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Abstract—Growing big data has posed a great challenge for
machine learning algorithms. To cope with big data, the algo-
rithm has to be both efficient and accurate. Although evolution-
ary computation has been successfully applied to many complex
machine learning tasks, its ability to handle big data is limited.
In this paper, we proposed a dynamic self-organising swarm
algorithm to learn an effective set of prototypes for big high-
dimensional datasets in an unsupervised manner. The novelties
of this new algorithm are the energy-based fitness function, the
adaptive topological neighbourhood, the growing/shrinking capa-
bility, and the efficient learning scheme. Experiments with well-
known datasets show that the proposed algorithm can maintain a
very compact set of prototypes and achieve competitive predictive
performance as compared to other algorithms in the literature.
The analyses also show that prototypes generated by the proposed
algorithms have a stronger separatability compared to those from
other prototype generation algorithms.

I. INTRODUCTION

In the last decade, with the emergence of the Internet
of Things, sensor networks and social media, big data and
its applications have gained more and more attention from
both academia and industry. However, maintaining this huge
amount of continuously growing data, requires an enormous
storage capacity. In addition, it is challenging to use con-
ventional machine learning (ML) algorithms to efficiently
learn and extract useful patterns from such big data. Among
different strategies proposed to cope with these challenges is
to determine a representative subset of the original data.

Prototype selection (PS) and generation (PG) are data re-
duction techniques that have been shown effective in assisting
ML algorithms scale well with datasets having a large number
of instances or samples. By creating a representative dataset
that is significantly smaller than the original one, these two
techniques not only reduce the storage requirements, the
computational complexity of the ML algorithms, but also
enhance their noise tolerance to achieve a better classification
accuracy. While prototypes returned by PS are chosen from
the original instances, those returned by PG are new artificial
instances generated based on the existing data. Both techniques
have been studied for decades, resulting in a countless number
of algorithms proposed in the literature [1]. However, to
the extent of our knowledge, most proposed algorithms are
supervised and require class labels for learning prototypes.
This limitation makes these algorithms less attractive in real-
world scenarios in which labelling big data is time-consuming
and expensive.

In the unsupervised learning scheme, self-organising map
(SOM) algorithm proposed by [2] can be used as a PG method
in which SOM feature map captures the distribution of the
data inputs and each neuron or node of SOM is a generated
prototype. To train SOM, each instance will be used as the
input signal and the neuron (or specifically its weights) that
best matches the signal and its neighbours will be updated to
be more similar to the signal. Although SOM has shown to
be effective in data reduction and dimensionality reduction,
choosing an optimal size for the grid requires domain expert
or extensive trials. To address this problem, Alahakoon et al.
[3] proposed the growing SOM (GSOM) method in which the
number of neurons is automatically grown when the error of
the existing neuron exceeds a threshold, which helps GSOM
capture the data distribution more effective as compared to
SOM. Nevertheless, since a predefined topological neigh-
bourhood is needed to update the neurons’ weights, it is
difficult to efficiently train GSOM or modify GSOM as the
data distribution changes. Growing neural gas (GNG) and Self-
Organising Incremental Neural Network (SOINN) are other
variants of SOM with growing capability. Different from SOM
and GSOM, GNG and SOINN can self-configure topological
neighbourhood based on the input data, which allows them to
learn new patterns more quickly. However, similar to SOM
and GSOM, only topological neighbourhood and input signal
are used to update the weights or prototypes. Thus, there
is a good chance that they will generate many redundant
prototypes, i.e. inactive neurons learnt during the training
process. Although SOINN and GSOM have a mechanism to
review and evaluate the contribution of each prototype, it is
only triggered periodically and in a centralised manner rather
than incorporating this information directly into the learning
step to improve the training efficiency.

