposed a
self-adaptive MODE to solve different constraint optimization
problems. Different success parameters such as constraint
violation, feasibility ratio and solution quality were used to
measure operator’s performance, based on which number of
solutions in each sub-population were dynamically updated.
This self-adaptive MODE was further improved by Elsayed
et al. [14] with integrating a co-variance matrix adaptation
evolution strategy.

Another application of MODE can be found from the work
of Li et al. [15], while they had generated three different trial
vectors based on three different mutation strategies. Among
those three mutation operators, two were used to increase the
convergence rate of their proposed DE algorithm, and one
operator was used to increase diversity. With successful appli-
cation of their MODE approach, they showed the supremacy
of MODE over traditional DEs in solving constrained opti-
mization problems. Similarly, Yu et al. [16] also proposed
an improved MODE algorithm, while they had utilized two
different mutation operators to evolve the whole population.
To solve constrained optimization problems, they had also
proposed an advanced strategy to transform equality constraint
into inequality constraints. Some notable extensions of MODE
approach are: unified DE approach [17], improved unified
DE approach [18], constrained optimization evolutionary al-
gorithm [19], and constrained optimization composite DE
algorithm [20]. While each of those advanced strategies had
their own merits, however, the dynamic selection of optimal
operator in a DE is still a challenging research context.

Considering the obvious necessity of having a well-
established strategy to select best-performing evolutionary
algorithm operators, Sallam et al. [21] proposed a landscape-
based indicator to pick the best-suitable operator throughout
the evolutionary process of DE. After solving many CEC
constrained optimization test problems (both classical and
real-application), they have proved the efficacy of their al-
gorithm. Similar study was also conducted by in [1], while

they proposed a MODE framework after considering objective
functionâs landscape information in addition of operators
performance history. Recently, Kumar et al. [22] proposed
an enhanced version of MODE algorithm, in which they had
applied an exponential population size reduction technique
to reduce the size of the population for any subsequent
iterations. After solving many CEC19 test problems, they have
proved the supremacy of their proposed algorithm. In order to
accelerate the searching capability of DE, Elsayed et al. [23]
proposed a new mechanism to automatically select the best-
fitted operators, such as amplification factor, crossover rate
and population size. Different constrained optimization test
problems were also employed to assess their algorithm.

Based on these relevant literature survey, it can be claimed
that the search of finding appropriate selection of best-
performing combination of operators and parameters for any
evolutionary algorithm (say DE) is still considered as a
tedious task, despite of a few earlier contributions from
many researchers. Some obvious directions stemming from
this research gap can be: (i) how to dynamically reduce the
size of sub-populations based on the quality of solutions and
the diversity of sub-populations, (ii) how to delve different
operator’s performance during the evolutionary process of a
DE. Considering these as a challenging research context, this
paper proposes an enhanced MODE (EnMODE) algorithm,
which has the capacity to update population size dynamically
based on solution quality and diversity of sub-populations.

III. PROPOSED ALGORITHM

As previously stated, the relative performance of DE oper-
ator may vary during the optimization stages, in other words,
the performance of one DE operator may be good at the early
phases of the optimization process and bad at the later ones,
or vice versa [3], [9], [24]. Also, an operator may perform
well for certain types of problem but its performance may be
bad for another. As a result, the use of multi-operator DE is
required with placing more weight to the better-performing
one at each evolutionary stage. Algorithm 1 presents the main
steps of the proposed EnMODE.

