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Abstract—Recent years have witnessed increasingly more uses
of drone networks for providing wireless coverage to ground
users. Each drone is constrained in its energy storage and wireless
coverage, and it consumes most energy when flying to the top
of the target area, leaving limited leftover energy for hovering
at its deployed position and providing wireless coverage. The
literature largely overlooks this sustainability issue of drones’
energy consumption during deployment, and we aim to minimize
the maximum energy consumption among all drones after their
deployment. This min-max drone deployment problem solving
requires drones to cooperate with each other in deployment
distance and altitude to evenly use up their energy, which is
shown to be NP-hard. Thus, we propose a hybrid genetic algo-
rithm to solve the min-max drone deployment problem. In our
proposal, the integer code scheme is used to encode the sequence
of drones’ deployment. The energy consumption determined by
the horizontal and vertical flying distance is adopted as the
fitness value. With the determined order of the drones sequence
by coding process, we introduce a feasibility checking operator
with binary search to archive the optimum. Experimental study
shows that the algorithm has capability and superiority to find
good solutions under different drones’ characteristics distribution
and outperforms solutions from existing competitors by extensive
simulations.

Index Terms—Genetic algorithm, Drone networks, Wireless
coverage, Energy consumption

I. INTRODUCTION

Drones have been gradually used in military and civilian
fields ( [1], [2], [3]). Specially, the drone networks have
emerged as important applications for providing wireless
coverage to ground users. Among these applications, UAVs
serve as flying base stations to serve a target area (e.g.,
cell edge or disaster zone) out of the capacity or reach of
territorial base stations. However, the continuing development
of drone applications for providing wireless coverage is still
a challenging problem.

The existing works of drone networks widely assumes
drones are already in or around the target area to serve
ground users, and overlooks the energy consumption issue
during the deployment phase of drones to reach the target
(e.g., [4], [5]). [4] uses a drone-aided flying base station to
serve ground users and jointly optimize the transmit power
and the drone trajectory to maximize the average throughput
per ground user. [5] studies the fast drone swarm deploy-
ment for emergence scenario. [6] aims to decrease operation

completion time by genetic algorithm. [7] studies the drone
deployment problem to optimize the coverage, fault-tolerance,
and redundancy simultaneously. In [8], the problem is to find
the optimum number of drones and their optimum location
while considering coverage, data rate, latency, and throughput.
Genetic algorithm is adopted to find the optimized solution
much faster by coding. Due to a drone’s small wireless service
coverage, it consumes most energy when flying over a long
distance to the top of the target area, leaving limited leftover
energy for the drone swarm’s hovering and wireless coverage
in service phase. It is important to minimize the maximum
energy consumption before the actual service phase, yet this
sustainable deployment issue is largely overlooked in the
literature and the target problem is typically NP-hard.

Based on the aforementioned limitations, we formulate this
drone network deployment problem to minimize the maximum
energy consumption after all drones’ deployment. This min-
max drone deployment problem belongs to the field of com-
binatorial optimization, which is shown to be NP-hard as in
[5]. This objective is to avoid irrational deployment results
such that some users have long-lasting wireless services while
others can only get wireless services for lasting shortly. We
specifically defined as the deployment arrangement of drones.
The difficulty of the problem is how to arrange the UAV, thus
we propose an algorithm to encode the sequence of the UAV.
Our key novelty and main contributions are summarized as
follows.

• With the aim of prolonging the drone network’s lifetime
by minimizing the maximum energy consumption among
all the UAVs after their deployments, we formally formu-
late this min-max drone deployment problem by seeking
drones’ mutual cooperation.

• Due to the hardness of min-max drone deployment prob-
lem, we present a hybrid genetic algorithm (HGA), which
incorporates a feasibility checking operator and binary
search to archive the optimum.