Imitating the social interactions observed in bird flock-
ing, Particle swarm optimisation (PSO) [4] has been proven
an efficient approach to dealing with difficult optimisation
problems such as feature selection [5] and clustering [6].
Among popular population-based algorithms, PSO is well-
known with its simplicity and fast-convergence ability. A PSO
algorithm for PG called Michigan PSO (MPSO) was proposed
in [7] where each particle represents a single prototype and
the whole swarm constructs a single solution. Prototypes
evolved by MPSO have shown to be representative for the
training data. However, MPSO uses supervised learning which
confines its application to labelled data. Furthermore, although
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particles can be removed during the evolutionary process,
MPSO still requires a predefined number of particles to start
with, which is hard to define, especially in the context of big
high-dimensional data. For unsupervised learning, O’Niell and
Brabazon [8] proposed a self-organizing swarm (SOSwarm)
algorithm to learn a low dimensional mapping of the original
input data. In SOSwarm, learning step is governed by the
particle velocity rather than the updating scheme used in
SOM. Similar to SOM, SOSwarm does not possess a growing
capability and the swarm size and topological neighbourhood
still need to be predefined. In this study, we propose a new
PSO algorithm called dynamic self-organising swarm (DSOS)
that can automatically determine the appropriate number of
prototypes from the unlabelled and big high-dimensional data
efficiently. The novelty of this algorithm is a new learning
scheme mimicking the foraging behaviours of animals to
maintain the diversity and identify the efficient size of the
swarm. Specifically, the contributions of this study are:
• The new unsupervised PSO-based approach to PG that

can incrementally learn the distribution of input data.
• A new energy-based fitness function to evaluate the con-

tribution of each particle/prototype to the whole solution
in the context of unsupervised learning.

• A new technique to dynamically adjust the swarm size
so that particles can be created and removed according
to the incoming data.

• A new technique to adaptively define the swarm topology.
• A new learning scheme based on particles’ energy to

efficiently learn the distribution of incoming data.

II. RELATED WORK

This section briefly reviews the related self-organising al-
gorithms and PSO algorithms for PG in the literature.

A. Self-organising algorithms for unsupervised learning

There are many algorithms proposed in the literature to
determine the optimal data representation of the original
dataset. One of the most popular algorithms is SOM [9],
an unsupervised artificial neural network (ANN) whose goal
is to transform an original complex high-dimensional data
into a low-dimensional (typically two-dimensional) space by
preserving the topological relationships in the data. Different
from other ANNs with backpropagation and gradient descent
usually used for supervised tasks, SOM uses competitive
learning and a topological neighbourhood to learn the low-
dimensional representation of the input data. In SOM, the size
of the map with a fixed number of nodes/neurons (usually
arranged in a regular hexagonal or rectangular grid) needs to
be predefined. First, the weights of each node are randomly
initialised. During the training process, SOM is fed with a
data instance (or signal) and the best match unit (BMU) or
the winning node is identified, i.e. the node whose weights are
most similar to those of the input instance. Then the weights
of BMU and its neighbours will be updated to be more similar
to the input. The neighbours are usually determined based on
the grid-distance to the BMU. In the simplest version, the

grid-distance to the BMU of neighbours is one. However,
the neighbourhood is usually set such that the number of
neighbours will decrease over time.

Growing SOM (GSOM) [3] is a variant of SOM which starts
with the minimum number of nodes and incrementally grow
as needed. With the growing capability, GSOM eliminates the
need to predefine the size of the map (e.g. number of nodes).
In GSOM, a spread factor is introduced to control the growth
of the map as data is fed into the algorithm. By adjusting
the spread factor, the user can change the granularity of the
representation. Similar to GSOM, growing neural gas (GNG)
[10] is a graph-based algorithm that can grow gradually to
adapt to the data distribution. Within GNG, the connections
of nodes, which defines the topological neighbourhood, are
generated based on the distances between existing nodes and
the input instance. The two nodes are connected or become
neighbours if they are the BMU and the second best-matched
node. The connections are gradually weaken or removed if the
nodes connected with BMU are rarely realised as neighbours
(i.e. second best node) over time.

The extended version of GNG with the utility criterion
(GNG-U) [11] is also introduced to cope with non-stationary
data. In this version, a node can be removed from the graph
if its utility value falls below a threshold as compared to the
accumulated error of the unit with the maximum error. This
mechanism helps GNG-U track the distribution changes better
than GNG and SOM. SOINN [12] is another graph-based
algorithm similar to GNG in which a new learning scheme
is introduced to efficiently and adaptively learn data represen-
tation. In addition, SOINN has a mechanism to periodically
review and remove redundant nodes if necessary.