Firstly, a random initial population of size NP , i.e.,
Y = {−→y 1,

−→y 2, ...,
−→y NP } is generated. Then, the fitness

function (f(−→y )) and total constrained valuation (ψ(−→y )) for
each solution is calculated. Then, the whole population is
splitted into nop sub-populations of equal size PSop, each
of which is evolved by a DE operator, i.e., new solutions ui
are generated using the assigned DE operators. Evaluate the
new generated population and compute the fitness function
and the total constraint violation for every new solution. Then,
a comparison between each solution in the parent population
and its corresponding one in the offspring population is carried
out as discussed in subsection III-D, with the winner enters
the next generation. Subsequently, at the end of each iteration,
the improvement index is calculated as discussed at Section
III-B, based on which the number of solutions in each sub-
population is updated with a minimum sub-population size to
each operator was set. Also, a linear population size reduction
is conducted at the end of each iteration by removing the worst
individual [25], as in Equation 3. This is done to preserve the



diversity at the early generations and boosting the convergence
in the later ones.

NPt+1 = round[(
NPmin −NP init

MAXFES
)×FES+NP init] (3)

where NPmin is the minimum number of individuals the
algorithm can use, FES the current number of function
evaluations (FES), MAXFES the largest number of FES.

Algorithm 1 EnMODE algorithm

1: Define nop, MAXFES , NP , t← 1 and FES ← 0;
2: Generate an initial random population (Y ) of size NP ,

with the variables of each solution (−→y i) must be within
their boundaries;

3: Evaluate f(X) and calculate the constraints violations of
(−→y i) as discussed in Subsection III-D;

4: Update number of fitness evaluations FES ← FES +
NP ;

5: while FES ≤MAXFES do
6: Distribute Y randomly over Yop,∀op = 1, 2, ..., nop,

where each Yop is of size PSop;
7: Generate new population using the assigned DE opera-

tors, i.e., each operator op evolves its assigned number of
individuals NPop;

8: for op = 1 : nop do
9: Generate new solutions using the opth DE operators;

10: Evaluate new generated solutions and calculate their
constraints violations as discussed in Subsection III-D;

11: Compute the improvement index value (IIVop) as
discussed in Section III-B;

12: Update the values of F and Cr as in Section III-C;
13: end for
14: Update FES, FES ← FES +NP ;
15: Update the number of solutions (PSop) each DE oper-

ator evolves (Section III-B);
16: Update NP (equation 3);
17: t← t+ 1 ; and go to step 5;
18: end while

A. DE mutation strategies
In our algorithm, we use the following two DE mutation

operators evolve the entire population as they perform well in
solving unconstrained and constrained optimization problems
[1], [26].
• DE/current-to-φbest/1/bin with archive

ui,j =


xi,j + Fi.(xφ,j − xi,j + xr1,j − xr2,j)

if (rand ≤ Cri or j = jrand)

xi,j otherwise
(4)

• DE/rand-to-φbest/1/bin with archive

ui,j =


xi,j + Fi.(xφ,j − xi,j + xr1,j − xr2,j)

if (rand ≤ Cri or j = jrand)

xi,j otherwise
(5)

where r1 6= r2 6= r3 6= i are random integer numbers, −→x r1
and −→x r3 randomly selected from the whole population, with

xφ,j chosen from the best 10% of solutions in the whole
populations and xr2,j from the union of the whole population
and archive. Also, an archive is used to maintain the diversity
of the population, with new solutions worse than their parent
solutions putted into the archive [27]. To make space for the
newly generated individuals, once the archive size is greater
than its default size, the worst individuals are removed from
it.

Note that the proposed framework is flexible to adopt more
operators.
B. Updating number of individuals evolved by operator op

(NPop)
As previously stated, the solutions’ quality and sub-

population’s diversity are used to update the number of so-
lutions in each sub-population.

For the solutions’ quality, the best individual at the end
of each generation in each sub-population is used, based on
which the quality rate is calculated as

Qualop =
f bestt,op∑nop

op=1 f
best
t,op

, ∀op = 1, 2, ..., nop (6)

where f bestt,op is the best objective function value obtained by
operator op at generation t. Note, as we deal with constrained
optimization problem, f bestt,op is determined based on both the
fitness function values and the total constraint violations. This
is done by sorting the solutions based on both fitness function
values and total constraint violations.

