
Search Economics for Single-Objective
Real-Parameter Optimization

Chun-Wei Tsai
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan

cwtsai@mail.cse.nsysu.edu.tw

Shin-Jui Liu
Department of Computer Science and Engineering

National Chung Hsing University
Taichung, Taiwan

knight31241@gmail.com

Abstract—An effective search algorithm for solving the contin-
uous global optimization problem based on a new metaheuristic
algorithm named search economics is presented in this paper.
The proposed algorithm works by first dividing the solution
space into a set of subspaces and then assigning searchers to
these subspaces based on the so-called “expected value” of each
subspace. The expected value contains not only objective values of
searched solutions but also objective values of new probe solutions
and computation costs invested in each subspace. This makes
it possible for the proposed algorithm to dynamically adjust
the computing resources invested in each subspace during the
convergence process. To evaluate the performance of the pro-
posed algorithm, we compare it with four state-of-the-art search
algorithms; namely, jSO, EBOwithCMAR, ELSHADE-SPACMA,
and L-SHADE-RSP, for solving 30 CEC 2017 benchmark func-
tions. The experimental results show that the proposed algorithm
can find better results than all the other search algorithms
compared in this study, especially for complex, high-dimensional
functions, hybrid functions, and composition functions.

Index Terms—Optimization problem, search economics, and
metaheuristic algorithm.

I. INTRODUCTION

The single-objective real-parameter optimization problem
(SOP) is a well-known global optimization problem, which
can be found in many real-world scientific and engineering
applications in our daily life [1]–[3]. Since the solution space
of this problem is continuous. Formally, a single-objective
real-parameter optimization problem [4] can be formulated as:

s∗ := min
s∈A

f(s), s = [s1, s2, . . . , sD],

where D is the number of dimensions; A is the feasible
set of decision vectors; s∗ the global optimum the d-th
dimension of which is in the range [Ld, Ud] where Ld and
Ud represent, respectively, the lower and upper bounds of the
d-th dimension, e.g., Ld = −100 and Ud = 100.

Being complex and time-consuming, how to find a “good
solution” for the single-objective real-parameter optimization
problem more effectively and efficiently has become an active
research topic in recent years. Most deterministic search
algorithms are built on the divide-and-conquer principle for
solving the SOP which can be dated back to the late 1960s
[5] or even earlier. One of the typical deterministic search
algorithms based on the divide-and-conquer principle in the
early stage of the search algorithm development for this kind

of optimization problem is the so-called branch-and-bound
algorithm [5]–[7].

In addition to the deterministic search algorithm, several
recent studies [8], [9] have attempted to develop a more effi-
cient way to search for better solutions based on metaheuristic
algorithms due to the fact that most metaheuristic algorithms
are capable of finding better solutions than deterministic
search algorithms for solving the SOP, for each of them
uses a different way to avoid falling into local optimum at
the early stage of the convergence process. However, most
metaheuristic algorithms for solving the SOP inherit the search
that would move the searches toward particular directions or
specific regions at the later stage of the convergence process.
This is unavoidable because most metaheuristic algorithms
require the searches to converge to regions that have a higher
chance to find better results instead of a random walk in the
solution space. Unfortunately, when the searches are limited
to specific directions or regions, it is very likely to fall into
local optimum, the search diversity for most metaheuristic
algorithms will then be decreased; thus, the possibility of
finding better solutions will also be degraded at the later stage
of the convergence process.

To avoid this phenomenon from happening, an effective
metaheuristic algorithm, called search economics for single-
objective real-parameter optimization problem (SE-SOP), is
presented in this paper. As the name suggests, the SE-SOP
is built on the search economics (SE) [10]. The basic idea
of SE-based algorithms is to take into account the potentials
and investments of each region in the solution space to make
every search more meaningful. The main difference between
the proposed algorithm and SE is in that we first modify the
way the solution space is divided, the way the expected value
is computed, and the way the transition of SE is performed.
We then add the self-adaptive parameter and linear population
size reduction (LPSR) to the proposed algorithm to further
improve its performance.

