
A Dimension-Wise Particle Swarm Optimization
Algorithm Optimized via Self-Tuning

Justin Schlauwitz∗

Petr Musilek∗†
∗Department of Electrical and Computer Engineering, University of Alberta, Edmonton AB, Canada
†Department of Cybernetics, Faculty of Science, University of Hradec Králové, Czech Republic

Abstract—This article proposes an improvement to the tradi-
tional Particle Swarm Optimization (PSO) via modifications w.r.t.
how particles move and are attracted to optimal positions. The
performance is evaluated based on how well the algorithm is able
to perform w.r.t. finding the global maxima of the Sinc, Marr-
Wavelet, and Drop-Wave functions in multi-dimensional problem
spaces. Each algorithm is put through a session of self-tuning with
a sufficient number of iterations to ensure convergence so as to
demonstrate that the evaluation of each algorithm is done with
justified optimal parameters.

Index Terms– Particle swarm optimization.

I. INTRODUCTION

Particle Swarm Optimization (PSO) algorithms have a rep-
utation of being highly capable of optimizing complex multi-
dimensional problems. PSO relies on a weighted combination
of momentum, local/personal best attraction, and global best
attraction to find a position which yields the best score, i.e.
global maxima/minima. Though PSO tends to be slightly
slower than Differential Evolution (DE), it can be expected
to have similar or even slightly better convergence rates
depending on the problem [1], [2]. PSO algorithms also tend
to me much faster and more efficient than Genetic Algorithms
(GAs), giving us some leeway to make some small trade-
offs between complexity and convergence reliability without
compromising its perk of being a fast algorithm [3], [4].

A secondary component of this article is the use of self-
tuning to optimize the parameters of a given optimization
method [5]. Self-Tuning relies on the fundamental expecta-
tion that the optimization algorithm itself can satisfy two
conditions, i.e. its parameters can be optimized and it has
the capacity to pursue locations with better results. In this
way the algorithm should be able to demonstrate that, within
its capacity as an optimization method, its own parameters
can be optimized to the point of convergence using its own
methods either internally or externally. Alternatively, if an
algorithm cannot converge when self-tuning, the final choice
of parameters will likely not be much better or worse than
any other combination. In difference to some self-tuning
methods, the external approach we intend to use does not
require specialized modifications or assigned rules to adjust
the parameters [6], [7]; instead, it relies on the concept of
bootstrapping, i.e. an incremental improvement based on a
prior assumption, as a means of self-justification [8]. This
approach only serves to get the best performance out of a given

algorithm, but does not tell us how well it performs relative to
other algorithms. To evaluate how the modifications influence
performance, we will also test the traditional method in the
same way and compare the results. To verify the degree to
which the self-tuning process has served its purpose, we will
also perform a sensitivity sweep of each PSO parameter.

II. TRADITIONAL PSO
The general structure of PSO remains largely unchanged

over the years and is still a preferred method of parameter
optimization. In a traditional PSO (PSOTrad) algorithm, each
individual possesses velocity and position updates [9]:

~vt+1 = m · ~vt + c1 · b1 · (~pglobal − ~pt)
+ c2 · b2 · (~plocal − ~pt), (1)

and
~pt+1 = ~pt + ~vt+1, (2)

respectively. Here, m is the momentum constant, c1 and c2
are the global and local attraction strengths, and b1 and b2
are generated using rand(0, 1) which determines the degree
of attraction to the respective best value at a given iteration.
It should be noted that rand(0, 1) is a uniform random
number in the range [0, 1). The local best position is the
individual’s recorded best optimal value such that, in the event
of maximizing the reward rt:

~plocal =

{
~pt If rt > rlocal,
~plocal Otherwise,

(3)

and

rlocal =

{
rt If rt > rlocal,
rlocal Otherwise.

(4)

This comparison can also be made for the global best by
evaluating across each individual i of the current iteration such
that:

~pglobal =

{
~plocal,i If rlocal,i > rglobal,
~pglobal Otherwise,

(5)

and

rglobal =

{
rlocal,i If rlocal,i > rglobal,
rglobal Otherwise.