Similarly, for the diversity obtained from each DE search
operator is the mean deviation of each solution obtained from
op from the best solution, i.e.,

Divop =
1

NPop

NPop∑
i=1

dis(−→y op,i −−→y bestop )

 ,

∀op = 1, 2, ..., nop

(7)

where dis(−→y op,i −−→y bestop ) is the Euclidean distance between
the ith solution and best one obtained by each operator op.
Also the diversity index is calculated by

DIop =
Divop∑nop

op=1Divop
, ∀op = 1, 2, ..., nop (8)

Based on the above equations, the improvement index value
(IIVop) is calculated as

IIVop = (1−Qualop) +DIop, ∀op = 1, 2, ..., nop (9)

Note: to satisfy the aim of maximizing the IIVop, we sub-
tracted Qualop from one.

Finally, the number of individuals that each DE operator
(NPop) evolves is calculated by

PSop = max

(
0.1,min

(
0.9,

IIVop∑nop

op=1 IIVop

))
×NP,

∀op = 1, 2, ..., nop
(10)

To avoid a sub-population of certain operator to have zero
solutions a minimum value is used, that is equal to 0.1 ∗NP .



Note: the summation of PSop must equal the whole popu-
lation size.
C. Managing F and Cr

The performance of the DE algorithm mainly depends on
its search operators (mutation and crossover) and its control
parameters (NP , F and Cr). However, choosing their values
is challenging. Thus, in this paper, we used a self-adaptive
technique to set the values of F and Cr [21], [26].

A historical memory of length H for both F and Cr is
used. The values in these memories are expressed as and
and their initial values were set to 0.5 and 0.2, respectively.
Each individual (−→x i) is associated with its own (Fi) and (Cri),
and their values are calculated using the following equations:

Cri = randni(µCr,ri , 0.1) (11)

Fi = randci(µF,ri , 0.1) (12)

where ri is randomly chosen from [1, H], randni and
randci are two functions used to generate random numbers
from Normal and Cauchy distributions with mean µCr,ri and
µF,ri , respectively, with variance 0.1. If the Cri values are
outside [0, 1], they are replaced by the limit value (0 or 1)
nearest to the generated value. If Fi > 1, its value is replaced
by 1, and if Fi ≤ 0, Equation 12 is repeatedly executed until
a valid value is reached.

At the end of each generation (t), the Fi and Cri used by
the successful individuals are inserted in SF and SCr, then
the values inside the historical memories are updated by

µCr,h,t+1 =

{
meanwL(SCr) if SCr 6= φ

µCr,h,t otherwise
(13)

µF,h,t+1 =

{
meanwL(SF ) if SF 6= φ

µF,h,t otherwise
(14)

where 1 ≤ h ≤ H is the location of the historical memory to
update. The value of h is set initially to 1 and is consequently
increased whenever a new element is inserted into the mem-
ories. In case of h > H , h is reset to 1 and meanwL(SCr),
the Lehmer mean, is calculated by

meanwL(SCr) =

∑|SCr|
h=1 ωh.S

2
Crh∑|SCr|

h=1 ωh.SCrh
(15)

where ωh is the weight calculated by

ωh =
γh∑|SCr|

h=1 γh
(16)

The values of γh is calculated based on the following scenar-
ios:

1) Feasible to feasible: the best solution feasible at both
generations t− 1 and t;

2) Infeasible to feasible: the best solution in the population
is infeasible at t− 1 and becomes feasible at t; and

3) Infeasible to infeasible: the best solution in the population
is infeasible in both generations t− 1 and t.