The remainder of this paper is organized as follows: Sec-
tion II begins with the basic idea of the proposed algorithm,
followed by a detailed description of the proposed algorithm
for the single-objective real-parameter optimization problem.
In Section III, the datasets and parameter settings are first
given, and then the simulation results are addressed. Section IV

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

provides a brief introduction to search algorithms for the
single-objective real-parameter optimization problem. Finally,
the conclusion and some possible future research directions
are given in Section V.

II. THE PROPOSED ALGORITHM

A. The Basic Idea

The serial investigation of SE [10]–[12] is inspired by
the observation of [13] which says that most metaheuristic
algorithms at the later stage of the convergence process all
typically face the dilemma of converging to particular regions
to stabilize the search. Motivated by this observation, the basic
idea of SE is to use the return on investment (ROI) to measure
every search during the convergence process; that is, the aim in
the design of the SE is to make every search as meaningful as
possible, such as avoiding searching similar or same candidate
solutions in a region for a long time.

Unlike all the other metaheuristic algorithms, the SE re-
lies on three important mechanisms to enhance its search
performance. They are: (1) divide the solution space into a
set of regions, (2) use the expected value of region instead
of the objective and/or fitness value of solution to determine
later search directions, and (3) use a new transition opera-
tor to generate new probe solutions based on the searched
solution of searcher and the sampling solution of region.
Because most SE-based algorithms [10]–[12] are designed
for combinatorial single-objective real-parameter optimization
problem; that is, problems the solution space of which are
discrete, the proposed algorithm thus has to first modify the
way the solution space is divided, the way the expected value
is computed, and the way the transition is performed in SE
and then add the self-adaptive parameter and linear population
size reduction to SE-SOP to make it not only work, but
also enhance its performance, for the single-objective real-
parameter optimization problem.

B. The SE-SOP

To simplify the discussion that follows, the following nota-
tion is used throughout the rest of the paper for the proposed
algorithm.
r set of regions; i.e., r = {r1, r2, . . . , rh}, where rj is the

j-th region and h the number of regions.
s set of solutions (also known as searchers); that is, s =
{s1, s2, . . . , sn}, where si is the i-th searcher and n the
number of searchers.

m set of solutions (called goods) in all regions; that is, m =
{m11, . . . ,m1w, . . . ,mh1, . . . ,mhw}, where mjk is the k-
th goods in the j-th region and w the number of goods in
each region.

rbj best so far solution in the j-th region rj .

vij set of possible probe solutions (called investments) of
the i-th searcher si, generated by applying the transition
operator to si and all goods in the j-th region mj . That
is, vij = {vij1, . . . , vijm} where vijk = si ⊗ mjk where ⊗
is the transition operator.

e set of expected values, where eij indicates the expected
value of the i-th searcher in the j-th region.

taj number of times the j-th region has been searched.
Initially, taj is set equal to 1 and will be increased by
one every time the j-th region is searched by a searcher.

tbj number of times the j-th region has not been searched.
Initially, tbj is set equal to 1 and will be increased by
one every time the j-th region is not searched; otherwise,
it will be reset to 1 when the region is searched by a
searcher.

Figure 1 gives a simple example to illustrate the concept
of searchers, goods, and regions of the SE. In this example,
the solution space is divided into 4 regions; i.e., h = 4. Four
solutions are then randomly created as the searchers each of
which is assigned to a region at the very beginning. Another
type of solution is also randomly generated as the goods.
In this example, two goods are randomly generated for each
region; thus, there are total 8 goods, which can be regarded as
the sampling points to depict the landscape of all the regions
for the proposed algorithm.

searcher si good mjk

m21

s2
m22

m32
m41

m42
s4

s3

m31

region r3 region r4

region r2region r1

m11

m12

s1

Fig. 1: A simple example to illustrate the basic idea of
searchers, goods, and regions of SE.

