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Abstract—In recent years, several multi-method and multi-
operator- based algorithms have been proposed for solving
optimization problems. Generally, their performance is better
than other algorithms that based on a single operator and/or
algorithm. However, they do not perform consistently well over
all the problems tested in the literature. In this paper, we propose
an improved optimization algorithm that uses the benefits of
multiple differential evolution operators, with more emphasis
placed on the best-performing operator. The performance of
the proposed algorithm is tested by solving 10 problems with 5,
10, 15 and 20 dimensions taken from CEC2020 competition on
single objective bound constrained optimization, with its results
outperforming both single operator-based and different state-of-
the-art algorithms.

Index Terms—evolutionary algorithms, differential evolution,
adaptive operator selection, unconstrained optimization.

I. INTRODUCTION

Many real-world problems involve the process of determin-
ing the values of continuous decision variables to optimize one
or more objective functions (either maximized or minimized)
[1]. They can be categorized based on the types and number of
decision variables, the number of their objective functions to
be optimized, and the existence of constraints and many other
factors [2], [3]. In this paper, our focus is on unconstrained
problems.

In the literature, computational intelligence-based ap-
proaches, such as evolutionary algorithms (EAs), are success-
fully used to solve optimization problems and posses essential
merits over traditional approaches [4], i.e., capability of self-
adaptation, resilience to dynamic changes and do not require
specific mathematical attributes to be satisfied [5]. However,
their performance depends on the algorithm’s design and its
parameters and operators. These stochastic factors make it hard
to guarantee achieving the optimal solutions.

Among EAs, differential evolution (DE) algorithm, which
is considered efficient and simple, has attracted the attention
of practitioners and researchers [6]–[10]. DE mainly has three
basic search operators (mutation, crossover and selection) and
three parameters (amplification factor, crossover rate and pop-
ulation size). However, no single DE operator (or parameter)
performs best for all types of test problems [2], [6], [11], [12].
This motivated researchers to introduce frameworks that use
the strengths of different operators. Although they commonly
enhance the optimization process, they still do not ensure

reliable results for a wide range of test problems [1] which
reflects the need for better designs.

In light of the above, this paper introduces an improved
multi-operator DE (IMODE) algorithm. It starts by dividing
the initial population into several sub-populations, each of
which is evolved using its own DE variant. The size of
each sub-population is dynamically updated based on two
indicators, the quality of solutions and the diversity of each
sub-population. At the end of every generation, all sub-
populations are gathered and then redivided based on the
new sub-population sizes. In addition, a linear reduction of
the population size is carried out. This framework is tested
on 10 benchmark optimization problems with 5, 10, 15 and
20 dimensions taken from the CEC2020 [13]) competition
on single-objective optimization. The results demonstrate that
this algorithm statistically outperforms existing algorithms.
Also, different components of it are analyzed to provide more
insights into the proposed framework.

It is worth mentioning that, although IMODE shares the
same structure as that of IUMOEAs-II [11], it has the fol-
lowing differences: 1) CMA-ES has not been used in this
design, because of its poor performance [1]; 2) one adaptation
mechanisms to determine the control parameters values have
been used; and 3) randomly use one of two crossover (binomial
and exponential).

The rest of this paper is organized as follows: a brief litera-
ture review on related research studies is presented in Section
II; the proposed approach and details of its components in
Section III; the experimental results and analyses in Section
IV; and, finally, the conclusion in Section V.

II. LITERATURE REVIEW

A literature review of multi-operator DE-based algorithms
is discussed in this section.

A. Multi-operator DE variants

As previously stated, the performance of DE algorithm
is significantly depends on its parameters (i.e., population
size (NP ), crossover rate (Cr) and scaling factor (F )) and
mutation strategies, so many researchers have tried to identify
the most optimal one [14], [15]. Despite various DE variants
existing in the literature, several studies indicated that a
specific one may not perform well for all types of problems.
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Moreover, considering the shortcomings of single-operator DE
variants (i.e., a single mutation strategy) for solving all types of
optimization problems, research on multi-operator DE variants
has received a great deal of attention recently [6], [11].

An auto-selection mechanism (ASM) was proposed by
Fan et al. [16] to select a suitable DE variant during the
evolutionary process for solving combinatorial optimization
problems. Sallam et al. [6], proposed an adaptive operator
selection (AOS) method, which uses the performance histories
of DE mutation operators and information of the function’s
landscape to automatically choose the most suitable DE strat-
egy from a pool of many. The superiority of this approach
was demonstrated through it solving 45 unconstrained opti-
mization problems taken from the CEC2014 and CEC2015
competitions. Also, in a fuzzy rule-based design of an EA
proposed by Elsayed et al. [1], a fuzzy rule-based heuristic
was applied to place more emphasis on the best-performing
algorithm during the evolutionary process. Their framework
was proven to be effective through it solving a number of
unconstrained benchmark problems/data sets.