Firstly, for each successful solution (h ∈ 1, 2, ..., |SCr|
which falls in case 1, its γh is calculated as:

γh = βh=max

(
0,
ψh,t−1 − ψh,t

ψh,t−1

)
+max

(
0,
fh,t−1 − fh,t

fh,t−1

)
(17)

Then, for each successful solutions which exists in scenarios
2 or 3, its γh is computed as:

γh = max(0, βh)+
ψh,t−1 − ψh,t

ψh,t−1
+max

(
0,
fh,t−1 − fh,t

fh,t−1

)
(18)

D. Constraints handling
In this paper, we used the constrained handling technique

proposed in [23]. It starts by sorting the constraints according
to the sum of the constraints violations of all solutions in the
initial population from the least violated to the most violated
constraint or vice versa. It is well known that the more number
of constraints exist in any problem, the more complex will be
that problem. Instead of using all constraints, the algorithm
starts with a subset of the constraints (Conn) for a predefined
number of generations (W ). After W generations, a new
subset is then added to the current one, and the method tries to
attain the feasible region of both the new and previous sunsets
of constraints. The process lasts until all the constraints are
handled and the final feasible region is reached.

To select between any solution and its parent, the method
developed by Deb [28] is adopted and it has three scenarios:

1) from two feasible individuals, the one with the best
function value is selected;

2) from two infeasible individuals, the one with the smallest
sum of constraint violations (ψ) is chosen, where ψ is
computed using Equation 19; and

3) a feasible solution is always better than an infeasible one.

ψ(−→x i) =
K∑
k=1

max(0, gk(
−→x i)) +

E∑
e=1

max(0, |he(−→x i)| − δe)

(19)
where gk(

−→x i) and he(
−→x i) are the kth inequality and eth

equality constraints, respectively. For each equality constraint
he, δe was set to a value of 0.0001.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To judge the performance of the proposed EnMODE algo-
rithm, several experiments were conducted on 57 constrained
optimization problems with different dimensions ranges from
2 variables to 158 variables and different number of equality
and inequality constraints ranges from 2 constraints to 148
constraints. Details of these problems can be found in [13].
These problems are categorized to six sets:
• Industrial Chemical Processes contains seven test prob-

lems (RC01 - RC07);
• Process Synthesis and Design Problems has seven test

problems (RC08 - RC14);
• Mechanical Engineering Problem includes 19 test prob-

lems (RC15 - RC33);
• Power System Problems has 11 test problem (RC34 -

RC44);



• Power Electronic Problems contains six test problems
(RC45 - RC50); and

• Livestock Feed Ration Optimization has seven test prob-
lems (RC51 - RC57).

The proposed EnMODE was coded in Matlab R2018b and
run on a PC with 3.4 GHz Core I7 processor, 16 GB RAM
and Windows 10. For all the other comparative algorithms, the
values of their parameters were obtained from relevant articles
and, to ensure fair comparisons, they all used the same seed.
According to the benchmark rules, all the algorithms were
run 25 times for MAXFES calculated by Equation 20, or
|f(−→x best−f(

−→
x∗)| = 0, where x∗ is the global optimal solution

and xbest the best solution obtained by the proposed algorithm,
with the average and standard deviation results recorded.

MAXFES =



1× 105 if D ≤ 10

2× 105 if 10 < D ≤ 30

4× 105 if 30 < D ≤ 50

8× 105 if 50 < D ≤ 150

106 if 150 < D

(20)

For statistical comparisons of the algorithms, we con-
ducted two non-parametric tests (the Wilcoxon signed-rank
and Friedman ranking tests [29]). The proposed algorithm’s
performances were also graphically judged by plotting their
performance profiles [30] which is a tool used to compare
the performance of several methods (M ) using several test
functions (P ) and a comparison goal (i.e., the average com-
putational time and number of FES) to attain certain level of
the performance criteria (i.e., optimal fitness function value).
For a method (A), the performance profile RhoA is calculated
as

RhoA(τ) =
1

np
× |p ∈ P : rp,A ≤ τ | (21)

where RhoA(τ) is the percentage of A ∈ M that the
performance ratio rp,m is within a factor τ ∈ R for the
best possible probability and RhoA a function that returns
the cumulative distribution for the rp,A.
A. Parameter Setting

In terms of the algorithms’ parameters: NP init was set to
a value of 200 solutions, NPmin to 4, the window size W to
50 generations, Conn to (E +K)/2, the archive rate (A) to
1.4 and memory size (H) to 5.
B. Detailed results obtained from EnMODE

The detailed results obtained from the proposed EnMODE
are presented at this section. The best, median, average, worst
and the standard deviation of each problem associated with
their violation values are presented at Tables I - VI .