B. Particle Swarm Optimisation

Proposed by Kennedy and Eberhart in 1995, Particle Swarm
Optimisation (PSO) [4] is an evolutionary computation algo-
rithm inspired by the social behaviours of birds flocking. In
PSO, a swarm of particles moves in the solution space. Tradi-
tionally, each particle has a position representing a candidate
solution and a velocity showing the magnitude and direction
of its move. During the evolutionary process, particles share
the best solution they have explored so far (i.e. the personal
best - pbest) using a specific communication topology. If they
are fully connected, they learn the global best solution (gbest);
otherwise, a local best lbest is learnt. Using this information,
they adjust their velocities to move towards fruitful areas to
search for better solutions.

PSO has been shown effective in solving complex optimi-
sation problems such as optimising the structures of fuzzy
models [13] and detecting salient objects [14]. It has also been
applied to PG [15]; however, PSO-based PG approach is still
not popular. This may be due to the high computational cost
of using the traditional PSO encoding scheme in evolving a
population of candidate solutions, each of which is a set of
prototypes. Maintaining a set of such solutions is prohibitively
expensive in terms of memory and computational time espe-
cially with high-dimensional data. Therefore, the number of



evolved prototypes and the population size are usually fixed
and predefined as small values [15]. To address this problem,
Cervantes et al. [7] proposed a new PSO approach called
Michigan PSO (MPSO) which encodes a single solution in
the whole swarm of particles, each of which represents a
prototype. As in [15], each particle in MPSO is evaluated
based on its prediction performance on the associate training
instances. MPSO has shown effective and efficient in evolving
representative prototypes. Nonetheless, as a supervised learn-
ing method, MPSO limits its applications to labelled data.

Self-organising swarm (SOSwarm) [8] is an unsupervised
learning algorithm proposed to learn a low dimensional map-
ping of the original data. Inspired by SOM, SOSwarm repre-
sents each particle as a node in SOM. A fixed-size grid is used
as a communication topology between particles. This means
that whenever a particle is updated, the eight neighbouring
particles will also be updated. Different from traditional PSO
where gbest is the fittest particle, gbest in SOSwarm is set
as the data input at the beginning of each iteration. SOSwarm
then finds the firing particle which is the closest particle to
gbest. The positions of the firing particle and its neighbours
will be updated using the traditional PSO updating mechanism.
Compared with SOM on ten UCI datasets, SOSwarm has
shown competitive results in evolving representative proto-
types. However, the number and mapping layout of the evolved
prototypes in SOSwarm have to be predefined as in SOM.

III. PROPOSED METHOD

DSOS is a particle swarm algorithm that mimics foraging
behaviours of animals. In DSOS, particles move and seek for
food sources in a high-dimensional space. In this case, each
data input is a food signal which attracts the particles to move
to its proximity. A particle gains more energy when it is closer
to the food source but its energy will drain over time. However,
a food source is limited and only the particles closest to the
food source can consume the food to gain energy. Particles that
share a food source will be connected (become neighbours)
and guide each other to move towards incoming food signals.
If a food signal is too far away from existing particles, a
new particle is created at this food source. If two connected
particles do not share a food source, their connections will be
gradually weakened and removed by an increasing repulsive
force. Over time, particles with zero energy or no connection
will be removed from the swarm. By modelling this swarm
behaviour, we can efficiently and dynamically capture the data
distribution. The rest of this section will present the detailed
description of DSOS algorithm.

A. Representation

DSOS maintains a dynamic population S in which pro-
totypes or particles are created and removed during the
evolutionary process depending on their fitness and the data
inputs. A prototype is encoded in the position of a particle
that also has a velocity showing the direction and magnitude
of its move. Both position and velocity of a particle are n-
dimension vectors, given n as the dimensionality of the data.

Each dimension corresponds to one feature of the original data.
The value in each dimension of the particle position ranges
from 0 to 1. This means that data is scaled to the range of
[0 . . . 1] before applying DSOS. Velocity values are also kept
in this range. How particle position and velocity are updated
will be presented in Section III-E.

B. Fitness function

Since each particle partly represents the original dataset and
no data label is used, it is not straightforward to evaluate
how good a single particle or prototype is. In this algorithm,
the fitness of a particle should reflect how well the particle
responds to the food signal. Mimicking the animal foraging
principle, the fitness or Energy of a particle, ranging from 0
to 1, should be increased based on Eq. (1) when it is moving
closer to a new food signal di presented at each iteration. In
addition, the new food source is shared by all particles located
within a radius governed by the spread factor SF . As shown
in Eq. (1), the larger the SF , the smaller the amount of energy
each particle in the region receives.