Tasgetiren et al. [17] proposed an ensemble of discrete DE
algorithms for improving the performance of DE by selecting
appropriate parameter sets. Elsayed et al. [18] developed an
overall ensemble in a DE framework with allocations of
16 different combinations of mutation and crossover oper-
ators, and a constraint-handling mechanism. More recently,
Wu et al. [19] proposed a multi-population-based framework
for deriving potential DE variants based on their ensemble
characteristics. They used a reward sub-population scheme to
prioritize the best-performing DE variants and the suitability of
their approach was proven after it solved a number of standard
optimization problems.

To enhance the performance of DE, Zhang et al. [20] intro-
duced a multi-layer competitive-cooperative (MLCC) frame-
work. To improve the exploration and exploitation capabilities
of DEs, an enhanced DE algorithm with three multi-mutation
strategies and their associated self-adaptive control parameters
was proposed in [21]. In it, to obtain a new solution, only one
mutation strategy was automatically selected to generate the
initial vector. Another novel mutation mechanism proposed
by Yu et al. [22] could concurrently handle both feasible and
infeasible solutions to accelerate convergence while maintain-
ing diversity. They used a greedy constraint-handling method
to guide infeasible solutions to feasible ones. A triangular
mutation strategy was developed by Mohamed [23] to achieve
a good balance between the exploration and exploitation
capabilities of a DE algorithm. It obtained competitive results
in comparison with other algorithms for solving standard
benchmark problems. Recently, Chen et al. [24] developed a
multi-operator DE algorithm with an interior-point method for
optimizing the evolutionary process using efficient searches.

Similarly, Elsayed et al. [25], introduced a united multi-
operator EA (UMOEA). They started with dividing initial large
population into multiple equal sizes, which were then expected
to be evolved by using different UMOEAs. Based on the
success rate, the superior multi-operator EA were selected by
adaptively differing population sizes. Meanwhile, the under-
performed ones were also updated based on an information

exchange procedure, which further facilitated effective search-
ing. Because of their success in obtaining competitive results,
Elsayed et al. [26] later developed an improved version of their
earlier UMOEA, called UMOEAsII. Rather than limiting to
single search operators, this work incorporated multiple search
operators at each multi-operator EA run. In their improved
version, populations were independently evolved by using both
multi-operator algorithm and its search operators. For more
information regarding multi-operator algorithms, readers are
requested to read research articles of Das et al. [27] and Wu
et al. [28], and also a recent survey paper by Wu et al. [29].

III. PROPOSED ALGORITHM (IMODE)

This section presents the details of the proposed algorithm
(IMODE). The main steps are presented in Algorithm 1, where
FES and MAXFES are the number of fitness evaluations and
maximum number of fitness evaluations, respectively.

IMODE has three DE mutation strategies ( DE/φbest/1,
DE/current-to-φbest/1/archive and DE/current-to-
φbest/1/without archive). IMODE starts with an initialization
phase of its parameters after which an initial population of
size NP is randomly generated and evaluated. Then each
DE search operator evolves the same number of the solutions
from the initial population. After that, for every solution, a
new corresponding individual is generated using its assigned
mutation strategy. At the same time, the diversity for each DE
operator and the quality of solutions, using equations 7 and
9, respectively, are calculated for each single operator, based
on which the number of solutions evolved by each operator is
updated as discussed at Section III-C. Furthermore, to boost
IMODE's convergence, a local search is employed during
the latter stages of the optimization process, as described in
Subsection III-D, and the main steps in the algorithm are
performed until a stopping condition is reached.

The following sub-sections discuss the components of
IMODE in detail.

A. Population initialization and updating method

The initial population is randomly generated as

xi,j = xminj + (xmaxj − xminj )× rand(1, NP )
i ∈ NP and j = 1, 2, ..., D

(1)

where rand is a function used to produce random numbers in
the range [0, 1].

Also, a mechanism is used to linearly reduce population
size dynamically NP during the search process [30] as

NPG+1 = round[(
NPmin −NP init

MAXFES
)× FES +NP init]

(2)
where NPmin is the minimum number of individuals the
algorithm can use, FES the current number of function
evaluations (FES), MAXFES the largest number of FES.



Algorithm 1 IMODE algorithm

1: Define nop, Probls ← 0.1, MAXFES , prob1 ← 1,
prob2 ← 1, NP , G← 1 and FES ← 0;

2: Generate an initial random population (X) of size NP ;
3: Evaluate f(X), and update number of fitness evaluations
FES ← FES +NP ;

4: Each operator op is assigned the same number of solutions
NPop;

5: while FES ≤MAXFES do
6: G← G+ 1;
7: Generate new population using the assigned DE opera-

tors, i.e., each operator op evolves its assigned number of
individuals NPop;

8: Calculate the the diversity obtained from each operator
op (Dop) and the quality rate of solutions QRop as
described in Section III-C;

9: Update the number of solutions (NPop) each DE oper-
ator evolves by using Equation 11;

10: Generate new population using the assigned DE opera-
tors;

11: Evaluate f(X), and update number of fitness evalua-
tions FES ← FES +NP ;

12: Update NP 2;
13: if FES ≥ 0.85×MAXFES then
14: Apply local search as in Section III-D;
15: Update FES
16: end if
17: end while

B. DE mutation strategies

In our algorithm, the following three DE mutation operators
are used to evolve the entire population as they perform well
in solving unconstrained optimization problems [6].