The proposed algorithm was able to obtain the feasible
solutions for 40 problems out of 57 problems. However, the
violations for the problems which the algorithm was not able
to obtain feasible solutions were very small.

EnMODE was able to obtain the optimal solutions for 5 test
problems in the Industrial Chemical Processes test problems
set (RC01-RC05). It was also able to achieve the optimal
solutions for five test problems in the Process Synthesis and

Design Problems test problems set (RC08, RC09, RC10, RC12
and RC13). The proposed algorithm was able to obtain the
optimal solutions for all test problems in the Mechanical
Engineering Problem test problem set (RC15 - RC33). The
performance of the proposed EnMODE was deteriorated when
solving the power system problems, as it was able to obtain the
optimal solution for only one test problems and the same be-
haviour happened for the Livestock Feed Ration Optimization
problem set. For the Power Electronic Problems, the proposed
algorithm was able to obtain solutions that were very close to
the optimal.

The performance of EnMODE was compared with those
obtained from (1) IUDE: Improved variant of Unified Differ-
ential Evolution [18]; (2) εMAgES: Matrix Adaptation Evo-
lution Strategy with ε−constraint; and [31]; (3) LSHADE44:
LSHADE with IEpsilon [32].

Firstly, the proposed algorithm was able to reach 70.18%
FRs for all test problems. IUDE achieved 54.39% FRs, while
the FRs for εMAgES and LSHADE44 were 49.12% and
59.65%, respectively.

Regarding the quality of solutions and based on the best
results, as shown in Table VIII, EnMODE was superior to
IUDE, εMAgES and LSHADE44 for 40, 35 and 41 test
problems, respectively, similar for 3, 3 and 2 test problems,
respectively, and inferior for 14, 19 and 14 test problems,
respectively. Considering the median obtained results, En-
MODE was superior to IUDE, εMAgES and LSHADE44
for 38, 39 and 46 test problems, respectively, equal in 1, 1
and 1 test problems, respectively, and worse for 18, 17 and
10 test problems, respectively. Regarding the average results,
the proposed EnMODE was better than IUDE, εMAgES and
LSHADE44 for 36, 35 and 48 test problems respectively,
worse for 20, 22 and 8 test problems, respectively, and similar
for 1, 0 and 1 test problems, respectively.

The Wilcoxon test was carried out to see whether the
proposed algorithm was statistically better than the rival al-
gorithms, with the obtained results shown in Table VIII. It
was clear that EnMODE was statistically better than all the
other algorithms for the obtained best, median and average
results. Also, the Friedman test results depicted in Table IX
demonstrate that EnMODE was ranked first for the best,
median and average results.

For further analysis, a graph of the performance profiles for
the test problems plotted to compare all the algorithms for both
mean and median results is presented in Figure 1. It indicates
that consistent results were obtained from the Friedman and
Wilcoxon tests as EnMODE reachs a probability of 1.0 first
at τ ≈ 16 and τ ≈ 1900 for mean and median results,
respectively.