• We conduct extensive simulations to validate our pro-
posed algorithm. It shows that the developed hybrid
genetic algorithm proves its capability and superiority
to archive optimum and outperforms solutions from two
widely used competitors in all cases.
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Fig. 1: System model for deploying drones to provide wireless
coverage to the target interval L = [0, l], where drone ui with
coverage radius ri is deployed from xi initially to yi ∈ [0, l]
at operating altitude hi

TABLE I: Basic and Morphology Features
Notation Description

ui Index of dronei
n Number of drones
yi Final location of dronei
Ei The ratio of evi and ehi

xi Initial location of dronei
ri Coverage radius of dronei
hi Operating altitude of dronei
evi Energy consumption of vertical flying
ehi Energy consumption of horizontal flying

The remainder of this paper is organized as follows. Section
II gives the task model and assumptions, and describes the
problem formulation. The details of algorithm, including the
specification and implementation, are given in Section III. The
experiment results and performance comparisons are provided
in Section IV. Finally, this paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Model and Assumptions

We first consider the target as a long, narrow region which
can be abstracted to a line segment L. Drones {u1, u2, . . . , un}
are randomly distributed on L. An example scenario is given
to illustrate the model in Fig.1.

The ratio of horizontal direction to vertical direction energy
consumption per unit distance for each drone is Ei = ehi

evi
where Ei is a proportionality constant, ehi is horizontal
direction energy consumption per unit distance and evi is
vertical direction energy consumption per unit distance for ui.
Table.I gives all the notations and corresponding meanings.

B. Min-max drone deployment problem

Let L be a line segment on the x-axis. The coordinates
of left and right endpoint of L is 0 and l respectively. Let
U = {u1, u2, . . . , un} be a set of drones and each drone ini-
tially located in different locations {x1, x2, . . . , xn} on the L.
Without loss of generality, we assume x1≤x2≤ . . .≤xn. Dur-
ing deployment, drone ui flies from the initial position(xi, 0)
to the final position (yi, hi). The drone ui has a coverage
radius ri. Then drone ui hovering at the operating altitude
hi to provide wireless coverage. Drones consume power
during flight, including energy consumption for vertical and
horizontal flying. The unit energy consumption ratio of ui in

the vertical and horizontal directions is Ei and the vertical
direction energy consumption for ui is evi. Thus the energy
consumption by a particular drone ui moving to final position
(yi, hi) is defined in Equation.1.

Wi = hi × evi + |yi − xi| × ehi (1)

We define the maximum consumption among all drones
till reaching the target position(yi,hi) as the optimization
objective. The problem is formulated as follows.

Decision Variables : Operating location of drone ui’s:
(y′is, h

′
is).

Constraint: Each point p of L is covered by at least one
drone:p ∈ [yi − ri, yi + ri].

Objective: Minimizing the maximum energy consumption:
f = min max

1≤i≤n
Wi as shown in Equation (2).

f = min max
1≤i≤n

Wi

s.t.yi − ri ≤ p ≤ yi + ri

0 ≤ p ≤ l
1 ≤ i ≤ n

(2)

III. PROPOSED ALGORITHM

Since problem (2) is NP-hard generally, there is no efficient
algorithm to find the optimal solution. In this section, we
propose a hybrid genetic algorithm to solve this challenging
problem.

A. Solution Encoding, Crossover and Mutation

The solution is represented by a 2-tuple coding structure
γ=Un,In = {(u1,ind1),...,(ui,indi),...,(un,indn)}. The ui de-
scribes drones and indi denotes its order. We denote that there
is a line segment of length l and drones(u1,u2,...,un) deployed
on the line segment. The initial order In is formed of randomly
generated numbers from [1, n] and there are no duplicate
values in In. Fig.2 shows an example, we assume that sixteen
drones are deployed on the line segment L. The solution ran-
domly generate initial sequence In =(5,4,3,...,14,12,1), exclud-
ing Un with coordinate In which is encoded as (u1 =1,ind1
=5),(u2 =2,ind2 =4),...,(u15 =15,ind15 =12),(u16 =16,ind16
=1).

Fig. 2: Example of 2-tuple coding structure and the corre-
sponding encoding solution.