• DE/current-to-φbest with archive/1

vi,j = xi,j + Fi × (xφ,j − xi,j + xr1,j − xr2,j) (3)

• DE/current-to-φbest without archive/1

vi,j = xi,j + Fi × (xφ,j − xi,j + xr1,j − xr3,j) (4)

• DE weighted-rand-to-φbest [26]

vi,j = F × xr1,j + (xφ,j − xr3,j) (5)

where r1 6= r2 6= r3 6= i are random integer numbers, −→x r1
and −→x r3 randomly selected from the whole population, with
−→x φ,j chosen from the best 10% of solutions in the whole
populations and −→x r2 from the union of the whole population
and archive. In the proposed algorithm, an archive is applied
to preserve the population diversity, with new solutions worse
than their offspring solutions inserted into the archive [31]. To
make a room for newly generated solutions, if the size of the
archive is larger than its predefined size, the worst individuals
are removed from it.

After, mutation operation, a binomial or exponential
crossover are randomly carried out to generate the new so-
lutions, as

ui,j =



{
vi,j if (rand ≤ Cri or j = jrand)

xi,j otherwise
if rnd ≤ 0.3{
vi,j for j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L− 1〉D
xi,j for all other j ∈ [1, D]

otherwise
(6)

Note that the proposed framework is flexible to adopt more
operators.

C. Updating number of individuals evolved by operator op
(NPop)

As previously mentioned, the sub-population’s diversity
and quality of solutions are used to update the number of
individuals every DE search operator evolves.

The diversity obtained from each DE search operator is the
mean deviation of each solution obtained from op from the
best solution, i.e.,

Dop =
1

NPop

NPop∑
i=1

dis(−→x op,i −−→x bestop )

 , ∀op = 1, 2, 3

(7)
where dis(−→x op,i −−→x bestop ) is the Euclidean distance between
the ith solution and best one obtained by each operator op.
Also the diversity rate is calculated by

DRop =
Dop∑3
op=1Dop

, ∀op = 1, 2, 3 (8)

Similarly, for the solutions’ quality, the best individual at
the end of each generation in each sub-population is used,
based on which the rate of quality is computed as

QRop =
fitbestG,op∑3
op=1 fit

best
G,op

, ∀op = 1, 2, 3 (9)

where fitbestG,op is the best objective function value obtained by
operator op at the end of the cycle.

Based on the above equations, the improvement rate value
(IRVop) is calculated as

IRVop = (1−QRop) +DRop, ∀op = 1, 2, 3 (10)

Note: to satisfy the aim of maximizing the IRVop, we sub-
tracted QRop from one.

Finally, the number of solutions that each DE operator
(NPop) evolves is calculated by

NPop = max

(
0.1,min

(
0.9,

IRVop∑2
op=1 IRVop

))
×NP,

∀op = 1, 2, 3
(11)

Note: the summation of NPop must equal the whole popu-
lation size. As a kind of information sharing, the individuals
every operator op evolves, is randomly assigned at every
generation [3].



D. Local Search

To accelerate the convergence of the proposed IMODE,
sequential quadratic programming (SQP) is employed to the
best solution in each generation during last 15% of the
optimization process with a probability of Pls = 0.1 and for
up to CFEls objective function evaluations. The probability of
applying this local search is dynamically updated, as described
steps 5-9 in Algorithm 2.

Algorithm 2 Local search (SQP)

1: Input: the best solution from the whole population −→x best;
2: Generate random number rand ∈ [0, 1];
3: if rand ≤ Pls then
4: Apply SQP to −→x best for CFEls fitness evaluations;
5: if f(−→x sqp) < f(−→x best) then
6: Update Pls ← 0.1;
7: −→x best ← −→x sqp and f(−→x best)← f(−→x sqp);
8: else
9: Update Pls ← 0.0001;

10: end if
11: Update number of fitness evaluations (FES ← FES+

CFEls);
12: end if

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To judge the performance of the proposed IMODE algo-
rithm, several experiments were conducted on 10 optimization
problems with 5, 10, 15 and 20 dimensions and a search
space of [−100, 100]D. The results obtained from IMODE
were compared with those obtained from (1) EBOwithC-
MAR: Effective Butterfly Optimizer with Covariance Matrix
Adapted Retreat Phase [32]; (2) HSES: Hybrid Sampling Evo-
lution Strategy [33]; (3) LSHADE-cnEpSin: LSHADE with
an Ensemble Sinsoidal Parameter Adaptation [34]; and (4)
LSHADE-SPACMA: LSHADE with Semi-Parameter Adapta-
tion and Covariance Matrix Adaptation [35].