Algorithm 1 SE-SOP
1 Initialization()
2 ResourceArrangement()
3 While the termination criterion is not met
4 VisionSearch()
5 MarketingResearch()
6 LinearPopulationReduction()
7 End
8 Output the end results.

As shown in Algorithm 1, in addition to the Initialization()
operator, the proposed algorithm contains the ResourceAr-
rangement(), VisionSearch(), MarketingResearch(), and Lin-
earPopulationReduction() operators. The Initialization() oper-
ator plays the role of initializing the parameters of search
economics for single-objective real-parameter optimization
problem and generating a set of solutions as searchers. The
ResourceArrangement() operator is responsible for dividing

the solution space into a set of regions. Then, it will as-
sign searchers regions and generate a set of goods for each
region. The VisionSearch() operator takes care of transiting
the searched solutions to generate new candidate solutions,
evaluating the solutions generated, and determining the search
directions and regions at later iterations. The MarketingRe-
search() operator is used to record the status of searches (i.e.,
investments) in each region to provide more complete infor-
mation to the VisionSearch() operator to avoid the searches
from moving toward particular directions and regions. The
LinearPopulationReduction() operator is used to reduce the
number of regions, searchers, and goods to increase the local
search ability as the number of searches increases, especially
at the later stage of the convergence process.

C. Initialization

Like the SE, the proposed algorithm will first initialize the
following parameters; namely, the number of regions h, the
number of searchers n, and the number of goods in a region w.
Unlike the SE, the additional parameters added to SE-SOP and
initialized by this operator are sp, mp Tp, H, sci , s

f
i , mc, and

mf . SE-SOP will generate n = sp×D searchers, where sp is a
predefined number for adjusting the number of searchers, and
D the number of dimensions. When n > h, each region will
be assigned either dn/he or bn/hc searchers. mp denotes the
ratio of goods and w = n×mp/h. Tp is the rate of tournament
selection for the creation of the new investment vij . H is the
size of the historical memory. This means that the proposed
algorithm will keep a set of feasible strategies (i.e., sci and
s
f
i) for generating the new investments. mc = {mc1, . . . , mcH}

is a set of transition rates for using either searcher or goods
to create new solutions in the historical memory while mf =
{mf1 , . . . , m

f
H} is a set of weights for the searcher and goods.

Inspired by SHADE [14], the way a new solution is created
makes it possible for the proposed algorithm to find a better
transition rate at the early stage of the convergence process
and to adjust the search strategy at the later stage of the
convergence process by itself. As shown in Figure 2, the
transition strategies—best/random, sci , and s

f
i —are associated

with the i-th searcher si.

s
f
isci

0.6 0.4
0.5 0.5

0.6 0.5

Historical Memorysearcher si
best/random

...

mc mf

Fig. 2: A simple example to illustrate the encoding of searcher
and the relationship between the historical memory and suc-
cess parameters.

The strategies that have been used before are kept in the
historical memory, and those that eventually improve the
results are stored in the table of success parameters. This
means that the strategies sci and s

f
i will be saved in the

historical memory by the MarketingResearch() operator if they
eventually improve the solution. The VisionSearch() operator

can then randomly select a pair of strategies out of the
historical memory to increase the possibility of getting a better
solution at later iterations.

D. Resource Arrangement
As shown in Figure 3, unlike the SE for which none of

the regions are allowed to overlap, the SE-SOP allows all the
regions to overlap to avoid searchers from getting stuck at
the boundary. In this example, the solution space is divided
into four regions. The width and height of each region, say
r1, are extended from 50% to 60% so that each of which
has a 20% overlap with regions next to it. As mentioned
in Section II-C, this operator will randomly create a certain
number of searchers and assign them to all the regions.
Besides, the proposed algorithm will randomly create a certain
number of goods for each region.

region r3 region r4

region r2region r1
50% 60%

50%
60%

Fig. 3: The basic idea of SE.