Energyp = Energyp +
1−Dist(p, di)

1 + | {q ∈ S|Dist(q, di) < SF} |
(1)

where Dist(p, di) is the distance between particle p and data
input di. The equation shows that the energy of a particle
is proportional to its proximity to the new data input. Any
distance measure can be used for the Dist function. DSOS
uses the popular Euclidean distance measure and all distances
are scaled to [0 . . . 1]. It is easy to see that the gained energy
is smaller if SF is large, i.e. the food source is shared by a
larger number of particles.

On the other hand, particles also have to consume energy
to survive. As a consequence, its energy will decrease over
time. Eq. (2) is used to subtract a small amount of energy that
a particle spends in each iteration.

Energyp = Energyp −
1

λ
(2)

where λ determines the number of iterations that a particle
survives without approaching any food source. In other words,
it affects the life duration of a particle. When a DSOS particle
is created, it has a default energy level of 0.5. After created, if
it has not gained energy from any food source (i.e. no matching
data input), its life will be terminated after λ/2 iterations (e.g.
500 if λ is set to 1000). This energy modelling is proposed to
ensure that particles positioning in an area with a large number
of food sources, i.e. well representing the data distribution,
will likely to maintain high energy. With a long expected
life duration or higher λ, the swarm S will cover more food
sources or the particles will capture the distribution at a lower
level of granularity.

C. Swarm growing and shrinking mechanism

In order to adapt itself to the distribution of the input
data, the swarm will dynamically grow and shrink during



the evolutionary process. The growing mechanism has to be
carefully designed so that particles are only created when the
existing particles cannot cover an incoming data input, i.e.
when the incoming data input is located outside the coverage
of its best-matched particle.

The coverage area Coveragep of a particle p is defined
based on its neighbourhood radius (Radius) which is the
distance between itself and its furthest neighbour. Radius is
dynamically updated during the evolutionary process. In addi-
tion, the final solution of DSOS which is a set of prototypes
should also reflect the structure or the distribution of the data.
This means that more particles should be created in areas with
more data inputs. Because the energy of a particle reflects how
much food or data inputs it has ever approach, particles with
higher energy should have a smaller coverage area. Therefore,
the coverage of a particle is proportional to its Radius and
inversely proportional to its Energy as shown in Eq. (3).

Coveragep =
Radiusp

Energyp + ε
(3)

where ε is a very small value (e.g. 10−5) added to avoid
Radiusp being divided by zero when the particle’s energy
drops to zero.

As mentioned in Section III-B , the larger SF , the smaller
the energy of a particle can get. Based on Eq. (3), it means that
the larger the coverage area of the particle is, which reduces
the chance of creating new particles. In this way, SF is the
control factor of DSOS’s swarm growth.

On the other hand, to deal with noise and particles po-
sitioning in no-longer-fruitful areas, a shrinking mechanism
is applied every λ iterations. Specifically, DSOS removes
particles with no or one neighbour. Furthermore, particles with
two neighbours are removed when they are out of energy.
This mechanism helps DSOS eliminate redundant particles and
keep the swarm as compact as possible. According to Eq. (1),
particles will be more competitive with a higher spread factor,
which leads to more particles with zero energy and hence a
smaller swarm. This again shows the impact of the spread
factor SF to the swarm size.

D. Dynamic topological neighbourhood

In the conventional PSO algorithm where each particle
represents a solution of the problem, knowledge or experience
of a particle is generally helpful for all other particles in
exploring better solutions. Therefore, particles can commu-
nicate using a fixed topology such as star, ring, mesh, etc.
On the other hand, a DSOS particle only represents part
of a solution. While its experience may be useful to some
surrounding particles, it should not share with all others
to maintain the swarm diversity. In addition, since particles
are created and deleted during the evolutionary process, the
fixed topology are inapplicable. DSOS requires a dynamic
topology that is automatically evolved and changed during
the evolutionary process. This population-level dynamics has
been observed in biological systems. Studies of the collective

behaviour of bird flocks and fish schools suggested that group
members self-organise by a combination of attractive and
avoidance behaviours to maintain their inter-individual spacing
[16]. Imitating this behaviour, DSOS particles self-organise
by attracting neighbouring particles towards the new resource
while pushing each other using repulsive forces between them.