The proposed IMODE was coded in MATLAB R2018b and
run on a PC with 3.4 GHz Core I7 processor, 16 GB RAM
and Windows 10. For all the other comparative algorithms, the
values of their parameters were obtained from relevant articles
and, to ensure fair comparisons, they all used the same seed.
According to the benchmark rules, all the algorithms were
run 30 times for 50,000, 1,000,000, 3,000,000 and 10,000,000
fitness function evaluations for problems with 5D, 10D, 15D
and 20D, respectively, or |f(−→x best − f(

−→
x∗)| ≤ 1e − 08,

where x∗ is the global optimal solution and xbest the best
solution obtained by the proposed algorithm, with the average
and standard deviation results recorded. For every run, if the
distance from the optimal solution was less than or equal to
1E − 08, it was set as zero.

For statistical comparisons of the algorithms, we con-
ducted two non-parametric tests (the Wilcoxon signed-rank
and Friedman ranking tests [36]). The proposed algorithm’s
performances were also graphically judged by plotting their
performance profiles [37] which is a tool used to compare
the performance of several methods (M ) using several test

functions (P ) and a comparison goal (i.e., the average com-
putational time and number of FES) to attain certain level of
the performance criteria (i.e., optimal fitness function value).
For a method (m), the performance profile ρm is calculated
as

ρm(τ) =
1

np
× |p ∈ P : rp,m ≤ τ | (12)

where ρm(τ) is the percentage of m ∈M that the performance
ratio rp,m is within a factor τ ∈ R for the best possible
probability and ρm a function that returns the cumulative
distribution for the rp,m.

A. Parameter Setting and Analysis

In terms of the algorithms’ parameters: for MODE NP init

was set to a value of 6∗D2 solutions, NPmin to 4, the archive
rate (A) to 2.6 and memory size (H) to 20 ∗D; and, for the
local search, FESLS was set to 0.85×FESmax. The values
of F and Cr are managed by the same technique proposed in
[30].

B. Detailed results obtained from IMODE

The detailed results obtained from the proposed IMODE
and the rival algorithms are presented at this section.

1) 5D results: the best and average fitness errors
(|f(−→x best) − f(

−→
x∗)) and standard deviations obtained from

the proposed IMODE and the rival algorithms are provided in
Table I.

Based on the obtained results, IMODE performed very well
for the uni-modal problems (F01), obtaining the optimal best
and mean values. For the multi-modal ones (F02-F04), it
achieved optimal solutions for F02, F04 and very close to
optimal ones for F03. For the hybrid functions (F05-F07), the
proposed algorithm was able to achieve the optimal value for
all of them for both best and average fitness errors. Finally,
for the composition function (F08-F10), IMODE obtained the
optimal fitness function value for F08 and F09 and optimal
for most of the runs for F10.

2) 10D results: The detailed computational results obtained
from the proposed IMODE for 10D test problems are pre-
sented at Table II. From these results, IMODE provided the
optimal solution for the unimodal function (F01) for both
best and average fitness error. Considering the multi-modal
functions, it was able to obtain the optimal for F04 and near
optimal for both F02 and F03. For the hybrid functions, the
proposed algorithm was able to achieve very close results
to the optimal solution. Regarding the composition function,
IMODE was able to obtain the optimal solution for F08 and
F09 and a good result for F10.

3) 15D results: Table III presents the detailed results ob-
tained from the proposed IMODE and the rival algorithms
for test problems with 15 decision variables. From this ta-
ble, IMODE obtained the optimal solution for the unimodal
function. For the multi-modal test problems, the proposed
algorithm was able to reach the optimal solution for F04,
near optimal for F02 and far from optimal for F03. In case
of hybrid functions, IMODE obtained close results to the



TABLE I: Results for 5D
Algorithms IMODE EBOwithCMAR HSES LSHADE-cnEpSin LSHADE-SPACMA

Problem Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std.
F01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F02 0.000E+00 8.332E-02 8.885E-02 0.000E+00 1.540E-01 1.021E-01 0.000E+00 4.764E+01 5.908E+01 1.252E-01 2.980E+00 3.273E+00 6.898E-03 4.422E-01 1.238E+00
F03 5.148E+00 5.148E+00 0.000E+00 5.148E+00 5.185E+00 8.349E-02 5.148E+00 5.412E+00 1.968E-01 1.033E-01 1.304E+00 6.962E-01 5.148E+00 5.248E+00 1.428E-01
F04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.072E-02 2.540E-02 1.090E-01 2.571E-01 1.168E-01 3.529E-07 6.880E-02 3.905E-02 0.000E+00 9.814E-06 5.374E-05
F05 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.411E-01 3.892E-01 9.950E-01 3.318E+00 2.116E+00 0.000E+00 1.404E-01 3.660E-01 0.000E+00 2.080E-02 1.139E-01
F06 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.503E-01 3.111E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.156E+00 2.159E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F08 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.207E+01 3.083E+01 0.000E+00 4.761E+01 3.843E+01 0.000E+00 3.142E-01 1.719E+00 0.000E+00 0.000E+00 0.000E+00
F09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 9.667E+01 1.826E+01 1.000E+02 1.000E+02 2.523E-11 0.000E+00 3.333E+00 1.826E+01 0.000E+00 9.667E+01 1.826E+01
F10 0.000E+00 2.437E+02 1.363E+02 1.001E+02 3.375E+02 4.568E+01 3.474E+02 3.474E+02 1.174E-02 3.000E+02 3.016E+02 8.648E+00 3.474E+02 3.474E+02 5.226E-04