The Ñ i of the solution sets are produced in the initialization
step. We set Ia to the current solution for ith subproblem, and
randomly select a solution Ib as the other parent from {Ĩt— Ia
∈ Ñ i}. Randomly select the fragment coordinates of the gene,
swap the gene fragments of Ia and Ib. Noted that there are no
duplicate numbers in Ia and Ib after the swap, thus check the
un-exchanged fragments in Ia and Ib, replacing the repeated



(a)

(b)

(c)

Fig. 3: Example of offspring reproduction: cross. Exchange
process presents in (a), (b) illustrates duplicate values in the
swapped sequence and (c) shows the final cross status.

values. Fig.3 gives a concrete example, the start and end points
of the gene exchange are randomly selected, then exchange
the corresponding fragments in Ia and Ib. Define exchange
segment as be and ae in Ia and Ib. There exist duplicate values
in exchanged fragments ae and the original fragments a1, a2.
Define the coordinates i={i1,i2,...,ij} of repeated values of a1
and a2, then replace the repeated values of a1 and a2 with
the values corresponding to i in be. Then, new solutions can
be generated by successive segment crossings on solutions Ia
and Ib. We choose the better solution as Iy , then replace the
solution Ia of corresponding i-th subproblem if improved.

We can use mutation operator, i.e., interchange as shown in
Fig.4, to make the number of gene ”indp” and ”indq”(1 ≤ p,q
≤ n) as mutation position. The mutation operator selects two
nonidentical genes within a relatively small interval in random,
in order to be further improved by fine-tuning the solution. For
the replacement, we can use the newly generated solution Im
to replace Ii if adaptability improved.

B. Feasibility Checking

We first define the feasibility checking problem as follows:
given any power consumption W > 0 and order requirement
γ determine whether drones can be moved to reach a full
coverage within deadline W. We next design a feasibility
checking algorithm to determine whether such W is feasible
to achieve via drone dispatching.

Fig. 4: Example of offspring reproduction: mutation

Consider any W > 0, for ui if W
evi

> hi,
W− W

evi

ehi
is the

maximum horizontal distance to move on L ∈[0,l]. We define
pli as the leftmost point and pri as the rightmost point on L
that can be covered by ui within W. We call pli (resp., pri)
the leftmost(resp., rightmost) W-coverable point of ui. Then
we have

pli = xi − ri −
W − W

evi

ehi

pri = xi + ri +
W − W

evi

ehi

(3)

Algorithm 1 solves the feasibility checking problem. It first
computes pli and pri for ui in Equations 3, then deploy the
drones one by one according to the order γ from the left
endpoint of target interval [0,l]. Given our current covered
interval[0,l] where the boundary l< l, iteration i starts with
checking whether drone ui can cover to l or not.
• if ui can cover to l, we will efficiently deploy ui to yi =

min(l+ri, pri-ri) and update l = yi + ri.
• if ui can’t cover to l, it will not be dispatched and l

remains unchanged.
Noted that once ui is deployed to the left of uj , in which
yj<yi, the Algorithm 1 in line 9 will not use this order
requirement γ and end the loop. After a successful dispatching
of drone ui, the covered interval prolongs from [0, l̄] to
[0,yi+ri] in this interation. If W is feasible, our our algorithm
will return the order requirement γ and their new locations yi
to fully cover target L within W.

C. Binary Search over Feasible Budget

With the help of Algorithm 1, we can verify whether a given
budget W is feasible or not. The minimum budget among all
feasible ones is actually the optimum of the problem. Here, we
apply binary search to find the minimum deadline and solve
problem. Before the search, we still need to determine the step
and search scope.