E. Vision Search
The basic idea of the transition operator VisionSearch() of

SE is to create new solutions vij by exchanging information
between the i-th searcher si and the goods m in the j-th
regions. A pair of strategies sci and s

f
i will first be randomly

selected from the historical memory. Then, sci will be fine-
tuned in the range [0, 1] based on a normal distribution the
standard deviation of which is 0.1 while s

f
i will be fine-

tuned in the range [0.5, 0.6] based on a Cauchy distribution
the standard deviation of which is 0.01. Moreover, for s

f
i ,

when the number of evaluations used so far tcurr is larger
than tmax × c1, the range will be changed to [0, 1] and the
standard deviation to 0.1, where tmax is the maximum number
of evaluations and c1 is a predefined number. If this operator
chooses to select the best solution, then the new investment
(solution) vij will be created as follows:

vijd =

{
sid + s

f
i (rb1j − sid) + s

f
i (rb2j −md

jk) if r ≤ sci or d = l,
sid otherwise,

(1)
where vijd is the d-th dimension of the new investment solution
created from the i-th searcher and the goods in the j-th region.
rb1j and rb2j are, respectively, the best and second best goods
selected by tournament selection with T players where T is
defined as

T =

{
bTp × n×mp/wc, if tcurr < 0.8× tmax,

b2× Tp × n×mp/wc, otherwise,
(2)

where tcurr is the number of evaluations used so far, and tmax

the maximum number of evaluations. md
jk represents the k-th

goods randomly selected from the j-th region; r represents
a random number uniformly distributed in the range [0, 1];
and l denotes a particular dimension randomly selected from
{1, 2, . . . , D}.

If this operator chooses to randomly select a solution, then
the new investment (solution) vij will be created as follows:

vijd =

{
md

jk1
+ s

f
i (rb1j −md

jk1
) + s

f
i (rb2j −md

jk2
) if r ≤ sci or d = l,

md
jk1

otherwise,
(3)

where md
jk1

and md
jk2

are two different goods randomly
selected from the j-th region; that is, k1 6= k2.

SE-SOP uses a way that is similar to SE to compute the
expected value eij of the i-th searcher in the j-th region, as
follows:

eij = N (tj) · N (vij) · (1−N (mj)), (4)

where N (x) is a normalization function that will normalize
x so that its value will fall in the range [ε, 1], where ε is
set equal to 0.001 as far as this study is concerned; tj =
tbj/t

a
j ; and vij = (

∑w
k=1 f(v

i
jk))/w. Moreover, the proposed

algorithm will also use the tournament selection operator as
the determination operator to determine the region to which
the i-th searcher should be moved based on the expected value,
and the number of players is set equal to half the number of
regions h the current iteration has.

F. Marketing Research

This operator is responsible for keeping track of and up-
dating the search (investment) status of each region, such as
ta1 and ta2 , once every iteration. This information is extremely
useful in depicting the landscape of the solution space. This
makes it possible for the SE-SOP to determine the search
directions or regions that have a higher chance to find better
results at later iterations based not only on the objective value
of the new candidate solution but also on the landscape of the
solution space. This operator will also update the historical
memory and success parameters. The new investment solutions
will then be updated if they are better than the current goods.

G. Linear Population Reduction

Figure 4 shows that the proposed algorithm also adopts
the population size reduction for improving its performance
because this strategy, which has also be used in several
recent studies [14], [15], can be used to remove some of the
similar searched solutions at the later stage of the convergence
process. The example shows that the numbers of searchers,
goods, and regions can reduced and merged.