TABLE II: Results for 10D
Algorithms IMODE EBOwithCMAR HSES LSHADE-cnEpSin LSHADE-SPACMA

Problem Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std.
F01 0.000E+00 0.000E+00 0.000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F02 1.249E-01 4.195E+00 3.701E+00 2.4982E-01 4.6310E+00 3.8043E+00 3.540E+00 8.503E+00 4.081E+00 1.249E-01 3.514E+00 3.238E+00 1.887E-01 5.205E+00 9.391E+00
F03 1.068E+01 1.212E+01 7.825E-01 1.0367E+01 1.0399E+01 5.2151E-02 1.044E+01 1.141E+01 6.567E-01 1.060E+01 1.157E+01 4.627E-01 1.063E+01 1.292E+01 1.868E+00
F04 0.000E+00 0.000E+00 0.000E+00 9.8647E-02 1.3331E-01 2.5029E-02 5.040E-01 9.651E-01 2.587E-01 9.865E-02 1.457E-01 2.621E-02 0.000E+00 1.444E-01 1.700E-01
F05 4.026E-06 3.882E-01 3.833E-01 2.0814E-01 1.0112E+01 1.1011E+01 2.087E-01 1.031E+02 1.987E+02 2.081E-01 2.783E+01 4.472E+01 0.000E+00 2.246E+00 5.216E+00
F06 2.672E-02 9.145E-02 5.082E-02 4.6613E-03 1.2924E-01 9.1148E-02 2.826E-01 8.633E+00 3.001E+01 1.152E-02 3.318E-01 2.295E-01 2.300E-02 3.796E-01 1.942E-01
F07 1.407E-05 8.537E-04 1.096E-03 5.2457E-05 1.5504E-01 1.9904E-01 7.512E-04 3.264E+01 8.241E+01 2.140E-06 4.278E-01 2.856E-01 2.269E-06 2.784E-01 3.033E-01
F08 0.000E+00 2.723E+00 7.458E+00 1.0000E+02 1.0000E+02 0.0000E+00 1.000E+02 1.000E+02 0.000E+00 1.000E+02 1.000E+02 1.154E-13 1.000E+02 1.000E+02 0.000E+00
F09 0.000E+00 4.105E+01 4.463E+01 1.0000E+02 1.6010E+02 9.7970E+01 3.272E+02 3.286E+02 1.095E+00 1.000E+02 3.051E+02 6.957E+01 1.000E+02 2.873E+02 9.529E+01
F10 3.977E+02 3.977E+02 2.891E-13 3.9774E+02 4.1015E+02 2.0357E+01 4.440E+02 4.464E+02 1.233E+00 3.977E+02 4.223E+02 2.319E+01 3.977E+02 4.102E+02 2.055E+01

optimal for F05, F06 and F07. Considering the composition
test problems, the proposed algorithm was able to achieve the
optimal solution for F08, very close result to optimal for F09
and stuck in a local solution for F10.

4) 20D results: Table IV presents the detailed results ob-
tained from IMODE and other algorithms for test functions
with 20 decision variables. Considering the uni-modal test
function, IMODE achieved optimal value for both best and
mean fitness error. For the multi-modal functions, it obtained
optimal solutions for F04, very close to optimal ones for F02
but its performance deteriorated when solving F3. Regarding
the hybrid functions, although IMODE obtained results very
close to 0 for F06 and F07, its best and average ones for F05
were slightly worse. However, when solving the composite
functions, similar to the 15D problems, it was stuck in local
solutions for F10, but obtained the optimal solutions for F08
and F09.

5) Complexity of the proposed algorithm: The computa-
tional complexity of the proposed IMODE was calculated
based on 5D, 10D and 15D based on the guidelines of the
competition (). A summary of the obtained results is presented
at Table V, from which, the computational time is very small
and linearly increases as the problem dimension increase.

C. comparison with other rival algorithms

To judge the effectiveness of the proposed IMODE is
judged by comparing its performance with four state-of-the-art
algorithms, EBOwithCMAR, HSES, LSHADE-cnEpSin and
LSHADE-SPACMA. As previously mentioned, these algo-
rithms were executed using the same parameters suggested
by their authors in their papers and other conditions are the
same as the competition guides.