For each single ui, the minimum moving distance is altitude
hi. Thus, the lower bound of W (denoted as Wmin) among
all drones can be determined according to

Wmin = min
1≤i≤n

hi × evi (4)

In general, Wmin is not feasible because it is the minimum
possible power consumption among all drones. We next de-
termine the upper bound of W (denoted as Wmax). For drone



Algorithm 1 Feasibility Checking
Require:

U = u1,u2,...,un
γ = ind1,ind2,...,indn
W : a given budget of energy consumption for all drones

Ensure:
yi: final locations of ui

1: Initialize pli and pri in Equation. (3), l = 0
2: for i=1 to n do
3: if l /∈ [pli, pri] then
4: yindi ← xindi
5: else
6: yindi ← min(l + rindi , prindi − rindi)
7: l ← yindi+rindi
8: if yindi<yindj where indj<indi then
9: Break;

10: end if
11: end if
12: end for
13: if l <l then
14: return W is not feasible
15: else
16: return W is feasible
17: end if

ui, the maximum possible power consumption of ui is to
reach position (0,hi) or (l,hi) beyond the leftmost or rightmost
location on the target interval L = [0, l]. Thus, Wmax among
all drones is given by

Wmax = max
1≤i≤n

(hi × evi + maxxi × ehi, l − xi × ehi) (5)

In the binary search, we define the relative error as α
which is a small constant value, and accordingly set the search
accuracy as αWmax. The binary search starting with Wmax

stops once switching from infeasible budget W1 to feasible
W2, such that the resultant W2 is our searched optimum for
the problem. Then, we can obtain the following Algorithm
2 combined with Algorithm 1 to solve the problem with
predetermined drones order.

Generally, we use an integer sequence to code the drones’
order after deployment. Then, we design a feasibility checking
algorithm with binary search to obtain the optimal solution
under the predefined drones’ order, in which the optimal
energy storage obtained is returned as fitness of our genetic
algorithm. The hybrid genetic algorithm is given in Algorithm
3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments are conducted based on datasets
of different distributions. The proposed algorithm is coded on
Python 3.7.3, and the experiments are conducted on a com-
puter with Intel(R) Core(TM) i5-5250U processor (1.60GHz)
with 8GB of RAM. Take 80 drones and 5000 meters of
coverage as an example. The experimental parameters are set

Algorithm 2 Binary Search over Feasible Deadlines
Require:

W = αWmin,2αWmin,...,d Wmax

αWmin
e αWmin where Wmin

and Wmax are given in 4 and 5
Ensure:

I(idx): idx is the index
1: low ← 1 and high ← Wmax

2: while low ≤ high do
3: mid ← floor((low+high)/2)
4: feasibility checking by Algorithm Algorithm 1 on

I(mid)
5: if I(mid) is feasible then
6: high ← mid
7: else
8: low ← mid
9: end if

10: if low == high-1 then
11: idx ← high
12: break
13: end if
14: end while
15: return I(idx);

Algorithm 3 Offspring Generation for ith Subproblem
1: if rand() <probi then
2: Ia ← Ii and select Ib ∈ Ui in random
3: if rand() <probability of crossoveri then
4: Generate new solutions Iy by crossover operator on

Ia and Ib
5: end if
6: Computing the lowest possible consumption WIy and

WIa with Algorithms 1 and Algorithms 2
7: if WIy <WIa then
8: Set Ia = Iy
9: end if

10: if rand() <probability of mutationi then
11: Generate a new solution Im by randomly interchange

two non-identical genes on Ii
12: end if
13: Computing the lowest possible consumption WIm and

WIi with Algorithms 1 and Algorithms 2
14: if WIm <WIi then
15: Set Ii = Im
16: end if
17: end if

as follows. The initial position of the drone follows the speci-
fied distribution. Referring to the current common civil drone
feature, the flight altitude range in [100,200], and the coverage
radius range in [10,50]. The antibody population size is set
to 100, the cross probability range in [0.4,0.7], the mutation
probability range in [0.2,0.4], and the maximum operation
generation number is set to 1500. The above parameters were
obtained after multiple tests on different instances of different



TABLE II: Distribution Method and Required Parameters
Distribution Parameters

Exponential Distribution λ=3
Beta Distribution α=2,β=5

Gamma Distribution α=3;β=2
Normal Distribution µ=0;σ=2

Lognormal Distribution µ=0;σ= 1
2

Random Distribution Ranges∈[1,n]
Triangle Distribution Ranges∈[1,n], Mode= n

2

sizes. According to the problem model and optimization ob-
jective established in this paper, the proposed specific genetic
algorithm is run 200 times randomly.