The proposed algorithm will first sort the searchers and
goods based on their objective values so as to remove the
worse of them. The number of searchers can be calculated as
follows:

ncurr = (nmin − ninit)×
tcurr

tmax
+ ninit, (5)

seachers
goods in each region

0
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

50

100

150

200

250

regions

Fig. 4: A simple to illustrate the way for reducing the numbers
of goods, regions, and searchers.

where ncurr, ninit, and nmin represent the number of searchers
at the current iteration, the number of searchers in the first
iteration, and the minimum number of searchers, respectively.
The number of goods can be reduced by

wtotal = winit ×mp × wγ , (6)

where wtotal is the total number of goods at the current
iteration; winit is the number of goods in each region; wγ is
the reduction rate of the goods; and mp is ratio of goods.
The example described in Figure 4 shows that the number of
goods may not always decrease linearly because the number
of goods in a region will be increased in the merge process,
but the long-term trend is to reduce the number of goods as
an aged curve. The proposed algorithm will randomly select
the neighbor regions for the merge. The number of regions
can be calculated as follows:

hcurr =
hinit⌊

tcurr × log2(hinit)

tmax × c1

⌋ , (7)

where hcurr represents the number of regions at the current
iteration; hinit the number of regions at the first iteration; and
c1 the acceleration factor to reduce the number of regions to
1.

III. THE EXPERIMENTAL RESULTS

A. Experimental Environment and Parameter Settings

The experimental analysis is conducted on a PC with two
Intel Xeon E5-2620v4 (2.1 GHz, 20 MB cache, and 8 cores)
and 78 GB of memory running Ubuntu 18.04 LTS, and
all the programs are written in C++. The benchmark is a
set of problems appeared in the CEC2017 competition on
the real-parameter single objective optimization [16], which
include 30 test functions that are tested for 10D, 30D, 50D,
and 100D. Functions 1–3 are unimodal; functions 4–10 are
multimodal; functions 11–20 are hybrid; and functions 21–30
are composition functions. Note that the results of function 2
is numerically unstable; therefore, it is not considered in
the measurements [16]. To evaluate the performance of the
proposed algorithm SE-SOP for solving the single-objective
real-parameter optimization problem, we compare it to four
state-of-the-art search algorithms; namely, jSO [17], EBOwith-
CMAR [18], ELSHADE-SPACMA [19], and L-SHADE-RSP

[20]. The parameter settings of these algorithms are the same
as the original settings. As for the parameter setting, sp is set
equal to 21, hinit to 4, mp to 3.5, H to 7, Tp to 0.011, and c1
to 0.45.

As far as this study is concerned, the simulation is carried
out for 51 runs for all the test functions. The number of dimen-
sions is set equal to 10, 30, 50, and 100. The maximum number
of evaluations is set equal to 100,000, 300,000, 500,000, and
1,000,000. To evaluate the search results of these algorithms,
the lower and upper bounds of each dimension are set equal
to −100 and 100, respectively; so, if the solution of a test
function is out of the scope, it will not be used to evaluate the
performance of the search algorithm. If the difference between
the searched solution and the optimum solution is less than
10−8, it can be regarded as 0. The first measurement is based
on the total rank [16] that is defined as

R = R1 +R2 (8)

that takes into account (1) the difference between the searched
result and the optimum solution (i.e., error rate) R1, (2) the
rank of a search algorithm R2 defined as follows:

R1 = 1−
Rerr −Rerr

min

Rerr , (9)

R2 = 1−
Rrank −Rrank

min

Rrank , (10)

where Rerr and Rrank are defined as follows:

Rerr
= 0.1

29∑
i=1

f
err
i,10 + 0.2

29∑
i=1

f
err
i,30 + 0.3

29∑
i=1

f
err
i,50 + 0.4

29∑
i=1

f
err
i,100, (11)

Rrank
= 0.1

29∑
i=1

f
rank
i,10 + 0.2

29∑
i=1

f
rank
i,30 + 0.3

29∑
i=1

f
rank
i,50 + 0.4

29∑
i=1

f
rank
i,100; (12)

Rerr
min andRrank

min are defined as the minimum error rate and rank
of all the search algorithms compared herein. The second one
is Wilcoxon signed-ranks test that is used to understand the
difference between the proposed algorithm and all the other
search algorithms compared in this paper.