(6)

The reward rt is an evaluation of fitness w.r.t. the parameters
when they are applied to the problem of interest. If the reward

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

is a function of the parameters, it can also be interpreted as
r~p. If a problem can be executed relatively quickly, one may
choose to update the reward for the position ~p every time it
is encountered. Otherwise, if the problem requires a relatively
large amount of time to process each step and the result is
constant for a given position, it may be preferred to log the
data in a table so that it can be recalled, saving processing time
at the expense of memory. If the result is stochastic in nature,
it may be preferred to use a mean reward r̄~p or something
similar over a statistically significant number of executions on
~p.

III. DIMENSION-WISE PSO

The dimension-wise PSO (PSOMod) algorithm makes sev-
eral changes to the traditional form. The first set of changes
are w.r.t. the velocity update:

~vt+1 = c0 ·
−−−→
rand(−1, 1) · |~vt|+m · ~vt

+ c1 ·~b1 · (~pglobal − ~pt)
+ c2 ·~b2 · (~plocal − ~pt) (7)

where velocity is also subject to the dimension-wise limita-
tions:

vt+1 =

vlim If vlim < vt+1,
−vlim If − vlim > vt+1,
vt+1 Otherwise,

(8)

and

vt+1 =

{
vt+1 If pmax > pt+1 > pmin,
−vt+1 Otherwise,

(9)

given the position update in equation (2). This approach allows
particles to bounce off the walls defined by the limits of the
range for each parameter without killing the individual’s speed.
To complement the velocity restrictions, we also apply a hard
boundary to the position in the form:

pt+1 =

pt+1 If pmax > pt+1 > pmin,
pmin If pt+1 ≤ pmin,
pmax If pmax ≤ pt+1.

(10)

Returning to equation (7), c0 is a new parameter for the
percent noise injection. In equation (8), vlim is the restriction
of velocity w.r.t. a given dimension; and for equations (9) and
(10), pmax and pmin are the position boundaries bracketing the
valid range of exploration along a given dimension. Another
notable change is that b1 and b2 in equation (7) are randomly
activated binary values which determine if the individual
should attempt to move toward the respective best position
of a given dimension. The activation of b1 can be described
as:

b1 =

{
1 If rand(0, 1) < τ1,
0 Otherwise,

(11)

where rand(0, 1) is a uniform random number in the range
[0, 1), and τ1 denotes the probability of activation. This
equation can also applied to b2 using τ2. It must be stressed

Fig. 1: Exploitation differs between PSOTrad (the purple
envelope) and PSOMod (the red points on the grid).

that b1 and b2 are evaluated on a per-dimension basis. Though
this reduces the coverage of points between the two known
best locations, it increases the exploration of points in the
surrounding neighborhood in-line with each dimension (See
Figure 1). When momentum is accounted for, though it may
take a round about course to the target, it is less likely to
become fixated on a single vector. The probability of moving
to a given point is based on the products of τ1, τ2, 1 − τ1,
and/or 1 − τ2 for each attractor and dimension. For the
right-most example in Figure 1, if the lower ‘x’ marks the
global optimum, the point in the top left corner would have a
transition probability of:

P (tl) = (1− τhor1) · (1− τhor2) · τvir1 · τvir2 , (12)

while the probability of transitioning to the global optimum’s
mark is:

P (glob) = τhor1 · (1− τhor2) · τvir1 · (1− τvir2). (13)

As with PSOTrad, when c1 and c2 are reduced, the scale of
movement, i.e. the grid size, is reduced while the position the
particle would move to without the attractors is the anchor
point, determined by the noise injection and momentum.

Percent noise injection is used as a precaution to improve
variations in movement and increase the likelihood of ‘hop-
ping’ out of local minima without causing an unreasonably
large change in course direction. In opposition to the effect of
percent noise injection, the velocity limit attempts to restrict
overshooting caused by an excessive build up of momentum
and attraction. The reason for allowing particles to bounce
off the upper and lower limits is that doing so maintains a
degree of activity, preventing early termination of exploration.
Additionally, given that the position is stopped at the respective
limit, a measure of performance at said limit will still be
obtained.

Regarding the velocity limit, to prevent an excessive ex-
pansion in required search parameters, vlim will be simplified
to:

vlim = v%lim · (pmax − pmin), (14)

where v%lim is the percentage of a given dimensions span,
allowing all PSO parameters to be in the range [0, 1] and
reducing the number of velocity limits that must be defined to
one. It is worth noting that setting c0 = 0 and v%lim = 1 gives
us PSOMod in its closest possible form to PSOTrad, where
the key differences are the attraction random values.