First, we compare the proposed algorithm by using
seven differently distributed datasets, the selected distribution
method and the required parameters are shown in Table II.

(a)

(b)

Fig. 5: In the case of random distribution, the results of
the deployment scheme by three algorithms.(a) shows the
comparing results of best fitness and (b) shows the mean
fitness.

The initial position of drones depends on these datasets.
In the case of using the proposed algorithm, the best fitness
and the mean fitness of the population size of each genera-
tion with the proposed algorithm are recorded, and four of
results are shown in Fig. 6. It can be known that before the
optimization, the initial fitness values are all unexpected espe-
cially triangle distribution, the fitness value obtained from the
triangle distribution dataset is the lowest. After optimization,
the distribution scheme of drone changes; that is, the flight

order after executing coding scheme is changed, so the energy
consumption is reduced. It can be seen that in the initial stage
of the adjustment, the algorithm proposed aims to minimize
the maximum energy consumption of drones, determines the
best solution for deployment, assign each drone to the suitable
location, and gives the flight order. At the later stage of the
algorithm, in order to continue to optimize the plan, the flight
plan obtained from the previous operation is further optimized
and modified. By comparing the changes in the fitness before
and after the execution of the algorithm, it can be seen that
the deployment scheme has been further optimized, so the
encoding scheme and optimization process proposed in this
paper are effective.

In order to further highlight the solution quality and ad-
vantages of the proposed algorithm, Simulated Annealing
Algorithm(SAA) [9] and Hill Climbing Algorithm(HC) [10]
are used as competitors in this paper. In the case of random
distribution, the results are shown in Fig. 5, among three
algorithms, the best fitness of our proposed algorithm, SAA
and HC are 0,4862, 0.2315 and 0.1941 respectively. In terms of
mean fitness, the results obtained by the proposed algorithm,
SAA and HC are 0.4371, 0.2080 and 0.1986 respectively. This
indicates that the hybrid genetic algorithm is effective and
advantageous in terms of solution quality. After comparison,
it can be found that although the convergence speed of the
proposed algorithms is lower than SAA and HC, when the
algorithms converge, the final results are much better than the
algorithms compared. The above results show that SAA and
HC can find the current optimal path segmentation in a given
task points sequence, but the result is not necessarily the global
optimal solution. In addition, the 50 groups of best fitness and
mean fitness obtained by the proposed algorithm are recorded.
The results are shown in Figure 7. From the curve settlement
process of the optimal value, it can be seen that the random
operation in the process will not greatly affect the convergence
of the final result, and all experimental results will tend to
be close. From the above analysis, the proposed algorithm
has good stability. Compared with the SAA and HC, the pro-
posed algorithm can provide a better energy-saving solutions
for drone network deployment, thereby further verifying the
effectiveness of the further optimization.

V. CONCLUSION AND FUTURE WORK

In this paper, we study the min-max drone deployment prob-
lem to minimize the maximum energy consumption among
all drones to archive full coverage over a target area. To
efficiently solve this challenging problem, we propose a hybrid
genetic algorithm, in which the integer code scheme is used
to encode the sequence of drones’ deployment. The energy
consumption determined by the horizontal and vertical flying
distance is adopted as the fitness value. With the determined
order of the drones sequence by coding process, we introduce
a feasibility checking operator with binary search to archive
the optimum. Experimental study shows that the algorithm
has capability and superiority to find good solutions under



(a) (b)
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Fig. 6: The best fitness and the mean fitness of the population size of each generation with the proposed algorithm from
different distribution.(a) shows the result for beta distribution, (b) for exponential distribution, (c) for gamma distribution, (d)
for random distribution.

different drones’ characteristics distribution and outperforms
solutions from existing competitors by extensive simulations.

The research presented in this paper will form the founda-
tion for future research: when the energy consumption and the
number of drones are limited at the same time, the proposed
method will be extended to multiple optimization goals. There-
fore, the problem of sustainable wireless network coverage
under multiple conditions and its corresponding solutions are
all the subjects of planned future work.
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