B. Simulation Results

To understand the impact of the parameters on the perfor-
mance of the proposed algorithm, we first set the parameters
sp, hinit, mp, H, Tp, and c1 equal to 21, 4, 3.5, 7, 0.009,
and 0.4, respectively, as the default values. We then adjust the
value of each parameter so as to understand its impact defined
as follows:

S = 4 · S0 −
4∑

i=1

Si, (13)

where S represents the score of the proposed algorithm with
the given parameter settings, and S0, S1, S2, S3, and S4
represent, respectively, the total rank R of the proposed
algorithm, EBOwithCMAR, jSO, ELSHADE-SPACMA, and
L-SHADE-RSP with the given parameter settings. Figure 5
shows the impact of the parameters sp, hinit, mp, H, Tp, and
c1. It can be easily seen that the best parameter settings are
21, 4, 3.5, 7, 0.011, and 0.45. That is why SE-SOP uses these
parameter settings to carry out all the simulations in this study.

-5

 0

 5

 10

 15

 20

 25

19 20 21 22 23 1 2 4 8 16 2.5 3.0 3.5 4.0 4.5 5 6 7 8 9 0.007
0.008

0.009
0.010

0.011
0.3 0.35

0.4 0.45
0.5

S
co

re

 Reduction Rate Tournament Rate Memory Size Goods Rate Regions Searcher Rate

Fig. 5: The impact of parameters on the SE-SOP.

As shown in Table I, although the ELSHADE-SPACMA
gives the best R1, its rank score R2 is not as good. Our
observation shows that this is because ELSHADE-SPACMA
is able to find quite good results than the others for some
of the test functions, such as 50 dimensional f30 and 100
dimensional f22. However, its rank score shows that it is not
able to find the best results than the others for most of the
test functions. L-SHADE-RSP provides a more stable way to
find the solution compared with ELSHADE-SPACMA, jSO,
and EBOwithCMAR in terms of R1 and R2. That is why
L-SHADE-RSP is ranked the second. The proposed algorithm
can not only find the best results in terms of the rank score R2

but also the second best results in terms of the error score R1,
among all the search algorithms compared in this study. This
implies that the proposed algorithm can not only minimize the
error rate but also find the best results for most test functions.

TABLE I: COMPARISON OF SE-SOP AND ALL THE OTHER
SEARCH ALGORITHMS IN TERMS OF R1, R2, AND R.

R1 R2 R Total Rank
jSO 48.62 39.80 88.42 5

EBOwithCMAR 48.93 44.42 93.35 4
ELSHADE-SPACMA 50.00 43.73 93.73 3

L-SHADE-RSP 49.03 48.88 97.91 2
SE-SOP 49.21 50.00 99.21 1

Table II provides additional comparison to show that the
proposed algorithm is capable to find significantly better
results than all the other search algorithms compared in
this paper. The terms +, ≈, and − represent, respectively,
that the SE-SOP is significantly better than the others, has
no difference from the others, and is significantly worse
than the others. Some of the results of low-dimensional test
functions show that the proposed algorithm is no difference
from the other search algorithm; some of the results show
that the proposed algorithm is even worse than the other
search algorithms. Although not obvious for functions in low-
dimensional space, the proposed algorithm outperforms all the
other search algorithms compared in this study as the number
of dimensions of the test functions increases. This implies
that the number of times the proposed algorithm beats the
others will increase significantly, especially when the number
of dimensions increases to 100 or even higher. That is why

TABLE II: COMPARISON OF SE-SOP AND ALL THE OTHER SEARCH ALGORITHMS IN TERMS OF WILCOXON SIGNED-RANKS
TEST.

D = 10 D = 30 D = 50 D = 100
+ ≈ − + ≈ − + ≈ − + ≈ −

EBOwithCMAR 7 12 10 9 10 10 11 7 11 16 4 9
jSO 9 10 10 10 11 8 12 9 8 20 4 5

ELSHADE-SPACMA 10 12 7 12 15 2 12 10 7 15 4 10
L-SHADE-RSP 8 10 11 7 12 10 4 12 13 15 7 7

the proposed algorithm provides the best results in terms of
the total rank R.