1) 5D results: considering the quality of solutions pre-
sented in Table VI and in regards to best results obtained,
the proposed IMODE was better than EBOwithCMAR, HSES,
LSHADE-cnEpSin and LSHADE-SPACMA in 1, 4, 3 and 2
test problems, respectively, equal to them in 9, 6, 6 and 8 test
problems, respectively, and was inferior to them for 0, 0, 1
and 0 test functions respectively. Regarding the average results
obtained, IMODE was superior to EBOwithCMAR, HSES,

LSHADE-cnEpSin and LSHADE-SPACMA in 7, 9, 6 and 6
test problems, respectively, was similar to them in 3, 1, 3 and
4 test functions, respectively, but was inferior to them in 0, 0,
1 and 0 test problems, respectively.

Considering the Wilcoxon test, IMODE was significantly
better than EBOwithCMAR, HSES, and LSHADE-SPACMA
in regards to average results obtained, while there is no
significant difference in the other cases. Further analysis was
conducted using the Friedman test to rank all the algorithms
based on their average results presented in Table VII, with
IMODE ranked first.

For further analysis, a graph of the performance profiles
for the test problems plotted to compare all the algorithms is
presented in Figure 1 a. It indicates that consistent results were
obtained from the Friedman and Wilcoxon tests as IMODE
attained a ratio of 1.0 first at τ = 4.

2) 10D results: The summary of the results obtained from
IMODE and the other state-of-the-art algorithms are pre-
sented at Table VI. Regarding the quality of the results and
based on the best results obtained, IMODE was better than
EBOwithCMAR, HSES, and LSHADE-SPACMA in 5, 8, 5
and 4 test functions, respectively, was worse than them in
2, 1, 4 and 4 test problems respectively, was equal to them
in 3, 1, 1 and 2 test problems respectively. Considering the
average obtained results, the proposed algorithm was superior
to EBOwithCMAR, HSES, and LSHADE-SPACMA in 8, 8,
7 and 9 test problems, respectively, was inferior in 1, 1, 2 and
0 test functions, respectively.

The Wilcoxon test was done to check the statistical dif-
ferences between the algorithms, with the results presented
at Table VI. From this table, the proposed IMODE was sta-
tistically better than EBOwithCMAR, LSHADE-cnEpSin and
LSHADE-SPACMA for average results obtained and HSES
for both best and average results. The Friedman test was
also conducted to rank all rival algorithms with the results
presented at Table VII showed that the proposed IMODE
was ranked first for both best and average results. This
conclusion was also confirmed from the result obtained from
the performance profiles depicted in Figure 1 b, in which the
proposed algorithm attained a value of 1 first τ ≈ 1.2.



TABLE III: Results for 15D
Algorithms IMODE EBOwithCMAR HSES LSHADE-cnEpSin LSHADE-SPACMA

Problem Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std.
F01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F02 1.249E-01 3.137E+00 3.219E+00 2.498E-01 7.969E+00 7.775E+00 1.188E+02 1.949E+02 1.262E+02 2.416E+00 5.258E+01 5.016E+01 1.638E-01 3.732E+00 3.385E+00
F03 1.557E+01 1.608E+01 3.118E-01 1.557E+01 1.557E+01 1.448E-02 1.612E+01 1.794E+01 1.829E+00 4.890E+00 1.000E+01 2.438E+00 1.557E+01 1.612E+01 8.304E-01
F04 0.000E+00 0.000E+00 0.000E+00 1.480E-01 1.997E-01 2.262E-02 1.059E+00 1.448E+00 3.067E-01 1.787E-01 2.733E-01 4.690E-02 1.781E-01 2.810E-01 2.228E-01
F05 1.151E+00 7.789E+00 3.657E+00 3.122E-01 2.792E+01 4.774E+01 8.956E+00 4.217E+01 4.489E+01 1.154E+01 2.406E+01 7.739E+00 1.561E-01 7.014E+00 2.166E+01
F06 2.809E-01 6.921E-01 2.516E-01 4.053E-02 2.071E-01 1.195E-01 4.539E-01 2.656E+01 5.697E+01 5.379E-01 1.131E+00 5.397E-01 7.773E-02 6.242E-01 2.756E-01
F07 1.283E-01 5.299E-01 2.232E-01 2.907E-01 4.605E+00 2.160E+01 5.058E-01 1.972E+02 1.564E+02 2.769E-01 6.968E-01 2.037E-01 4.765E-01 4.742E+00 2.189E+01
F08 0.000E+00 4.178E+00 9.608E+00 1.000E+02 1.000E+02 0.000E+00 1.000E+02 1.000E+02 1.573E-13 2.152E-03 9.110E+01 2.419E+01 1.000E+02 1.000E+02 0.000E+00
F09 0.000E+00 9.333E+01 2.537E+01 1.000E+02 2.999E+02 1.234E+02 3.851E+02 3.879E+02 1.927E+00 1.000E+02 3.432E+02 1.106E+02 3.897E+02 3.905E+02 1.391E+00
F10 4.000E+02 4.000E+02 0.000E+00 4.000E+02 4.000E+02 0.000E+00 4.000E+02 4.000E+02 1.661E-10 4.000E+02 4.000E+02 2.891E-13 4.000E+02 4.000E+02 0.000E+00

TABLE IV: Results for 20D
Algorithms IMODE EBOwithCMAR HSES LSHADE-cnEpSin LSHADE-SPACMA