V. CONCLUSION AND FUTURE WORK

A multi-operator DE algorithm is proposed to solve
real-world constrained optimization problems. The better-
performing operator is given more weight based on two
criteria, the solutions quality and population diversity. To
handle constraints, instead of considering all constraints, first,
the proposed algorithm considers a subset of the most vio-
lated constraints and gradually incorporates all of them to



TABLE I: Outcome at FES=MAXFES for Problems RC01-RC08

Criteria RC01 RC02 RC03 RC04 RC05 RC06 RC07 RC08

Best f 1.8931E+02 7.0490E+03 -4.5291E+03 -3.8826E-01 -4.0001E+02 1.0835E+00 9.5104E-01 2.0000E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.3325E-01 1.0067E-01 0.0000E+00

Median f 1.8931E+02 7.0490E+03 -4.5291E+03 -3.7440E-01 -3.9707E+02 1.0843E+00 1.0901E+00 2.0000E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3738E-02 5.1155E-01 0.0000E+00

Mean f 1.8931E+02 7.0490E+03 -4.3537E+03 -3.7574E-01 -3.3781E+02 1.0870E+00 1.1617E+00 2.0000E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.5174E-01 1.8113E-01 0.0000E+00

Worst f 1.8931E+02 7.0490E+03 -1.4272E+02 -3.6918E-01 0.0000E+00 1.1121E+00 1.5976E+00 2.0000E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1157E-01 1.6751E-01 0.0000E+00

Std. f 2.1707E-14 0.0000E+00 8.7728E+02 4.6905E-03 1.3137E+02 7.4308E-03 1.9498E-01 0.0000E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.2371E-01 1.9189E-01 0.0000E+00

FR 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00
c [000] [000] [000] [000] [000] [010] [010] [000]

TABLE II: Outcome at FES=MAXFES for Problems RC09-RC16

Criteria RC09 RC10 RC11 RC12 RC13 RC14 RC15 RC16

Best f 2.5577E+00 1.0765E+00 9.9239E+01 2.9248E+00 2.6887E+04 5.8505E+04 2.9944E+03 3.2213E-02
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Median f 2.5577E+00 1.0765E+00 1.0738E+02 2.9248E+00 2.6887E+04 5.8505E+04 2.9944E+03 3.2213E-02
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean f 2.5577E+00 1.1529E+00 1.0510E+02 2.9248E+00 2.6887E+04 5.8505E+04 2.9944E+03 3.2213E-02
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst f 2.5577E+00 1.2500E+00 1.0738E+02 2.9248E+00 2.6887E+04 5.8505E+04 2.9944E+03 3.2213E-02
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Std. f 1.3597E-15 8.7877E-02 3.7287E+00 4.5325E-16 1.1139E-11 8.0620E-09 4.6412E-13 3.1672E-18
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

FR 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
c [000] [000] [000] [000] [000] [000] [000] [000]

TABLE III: Outcome at FES=MAXFES for Problems RC17-RC24

Criteria RC17 RC18 RC19 RC20 RC21 RC22 RC23 RC24

Best f 1.2665E-02 6.0597E+03 1.6702E+00 2.6390E+02 2.3524E-01 5.2577E-01 1.6070E+01 2.5438E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Median f 1.2719E-02 6.0597E+03 1.6702E+00 2.6390E+02 2.3524E-01 5.2628E-01 1.6070E+01 2.5438E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean f 1.2710E-02 6.0597E+03 1.6702E+00 2.6390E+02 2.3524E-01 5.2691E-01 1.6070E+01 2.5438E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst f 1.2719E-02 6.0597E+03 1.6702E+00 2.6390E+02 2.3524E-01 5.3121E-01 1.6070E+01 2.5438E+00
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Std. f 2.0138E-05 9.2825E-13 0.0000E+00 0.0000E+00 1.1331E-16 1.4402E-03 3.3335E-14 1.3501E-12
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

FR 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
c [000] [000] [000] [000] [000] [000] [000] [000]