IV. RELATED WORK

As we mentioned in Section I, the branch-and-bound algo-
rithms were developed in the early stage for solving the single-
objective real-parameter optimization problem [5]–[7]. Since
some successful results in recent studies [21]–[23] have shown
that metaheuristic algorithms are capable of finding better
results than deterministic search algorithms in solving the
SOP, using particle swarm optimization (PSO) to solve such a
problem has attracted the attention of many researchers. More
recently, the covariance matrix adaptation evolution strategy
(CMA-ES) [8] and success-history based parameter adaptation
for differential evolution (SHADE) [9] have become two
promising ways for solving the SOP. The basic idea of CMS-
ES is to use the Gaussian distribution with mean, step-size
and covariance estimation to create new candidate solutions.
The basic idea of SHADE is to use the historical memory to
record the parameter settings that have been used to improve
the search results before to adjust the parameters of differential
evolution (DE). In [14], Tanabe and Fukunaga presented an
improved version of SHADE that has the linear population
size reduction added to reduce the similar solutions at the later
stage of the convergence process, called L-SHADE. Still, an-
other improved version of L-SHADE, called L-SHADE-RSP,
that uses a rank-based selection to increase the exploitation
capabilities of mutation strategy has been presented in [20].

In [17], Brest et al. presented an improved variant of the
L-SHADE, by using a new weighted version of mutation
strategy. In [18], Kumar presented a hybrid search algorithm,
called EBOwithCMAR, that integrates butterfly optimizer and
covariance matrix and won the computation of CEC 2017. An-
other hybrid search algorithm, called ELSHADE-SPACMA,
can be found in [19], which adopts the technologies of CMA-
ES and L-SHADE. In summary, the development of search
algorithms for solving the single-objective real-parameter op-
timization problem has undergone several improvements, from
branch-and-bound algorithm, PSO-based algorithms, CMS-
ES, SHADE, all the way to the hybrid algorithm of them.
Most of them strongly impact the development of search
algorithms for solving the global optimization which means
that an effective search algorithm for solving the SOP may
also be used to solve other kinds of optimization problems in
the continuous space.

V. CONCLUSIONS

This paper presents an improved version of (SE) for solving
the single-objective real-parameter optimization problem. This
is motivated by the SE-based algorithms that have successfully
solved many combinatorial optimization problems but not for
optimization problems in the continuous space. The main
differences between the proposed algorithm (SE-SOP) and SE
are in the way the solution space is divided, the expected
value is computed, and the transition operator is designed. Two
promising technologies in solving the SOP—self-adaptive pa-
rameter and linear population size reduction (LPSR)—are also
added in the proposed algorithm. The simulation results show
that the proposed algorithm is capable of finding out better
results than other state-of-the-art algorithms for solving the
single-objective real-parameter optimization problem for most
functions. It can be easily seen that the proposed algorithm
provides a stable way to solve the SE-SOP. In the future, our
focus will be on developing an efficient way to accelerate the
speed of the proposed algorithm.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of
Science and Technology of Taiwan, R.O.C., under Contract
MOST108-2221-E-110-076-MY3 and in part by the Taiwan
Information Security Center at National Sun Yat-sen Univer-
sity (TWISC@NSYSU).

REFERENCES

[1] L. Liberti, “Introduction to global optimization,” LIX, École
Polytechnique, Palaiseau F-91128, France, Tech. Rep., 2006.
[Online]. Available: http://www.lix.polytechnique.fr/∼liberti/teaching/
mpro/pma-12/nonconvex optimization.pdf

[2] Y. Lu, S. Wang, Y. Zhao, and C. Yan, “Renewable energy system
optimization of low/zero energy buildings using single-objective and
multi-objective optimization methods,” Energy and Buildings, vol. 89,
pp. 61–75, 2015.