Problem Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std. Best Mean Std.
F01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
F02 3.123E-02 5.130E-01 7.125E-01 9.369E-02 1.143E+00 1.273E+00 1.926E+00 2.358E+02 1.698E+02 1.771E+00 1.458E+01 2.923E+01 9.480E-02 1.602E+00 1.132E+00
F03 2.039E+01 2.051E+01 1.255E-01 2.039E+01 2.039E+01 1.809E-13 2.057E+01 2.375E+01 1.834E+00 5.421E+00 1.112E+01 4.229E+00 2.039E+01 2.055E+01 3.003E-01
F04 0.000E+00 0.000E+00 0.000E+00 1.973E-01 2.914E-01 3.478E-02 1.315E+00 1.936E+00 4.444E-01 2.565E-01 3.822E-01 4.809E-02 2.322E-01 2.989E-01 2.887E-02
F05 2.615E+00 1.089E+01 4.325E+00 2.094E+00 8.665E+01 7.875E+01 3.144E-01 1.803E+02 1.093E+02 4.396E+00 1.647E+01 8.459E+00 2.198E+00 4.304E+01 6.443E+01
F06 1.757E-01 3.017E-01 8.167E-02 4.369E-02 3.234E-01 2.475E-01 7.417E-01 3.697E+01 5.517E+01 2.662E-01 4.344E-01 8.987E-02 1.979E-01 4.054E-01 1.139E-01
F07 2.383E-01 5.242E-01 1.640E-01 3.569E-02 3.007E+00 5.930E+00 1.866E-01 1.518E+01 2.853E+01 1.459E-01 4.090E-01 1.678E-01 5.179E-01 4.697E+00 4.182E+00
F08 3.055E+01 8.404E+01 1.887E+01 1.000E+02 1.000E+02 2.120E-13 1.000E+02 1.000E+02 0.000E+00 1.000E+02 1.000E+02 0.000E+00 1.000E+02 1.000E+02 0.000E+00
F09 1.342E-04 9.667E+01 1.826E+01 1.000E+02 3.814E+02 6.427E+01 3.850E+02 3.951E+02 3.433E+00 4.113E+02 4.233E+02 5.287E+00 4.017E+02 4.097E+02 4.633E+00
F10 3.993E+02 3.998E+02 6.181E-01 4.105E+02 4.136E+02 5.741E-01 4.137E+02 4.248E+02 2.285E+01 3.990E+02 4.021E+02 3.592E+00 4.137E+02 4.137E+02 4.943E-04

TABLE V: Run time complexity of the IMODE algorithm

T0 T1 T̂2 (T̂2−T1)/T0

D = 5
0.111789

0.223535 3.33E-01 0.978029144
D = 10 0.568714 1.41E+00 7.499718219
D = 15 0.727411 2.03E+00 11.62000734

3) 15D results: Table VI presents the summary of the
results obtained by IMODE and the existing algorithms.
Considering the solutions’ quality and based on the best ob-
tained results, the proposed IMODE algorithm was superior to
EBOwithCMAR, LSHADE-cnEpSin and LSHADE-SPACMA
in 5, 8, 7 and 5 test problems, respectively, was inferior in 2, 0,
1 and 2 test functions, respectively, and obtained equal results
to them for 3, 2, 2 and 3 test problems, respectively. While
based on the average results obtained, IMODE was better than
EBOwithCMAR, LSHADE-cnEpSin and LSHADE-SPACMA
in 6, 8, 7 and 6 test functions, respectively, was worse than
them in 2, 0, 1 and 2 functions, respectively, was similar to
them in 2, 2, 2 and 2 test problems, respectively.

Based on the Wilcoxon test, the proposed IMODE was
significantly better than HSES for both the best and average re-
sults, LSHADE-cnEpSin and LSHADE-SPACMA for average
results, while there was no significant difference in the other
scenarios. The Friedman test was also conducted to rank all
algorithms with the results presented at Table VII showed that
the proposed IMODE was ranked first for both best and mean
obtained results. The performance profiles graph was depicted
in Figure 1 c, which confirmed that the performance of the
proposed IMODE is better than all the rival algorithms as it
was reached a value of 1 first τ ≈ 3.5.

4) 20D results: Regarding the quality of solutions and
based on the best results, as shown in Table ??, IMODE
was superior to EBOwithCMAR, LSHADE-cnEpSin and
LSHADE-SPACMA for 5, 7, 6 and 7 test problems, respec-
tively, similar for 2, 1, 2 and 2 test problems, respectively,
and inferior for 3, 2, 2 and 1 test problems, respectively. Con-
sidering the average obtained results, IMODE was better than
EBOwithCMAR, LSHADE-cnEpSin and LSHADE-SPACMA
for 8, 9, 7 and 9 test functions, respectively, equal in 1, 1, 1

TABLE VI: Summary of comparisons of performances of
IMODE, EBOwithCMAR, HSES, LSHADE-cnEpSin and
LSHADE-SPACMA

Dimensions Algorithms Criteria Better Similar Worse (p, Dec.)