Specifically, each DSOS particle maintains its own set
of neighbours whose experience is relevant to its learning
process. When a particle is created, it has no neighbours.
During the evolutionary process, two particles are first con-
nected as neighbours if there is a data input falling into
their coverage areas. When this happens, they maintain the
strongest connection or the weakest repulsive force. During
the evolutionary process, whenever a data input di matches
a particle p but not its neighbour q, the repulsive force Fp,q

between the two particles will be increased an ∆Fp,q amount
calculated using Eq. (4).

∆Fp,q
= 1+

 ∑
i|i∈(p∪NBp)

Energyi

×|NBq|×
Dist(q, di)

MeanDist

(4)
where NBp is the set of p’s neighbours, |NBq| is the number
of q’s neighbours, and MeanDist is the average distance
between di and all neighbours of p:

MeanDist =
1

|NBp|
×

∑
i|i∈NBp

Dist(i, di) (5)

This mechanism is developed to avoid the swarm from
forming a too crowded cluster, which can be redundant and
inefficient. With Eq. (4), the repulsive force will be stronger
if the considered neighbourhood NBp has a high total energy
(i.e. particles have been already close to the food signals)
and many neighbours (i.e. crowded), and particles are far
from the food signal (i.e. suggesting that they should not be
connected to the particle p). When Fp,q exceeds a maximum
level, p and q are disconnected or no longer be neighbours.
This repulsive force modelling allows particles to dynamically
adapt its neighbourhood to the nature of the incoming data and
helps DSOS overcome the limitation of the fixed topological
neighbourhood in SOM and SOSwarm. In terms of algorithm,
the way DSOS establishes the connections between particles
are similar to those of GNG and SOINN; however the nov-
elty of DSOS is the repulsive force modelling to efficiently
discriminate unrelated patterns.

E. Learning Mechanism

Different from the traditional PSO where all particles move
at each iteration, a DSOS particle only moves when a new data
input matches itself or one of its neighbours. This learning
mechanism not only fit to the incremental learning approach
but also avoid the high computation time of PSO, which is a
common problem of evolutionary computation algorithms.

An iteration of DSOS starts when there is a new data input
di. To see if the existing particles or prototypes can represent
di, DSOS finds two best-matched particles to d. Two scenarios



can happen. If di does not fall into both coverage areas of the
two best matching particles, a new particle will be created at
its location as mentioned in Section III-C. Otherwise, di is
considered as the new local best of the best-matched particle
p. In this case, p will move towards this new local best to
better cover di. Eq. (6) and (7) describe how the position and
velocity of p are updated.

Posp = Posp + V elp (6)

V elp =
1

#Matches
× (d− Posp) (7)

where Posp and V elp are the position/prototype and ve-
locity of particle p, respectively. #Matches is the number of
times particle p is identified as the best-matched particle. A
large value of #Matches indicates that p can represent a large
amount of data. Therefore, its moving step should be smaller,
enabling p to converge into a representative prototype.

The information about the new local best di is also shared
with p’s neighbours to mimic the attraction behaviours of
group members. Eq. (8) shows the velocity updating mech-
anism of a p’s neighbouring particle q. The velocity V elq is
updated in a similar way as p but with a much smaller moving
step (divided by 100 [12]) to reflect an indirect effect of the
local best di. Furthermore, V elq also depends on Energyq to
allow particles with lower energy (i.e. not approaching much
food) to move faster to the new food source di.

V elq =
1− Energyq

100×#Matches
× (di − Posp) (8)

The overview of DSOS is presented in Algorithm 1. The
swarm is initialised with two particles based on the first two
incoming data inputs. For every λ iterations, the shrinking
mechanism described in Section III-C is applied and the
max repul force is heuristically recalculated based on the
total energy of the whole swarm. As can be seen from
Algorithm 1, DSOS can be terminated at any time to retrieve
the current set of prototypes evolved so far. This incremental
and on-line learning capability makes DSOS a suitable pre-
processing method for big data.

IV. EXPERIMENTAL DESIGN

A. Datasets

To test the performance of the proposed algorithm, we use
six datasets with different levels of difficulties. In Table I,
the datasets are sorted in ascending order of the number of
instances. As shown in the last two columns, most of these
datasets are unbalanced data.