[3] A. Andreotti, G. Carpinelli, F. Mottola, and D. Proto, “A review
of single-objective optimization models for plug-in vehicles operation
in smart grids part II: Numerical applications to vehicles fleets,” in
Proceedings of the IEEE Power and Energy Society General Meeting,
2012, pp. 1–8.

[4] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization,” Technical
Report 201311, Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China, and Technical Report, Nanyang
Technological University, Singapore, Tech. Rep., 2013. [Online].
Available: http://bee22.com/manual/tf images/Liang\%20CEC2014.pdf

[5] J. E. Falk and R. M. Soland, “An algorithm for separable nonconvex
programming problems,” Management Science, vol. 15, no. 9, pp. 550–
569, 1969.

[6] G. P. McCormick, “Computability of global solutions to factorable
nonconvex programs: Part i – Convex underestimating problems,” Math-
ematical Programmin, vol. 10, pp. 147–175, 1976.

[7] E. Sandgren, “Nonlinear integer and discrete programming in mechani-
cal design optimization,” Journal of Mechanical Design, vol. 112, no. 2,
pp. 223–229, 1990.

[8] L. Chen, Z. Zheng, H. Liu, and S. Xie, “An evolutionary algorithm based
on covariance matrix leaning and searching preference for solving CEC
2014 benchmark problems,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2014, pp. 2672–2677.

[9] R. Tanabe and A. Fukunaga, “Success-history based parameter adapta-
tion for differential evolution,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2013, pp. 71–78.

[10] C.-W. Tsai, “Search economics: A solution space and computing re-
source aware search method,” in Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics, 2015, pp. 2555–2560.

[11] ——, “An effective WSN deployment algorithm via search economics,”
Computer Networks, vol. 101, pp. 178–191, 2016.

[12] ——, “SEIRA: An effective algorithm for IoT resource allocation
problem,” Computer Communications, vol. 119, pp. 156–166, 2018.

[13] C.-W. Tsai, S.-P. Tseng, C.-S. Yang, and M.-C. Chiang, “PREACO:
A fast ant colony optimization for codebook generation,” Applied Soft
Computing, vol. 13, no. 6, pp. 3008 – 3020, 2013.

[14] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
shade using linear population size reduction,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2014, pp. 1658–1665.

[15] J. L. J. Laredo, C. M. Fernandes, and J. J. Merelo, “Improving genetic
algorithms performance via deterministic population shrinkage,” in Pro-
ceedings of the Conference on Genetic and evolutionary computation,
2009, pp. 819–826.

[16] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N.
Suganthan, “Problem definitions and evaluation criteria for the
CEC 2017 special session and competition on single objective
bound constrained real-parameter numerical optimization,” Technical
Report, Nanyang Technological University, Singapore, Tech. Rep.,
2016. [Online]. Available: https://www.ntu.edu.sg/home/EPNSugan/
index files/CEC2017/CEC2017.htm

[17] J. Brest, M. S. Maučec, and B. Boškovìc, “Single objective real-
parameter optimization: Algorithm jSO,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2017, pp. 1311–1318.

[18] A. Kumar, R. K. Misra, and D. Singh, “Improving the local search ca-
pability of effective butterfly optimizer using covariance matrix adapted
retreat phase,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2017, pp. 1835–1842.

[19] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, “Single-objective real-
parameter optimization: Enhanced LSHADE-SPACMA algorithm,” King
Abdulaziz University, Saudi Arabia and Cairo University, Egypt, Tech.
Rep., 2018.

[20] V. Stanovov, S. Akhmedova, and E. Semenkin, “LSHADE algorithm
with rank-based selective pressure strategy for solving CEC 2017 bench-
mark problems,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2018, pp. 1–8.

[21] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 3, pp. 281–295, 2006.

[22] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and
A. Abraham, “Inertia weight strategies in particle swarm optimization,”
in Proceedings of the World Congress on Nature and Biologically
Inspired Computing, 2011, pp. 633–640.

[23] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm
optimizer for global optimization problems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 3,
pp. 627–646, 2012.