TABLE IV: Outcome at FES=MAXFES for Problems RC25-RC32

Criteria RC25 RC26 RC27 RC28 RC29 RC30 RC31 RC32

Best f 1.6161E+03 3.5359E+01 5.2445E+02 1.6958E+04 2.9649E+06 2.6586E+00 0.0000E+00 -3.0666E+04
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Median f 1.6161E+03 3.5364E+01 5.2445E+02 1.6958E+04 2.9649E+06 2.6586E+00 0.0000E+00 -3.0666E+04
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean f 1.6161E+03 3.5728E+01 5.2445E+02 1.6958E+04 2.9649E+06 2.8149E+00 0.0000E+00 -3.0666E+04
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst f 1.6161E+03 3.7268E+01 5.2445E+02 1.6958E+04 2.9649E+06 3.6359E+00 0.0000E+00 -3.0666E+04
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Std. f 1.7751E-11 5.9911E-01 3.7602E-07 3.7130E-12 1.4258E-09 3.6570E-01 0.0000E+00 3.7130E-12
v 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

FR 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
c [000] [000] [000] [000] [000] [000] [000] [000]



TABLE V: Outcome at FES=MAXFES for Problems RC33-RC40

Criteria RC33 RC34 RC35 RC36 RC37 RC38 RC39 RC40

Best f 2.6393E+00 1.8763E-08 -5.5866E+01 -7.9982E+01 -1.3614E+01 -2.9661E+00 -7.7307E+00 8.7659E+00
v 0.0000E+00 1.4935E-01 2.2549E+00 4.6087E+00 2.8689E-01 1.1281E-01 1.4295E-01 1.0120E+00

Median f 2.6393E+00 1.8453E+00 9.3738E+01 6.0832E+01 1.7859E+00 8.3966E-01 -7.3630E-01 2.3980E+01
v 0.0000E+00 1.3138E-01 8.4722E-01 1.5698E+00 1.6146E-01 9.6510E-02 1.2017E-01 1.1998E+00

Mean f 2.6393E+00 2.9323E+00 7.3181E+01 4.8808E+01 1.1398E+00 1.0646E+00 -8.1795E-01 2.5588E+01
v 0.0000E+00 1.2040E-01 1.2654E+00 2.2869E+00 1.3024E-01 1.0150E-01 1.0001E-01 1.2460E+00

Worst f 2.6393E+00 1.1456E+01 1.4570E+02 1.4590E+02 4.5562E+00 5.7313E+00 3.0522E+00 5.1304E+01
v 0.0000E+00 5.7930E-02 7.7016E-01 1.0586E+00 7.0381E-02 7.4837E-02 6.5590E-02 1.3763E+00

Std. f 1.0175E-15 3.5085E+00 6.4342E+01 6.7606E+01 3.5383E+00 1.8288E+00 2.3655E+00 1.0875E+01
v 0.0000E+00 2.8552E-02 6.0842E-01 1.1642E+00 4.4721E-02 1.6835E-02 1.6211E-02 3.1683E-01

FR 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
c [000] [010] [010] [100] [010] [010] [010] [100]

TABLE VI: Outcome at FES=MAXFES for Problems RC41-RC48

Criteria RC41 RC42 RC43 RC44 RC45 RC46 RC47 RC48

Best f 3.3908E-02 -1.0930E+01 -1.8864E+02 -6.1869E+03 7.4334E-02 5.1508E-02 3.8154E-02 4.0363E-02
v 1.7279E-01 2.4691E+00 5.1686E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Median f 2.9766E+00 -1.2349E+00 1.4642E+01 -6.0817E+03 1.3718E-01 6.3260E-02 6.7741E-02 4.7687E-02
v 4.7309E-01 1.3898E+00 1.3169E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Mean f 1.4269E+03 -2.1680E+00 -1.3935E+00 -6.0838E+03 1.4324E-01 6.3581E-02 6.4366E-02 7.0063E-02
v 2.7833E+00 2.2045E+00 2.5476E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Worst f 2.9304E+04 -8.2359E-01 3.9665E+01 -6.0048E+03 3.0063E-01 7.4371E-02 9.8325E-02 5.5003E-01
v 9.3334E+00 2.3335E+00 2.2846E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Std. f 5.8475E+03 2.2339E+00 4.9951E+01 5.3493E+01 5.4304E-02 5.1785E-03 1.6878E-02 1.0023E-01
v 3.4535E+00 5.2961E-01 8.9008E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