B. Experiment Configuration and Parameter Settings

To test the performance of DSOS in PG, we compare
DSOS with two other unsupervised methods, namely SOM and
SOINN. In order to show which method creates better repre-
sentative prototypes, we compare the classification accuracy of
1-Nearest-Neighbour (1NN) when using prototypes generated
from these methods to classify new instances. However, the

Algorithm 1: DSOS Algorithm
Input : Training data, SF , λ
Output: Set of Prototypes

1 begin
2 Initialise 2 particles using the first 2 data inputs;
3 max repul force = ∞;
4 for each next data input di do
5 p0 ← The closest particle to di with distance dist0;
6 p1 ← The second closest to di with distance dist1;
7 Calculate Coveragep0 and Coveragep1 based on Eq. (3);
8 if (dist0 > Coveragep0 ) or (dist1 > Coveragep1 ) then
9 Create a new particle at position di, energy 0.5, no

neighbours, and an infinitive Radius;
10 else
11 #Matchesp0 ++;
12 Connect p0 and p1 with repulsive force 0;
13 Update p0 and its neighbours using Eq. (7), (6), (1),

(8);
14 Increase repulsive force between p0 and its neighbours

using Eq. (4);
15 Disconnect p0 with neighbours that have the repulsive

force exceed max repul force;
16 end
17 Update Radius of p0 and p1 to their farthest neighbour;
18 Decrease Energy of all particles using Eq. (2);
19 if (i+ 1)%λ then
20 Delete particles that has no or one neighbour;
21 Delete particles that has 2 neighbours and 0 energy;
22 max repul force = (

∑
all particles

Energy)/3 ;
23 end
24 end
25 return Position of all particles;
26 end

TABLE I
DATASETS

Dataset #Features #Inst. #Class %Smallest
class

%Largest
class

Spambase [17] 228 4,601 2 39.4 60.6
Churn [18] 49 7,032 2 26.6 73.4
Mushroom [19] 113 8,124 2 48.2 51.8
ICU [20] 53 11,773 2 10.7 89.3
Adult [21] 36 32,561 2 24.1 75.9
Bank [22] 57 41,188 2 11.3 88.7

created prototypes of all these three unsupervised methods
do not have any label. Therefore, majority voting is used to
assign the most common class label of the training data inputs
associating with a prototype as its class label (note that each
training instance associates only with the closest prototype).
These labelled prototypes are then used as training instances
for 1NN to classify the test data. The results of 1NN using
the raw data are also compared with DSOS. Balanced accuracy
[23] on the test set are reported for all the compared methods.

For each method on each dataset, we conduct 30 indepen-
dent runs with different orders of input data. For each dataset,
5-fold cross-validation is used to split data into training and
test set. Each method uses the training set to learn a set of
prototypes whose performance is then tested using the test
set. Therefore, we have 150 results (i.e. 5 folds x 30 runs) for
each dataset. The Wilcoxon statistical test is used to confirm
if the results are significantly different.

SOM grid is set to 30 x 30 as these datasets have a large



TABLE II
AVERAGE RESULTS OF 30 INDEPENDENT RUNS.

Dataset Method #Prototypes Test balanced accuracy
Best Avg (Std) T

Spambase

Full 3,680 78.52 +
SOM 900 80.25 79.46 (0.51) +
SOINN 431 81.97 80.30 (0.75) =
DSOS 156 81.72 79.97 (0.70)

Churn

Full 5,626 65.14 +
SOM 900 68.49 67.70 (0.42) +
SOINN 421 69.16 68.16 (0.47) +
DSOS 305 69.53 68.69 (0.48)

Mushroom

Full 6,499 93.81 –
SOM 900 96.28 95.17 (0.76) –
SOINN 382 94.19 91.04 (1.68) –
DSOS 339 92.24 88.22 (1.92)

ICU

Full 9,418 65.03 –
SOM 900 60.98 59.83 (0.46) –
SOINN 361 59.00 57.59 (0.73) +
DSOS 330 59.57 58.64 (0.54)

Adult

Full 26,049 69.62 –
SOM 900 71.43 70.34 (0.41) –
SOINN 235 69.61 68.45 (0.42) +
DSOS 365 70.13 69.26 (0.42)

Bank

Full 32,950 45.21 +
SOM 900 53.12 51.30 (0.69) +
SOINN 739 55.87 53.48 (1.07) =
DSOS 499 57.25 53.03 (1.41)

number of instances. In DSOS, SF and λ are experimentally
set to 0.2 and 1000. For SOINN , agemax is 50 as chosen in
[24] and λ = 1000 similar to DSOS.