5D

IMODE vs. EBOwithCMAR Best 1 9 0 (0.317, ≈)
Mean 7 3 0 (0.018, +)

IMODE vs.HSES Best 4 6 0 (0.068, ≈)
Mean 9 1 0 (0.008, +)

IMODE vs. LSHADE-cnEpSin Best 3 6 1 (0.0465, ≈)
Mean 6 3 1 (0.176, ≈)

IMODE vs. LSHADE-SPACMA Best 2 8 0 (0.18, ≈)
Mean 6 4 0 (0.028, +)

10D

IMODE vs. EBOwithCMAR Best 5 3 2 (0.161, ≈)
Mean 8 1 1 (0.038, +)

IMODE vs.HSES Best 8 1 1 (0.028, +)
Mean 8 1 1 (0.011, +)

IMODE vs. LSHADE-cnEpSin Best 5 1 4 (0.213, ≈)
Mean 7 1 2 (0.048, +)

IMODE vs. LSHADE-SPACMA Best 4 2 4 (0.40, ≈)
Mean 9 1 0 (0.008, +)

15D

IMODE vs. EBOwithCMAR Best 5 3 2 (0.398, ≈)
Mean 6 2 2 (0.068,≈)

IMODE vs.HSES Best 8 2 0 (0.012, +)
Mean 8 2 0 (0.012, +)

IMODE vs. LSHADE-cnEpSin Best 7 2 1 (0.093, ≈)
Mean 7 2 1 (0.048, +)

IMODE vs. LSHADE-SPACMA Best 5 3 2 (0.398, ≈)
Mean 6 2 2 (0.036, +)

20D

IMODE vs. EBOwithCMAR Best 5 2 3 (0.207, ≈)
Mean 8 1 1 (0.015, +)

IMODE vs.HSES Best 7 1 2 (0.048, +)
Mean 9 1 0 (0.008, +)

IMODE vs. LSHADE-cnEpSin Best 6 2 2 (0.123, ≈)
Mean 7 1 2 (0.048, +)

IMODE vs. LSHADE-SPACMA Best 7 2 1 (0.017, +)
Mean 9 1 0 (0.008, +)

and 1 test problems, respectively, and worse for 1, 0, 2 and 0
test problems, respectively.

The Wilcoxon test was conducted to check whether IMODE
was statistically better than the rival algorithms, with the
obtained results shown in Table VI. It was clear that IMODE
was statistically superior to all the other algorithms for the
obtained average results and to HSES for the best results as
well. Also, the Friedman test results depicted in Table VII
demonstrate that IMODE was ranked first for both the best
and average results.

A graph of the performance profiles for the test problems
plotted to compare all the algorithms is presented in Figure
1. It showed that consistent results were obtained from the
Friedman and Wilcoxon tests as IMODE attained a ratio of
1.0 first at τ ≈ 1.9.
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Fig. 1: Performance profiles graphs comparing the performance of IMODE, EBOwithCMAR, HSES,LSHADE-cnEpSin and
LSHADE-SPACMA based on the mean results for (a) 5D; (b) 10D; (c) 15D; and (d) 20D

TABLE VII: Ranking of all algorithms for all dimensions
obtained by Friedman test

Algorithms Rank for 5D Rank for 10D Rank for 15D Rank for 20D
Best Mean Best Mean Best Mean Best Mean

IMODE 2.55 1.65 2.50 2.50 2.00 1.90 2.15 1.50
EBOwithCMAR 2.65 3.05 2.75 2.75 2.65 2.70 2.25 2.65

HSES 3.70 4.80 4.35 4.35 4.20 4.40 3.80 4.45
LSHADE-cnEpSin 3.00 2.70 2.70 2.70 3.15 2.80 3.30 2.95

LSHADE-SPACMA 3.10 2.80 2.70 2.70 3.00 3.20 3.50 3.45

V. CONCLUSION

Although several EAs for solving optimization problems
have been developed, the literature shows that no single search
operator and/or algorithm is capable of successfully solving all
types of optimization problems. Consequently, many multi-
operator- and/or multi-method-based algorithms have been
proposed. Their designs were based mainly on trial and error
methods and, furthermore, their performances could be sta-

tistically outperformed by single-operator-based approaches.
Therefore, in this paper, an improved multi-operator DE,
with SQP used as a local search in the later stages of the
evolutionary process was developed. In the multi-operator DE,
the best operator was selected based on the quality of solutions
and diversity of sub-populations. The proposed algorithm’s
performance was judged by using it to solve 10 unconstrained
problems with different dimensions. The computational results
showed that it was 100% statistically better than or similar to
the rival algorithms for the 5D, 10D, 15D and 20D problems
considered.

A possible future research direction could be to adapt
the machine-learning based techniques to select the best-
performing algorithm among several for a single-algorithm
framework. Also, adapting the algorithm to solve other types
of test problems, i.e., constrained and/or integer, may be



worthy of investigation.
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