FR 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00
c [010] [100] [100] [000] [000] [000] [000] [000]

TABLE VII: Outcome at FES=MAXFES for Problems RC49-RC57

Criteria RC49 RC50 RC51 RC52 RC53 RC54 RC55 RC56 RC57

Best f 3.7313E-02 1.3654E-01 4.4582E+03 3.3497E+03 4.3452E+03 3.1921E+03 1.6943E+03 9.0491E+03 1.9627E+03
v 0.0000E+00 2.0665E-02 1.0804E-03 0.0000E+00 4.5582E-03 4.0751E-03 9.7894E-03 1.0635E-02 1.9552E-03

Median f 9.8783E-02 3.5610E-01 4.4986E+03 3.3633E+03 4.3633E+03 3.3416E+03 5.6877E+03 1.1976E+04 2.4707E+03
v 0.0000E+00 1.2873E-03 3.8898E-04 0.0000E+00 5.2830E-04 1.3538E-03 9.1415E-03 7.7943E-03 4.9139E-04

Mean f 9.4150E-02 3.2722E-01 4.5030E+03 3.3682E+03 4.6761E+03 3.3347E+03 4.9375E+03 1.1419E+04 2.4686E+03
v 0.0000E+00 1.0732E-02 3.4746E-04 0.0000E+00 2.8314E-03 1.4806E-03 3.1987E-03 5.8596E-03 1.0306E-03

Worst f 1.9977E-01 4.0885E-01 4.5451E+03 3.4021E+03 5.6477E+03 3.3417E+03 6.7116E+03 1.2962E+04 3.5415E+03
v 0.0000E+00 1.5889E-02 4.0282E-05 0.0000E+00 0.0000E+00 1.3536E-03 0.0000E+00 2.6854E-03 6.4600E-05

Std. f 4.8095E-02 7.0787E-02 1.8198E+01 1.5193E+01 4.3181E+02 3.0073E+01 1.6876E+03 1.2173E+03 3.7414E+02
v 0.0000E+00 4.0623E-03 1.9144E-04 0.0000E+00 1.9939E-03 5.4792E-04 3.4431E-03 2.7461E-03 5.4227E-04

FR 1.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.2000E-01 0.0000E+00 4.0000E-02 0.0000E+00 0.0000E+00
c [000] [001] [001] [000] [001] [001] [001] [001] [001]
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Fig. 1: Performance profiles graphs comparing the performance of EnMODE, IUDE, εMAgES and LSHADE44 based (a)
average results and (b) median results



TABLE VIII: Summary of comparisons of performances of
EnMODE, IUDE, εMAgES, and LSHADE44

Algoeithms Criteria Better Similar Worse (p, Dec.)

EnMODE vs. IUDE
Best 40 3 14 (0.000, +)

Median 38 1 18 (0.004, +)
Mean 36 1 20 (0.003, +)

EnMODE vs. εMAgES
Best 35 3 19 (0.001, +)

Median 39 1 17 (0.000, ≈)
Mean 35 0 22 (0.013, +)

EnMODE vs. LSHADE44
Best 41 2 14 (0.000, ≈)

Median 46 1 10 (0.000, ≈)
Mean 48 1 8 (0.000, ≈)

TABLE IX: Ranking of all algorithms EnMODE, IUDE,
εMAgES and LSHADE44 obtained by Friedman test

Algorithms Best Median Mean
EnMODE 1.89 1.89 1.82

IUDE 2.61 2.36 2.38
εMAgES 2.42 2.52 2.66

LSHADE44 3.07 3.23 3.15

calculate the total constraint violations. The performance of
the proposed algorithm was judged by solving 57 real-world
constrained optimization problems with different dimensions
vary from 2 to 157, number of equality constraints vary from
0 to 148, and number of equality constraints vary from 0
to 105. The computational results showed that it was 100%
statistically better than or similar to the rival algorithms.
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