V. RESULTS AND DISCUSSION

Table II shows the results of 1NN using the original
instances (“Full”), the prototypes generated by SOM, SOINN
and DSOS. The third column shows the number of prototypes
generated by each method except for Full where the number
of raw instances in the training set is shown. For SOM, since
the grid size is predefined as 30 x 30, 900 prototypes are
generated for all datasets. The next two columns present the
best, the average and standard deviation of the class-balanced
accuracy obtained in the 30 runs. The last column T displays
the Wilcoxon significance test results (with the significance
level of 0.05) of DSOS over the corresponding method on the
test set. “+” or “–” means the result of DSOS is significantly
better or worse than the baseline methods, respectively, while
“=” means they are similar in the Wilcoxon tests. In other
words, the more “+”, the better the proposed methods.

A. DSOS versus Full

As can be seen from Table II, 1NN obtained significantly
better results when using DSOS prototypes than using the
original full set of instances (Full) on three datasets, namely
Spambase, Churn and Bank. For example in the Bank dataset,
using 499 prototypes evolved by DSOS, 1NN improved its
performance 8% on average and 12% in the best case, com-
pared to using 32,950 raw instances in the original dataset. On
the remaining three datasets, DSOS obtained up to 6.5% lower

accuracy than Full on average. However, when using DSOS
prototypes, the number of instances that 1NN has to work with
is dramatically reduced to only 1% to 5% of the training set
size for all the datasets. This means that 1NN saves 95% to
99% of the running time in classifying a new instance.

B. DSOS versus SOM

While the number of prototypes generated by SOM is fixed
to 900 for all datasets, the number of prototypes evolved by
DSOS ranges from 160 to 499. Using a much smaller set
of prototypes from DSOS, 1NN still obtained significantly
better prediction performance than using SOM prototypes on
three datasets, namely Spambase, Churn and Bank. On the
Bank dataset, DSOS obtained 4% higher accuracy than SOM,
although the number of DSOS prototypes is only about half of
SOM. On the remaining three datasets, DSOS obtained 1% to
7% lower accuracy than SOM; however, with about two third
fewer prototypes.

C. DSOS versus SOINN

As can be seen in the third column of Table II, SOINN
generates a larger number of prototypes than DSOS on all
datasets except for the Adult dataset. In terms of prediction
performance, DSOS obtained a significantly better accuracy
than SOINN on three datasets, similar on two and worse on the
remaining one. Although the accuracy difference between the
two methods is less than 1%, SOINN generates up to 275 more
prototypes than DSOS on almost all datasets. For example, on
the largest dataset (Bank), although both have similar average
accuracy, DSOS obtained 1.4% accuracy higher than SOINN
in the best case while generated 240 fewer prototypes than
SOINN. This has shown that DSOS performs a better search
than SOINN.

It is noticed that the number of prototypes generated by
DSOS is always proportional to the size of the dataset, ranging
from 156 for the smallest dataset to 499 for the largest
one. Since DSOS uses an incremental learning approach as
described in Section III, the dataset size is not available
to the algorithm. Therefore, the ability to grow its swarm
proportionally to the dataset size reflects the effectiveness of
DSOS in automatically capturing the complexity of the data.
This may explain why DSOS maintains its performance on
large datasets. On the other hand, this phenomenon is not seen
in SOINN. For example, while 431 prototypes are generated
by SOINN for Spambase with 3680 instances, only 235 are
generated for Adult with 26049 instances.

In summary, among 18 comparisons with the three baseline
methods, DSOS won 9 cases, drew 2 and lost 7. However,
in terms of data reduction, DSOS evolved the smallest set of
prototypes on five out of six datasets. The results showed that
DSOS can generate representative prototypes to the original
data and is more effective than the compared PG methods.

D. Visualising Generated Prototypes

In order to see how DSOS generated prototypes are different
from other methods, we use UMAP [25] to visualise the
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Fig. 1. Generated Prototypes on Bank.

generated prototypes of all the three PG methods along with
the original data. UMAP is a recently proposed machine
learning algorithm to obtain a low dimensional representation
(two dimensions in this paper) of the raw data set. Becht et
al. [26] show that UMAP performs exceptionally well across
all investigated aspects from preserving the global structure,
robustness, and running times as compared to the state-of-the-
art algorithms such as t-SNE [27] and Autoencoder SCVIS
[28]. The best result of each method on the first training fold
of the largest dataset (Bank) is chosen to visualise.

Fig. 1 shows the visualisations of the original instances in
(a) and the prototypes generated by SOM (b), SOINN (c) and
DSOS (d) for the bank dataset. For Fig. 1 (b), (c), and (d), each
red node represents a generated prototype. The blue lines in
Fig. 1 (c) and (d) display the connections between prototypes
generated by SOINN and DSOS. Based on the visualisation of
the full dataset, it is easy to see that there are five main clusters.
It is a bit tricky to identify the clusters in SOM’s visualisation
as generated prototypes are not well separated (especially ones
at the top right corner of Fig. 1(b). In Fig. 1(c), SOINN can
separate the prototypes slightly better than SOM but there is
still a lot of confusion, especially with the bottom and left
clusters. For this example, only DSOS shows five separated
clusters as observed with the full dataset.

To have a more intuitive visualisation of the generated
prototypes, we run the three methods on the MNIST dataset
[29] which has 70,000 images of numbers 0 to 9. Each
image has 784 features (28x28 pixels). Fig. 2 shows the
UMAP visualisation of the generated prototypes on MNIST
and the 1NN accuracy on the test set. It is clear that the
prototypes generated by SOM in Fig. 2(a) cannot separate
classes effectively. Except for straightforward digits such as
zeros, ones, and sixes, prototypes representing other digits
are very confused in this visualisation. For example, different
groups of sevens and nines are interleaved in the visualisation.

SOINN, in Fig. 2(b), is slightly better than SOM in this
case when clusters of twos and sevens can be identified
more easily. DSOS presents the best performance for the
MNIST dataset in this experiment. In Fig. 2(c), very clear
clusters are formed for straightforward digits (zeros, ones,
twos, sixes) and prototypes representing other more confusing
digits (fours, sevens, nines and threes, fives, eights) are also
nicely separated. This result is very encouraging as DSOS
learns the prototypes in a pure unsupervised learning manner.
By generating a good representative prototypes, DSOS can
help 1NN achieves better accuracy on classification task as
compared to SOM and SOINN.

E. DSOS Evolutionary Process

To better explain the performance of DSOS, we investigate
DSOS evolutionary process. Figure 3 shows the evolutionary
process of one DSOS run on Bank. In Figure 3(a), the red
and green lines display the swarm size and total energy of
the whole swarm, respectively. As expected, the swarm size
gradually grows over time and have a big drop every λ = 1000
iterations. However, the maximum swarm size stops increase
after the 20, 000th iterations. This suggests that the swarm
size is well control and the swarm only needs to grow if new
patterns emerge. However, it is noted that the total energy
shows a much smaller fluctuation as compared to the swarm
size. The observation indicates that DSOS mainly remove
unwanted/redundant prototypes, i.e. isolated or zero-energy
particles; and therefore, a set of representative prototypes are
still well-preserved. In Figure 3(b), the moving average error
(differences between inputs and the best-matched particles) is
averaged over the last 5000 iterations. It is easy to see that the
errors decrease as the swarm adapts to the data inputs.

VI. CONCLUSION

Handling big high-dimensional data is challenging for
evolutionary and swarm algorithms. To deal with this chal-
lenge, this paper introduces dynamic self-organising swarm,
an efficient algorithm based on the foraging behaviours of
animals to incrementally learn the distribution of input data
by determining the set of representative prototypes from the
original dataset. The novelties of this algorithm is an energy-
based fitness function, mechanisms to adjust the swarm size
and the topological neighbourhood of the particles, and a new
learning scheme. Experiments with popular datasets in the
literature show that the proposed algorithm is very competitive
as compared to well-established algorithms in the literature.
Further analyses reveal that the proposed algorithm can gen-
erate prototypes with a strong separability of classes although
it is a purely unsupervised learning algorithm.

This study is just a preliminary step to demonstrate the
applicability of swarm algorithms in analysing and extracting
patterns from big high-dimensional data. The proposed algo-
rithm is designed by modelling the foraging behaviours of
animals but it can be applied naturally to cope with complex
machine learning tasks. In future studies, more analyses are
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Fig. 2. Generated Prototypes on MNIST and 1NN’s accuracy on the test set.

(a) Swarm size and total energy (b) Moving average error

Fig. 3. DSOS evolutionary process on Bank.

needed to fully understand the behaviours of this new algo-
rithm as well as identify opportunities to enhance its efficiency.
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