IV. METHODOLOGY

For our tests, it is assumed that the problem will be
expensive to re-process and the results will be stochastic in
nature. This prevents us from being able to use the returned
values of a single sample outright and must rely on a suitable
representation of the distribution. The method of choice is a
mean of the reward less its standard deviation which we will
refer to as the score, i.e.:

r~p = rmean − rstd. (15)

The use of this score is acceptable, subject to the condition that
the mean and standard deviation are taken across a statistically
significant number of runs on ~p. If the score is regarded as
statistically significant, it is also reasonable to expect it to hold
for future executions of the same parameter set. To save time,
we can log the score and use it for occasions where the re-
processing of ~p is requested. This particular method of reward
calculation is preferred because it places equal importance on
mean performance and reliability.

We have defined a set of rules, demonstrated in Figure 2, to
be applied on both algorithms. Firstly, occupation of a location
is on a first-come-first-served basis, such that the colliding
particle’s position will be randomly re-initialized and checked
for collisions, i.e. warped to a new location. This rule increases
the potential for exploration in the event that two particles
are found to occupy the same region. Secondly, if a particle’s
velocity is not sufficient to allow it to move to a new position
based on the log’s numerical resolution (4 decimal points
in our case), the particle will be warped to a new location.
Thirdly, warping will be repeated until the particle occupies
an unlogged/unoccupied location or until the warp counter
exceeds 3. If a particle’s warp counter exceeds the specified
number, it is forced to remain at its new position, where it is
expected to use the logged value. In the unlikely event that an
individual re-processes a given location, the logged values are
updated and an associated counter for the number of visits is
incremented. Additionally, warping largely serves the purpose
of random exploration, maintaining a given particle’s activity
after it has converged to a local or global maxima. The use
of a try-except was also implemented to deal with parameter
combinations that caused the problem code to crash, e.g.value
overflow and DIV0 errors. In the event that a particle’s chosen
parameters cause the problem to fail, r~p is assigned a large
negative value, e.g.− inf , before moving to the next location.

Fig. 2: Rules and restrictions applied to both PSO methods.

The established rules place emphasis on time efficiency
and statistical significance for large and potentially stochastic
problems, but can also be applied to smaller deterministic
problems such as the test functions we will be evaluating on.
As is the case with the PSO parameters, our implementation
expects that the parameter space to be explored is bounded and
continuous. The usage of the same evaluation criteria is also
expected, therefore, equation (15) will be used where possible
as a measure of fitness.

A. Function Problems

For the first problem, we would like to use the multi-
dimensional Sinc function calculated as:

f(~p, ~y, ~z) = mean

(
sin((~p− ~y) · ~z)

(~p− ~y) · ~z

)
, (16)

where all dimensions of ~p are limited to the range [−1, 1], ~y
is a randomly initialized to a value within the range [−1, 1]
and maintained for the duration of the PSO process, and ~z is
a constant vector of linearly increasing values (starting at π
and ending at 20π). This problem was chosen because it has
a clear, graphically identifiable global maximum and a large
number of local maxima. In the event that element z is large,
we come across regions where there is minimal change in the
reward value, i.e. a relatively flat problem space with a very
small window for the global maximum.

To increase the credibility of our results, the global max-
imum ~y is randomly initialized at the start of PSO2 to
reduce the likelihood of certain speed related parameters being
tuned to favor a particular problem configuration.1 The linear
distribution of ~z is used to provide a progressive transition

1For clarity, we will refer to the PSO code being optimized while optimizing
the given function problem as PSO2 and the PSO code that optimizes PSO2

as PSO1.

in difficulty. As z becomes larger, the attenuation of the Sinc
function’s features become more severe, increasing the risk
of overshooting the global maximum location. Given that
an optimization algorithm with a notably larger immunity to
parametric range sensitivity is preferred, it is expected that the
algorithm which is able to achieve the highest score would
be better. As an additional method of evaluation, we will also
check if a solution is within the central node of each dimension
using:

g(p, y, z) =

1 If
sin((p− y) · z)

(p− y) · z
> 0.2.

0 Otherwise.
(17)

This method of evaluation only claims the point to be within
the global maxima iff the score for a given dimension is
decidedly better than what could be achieved at any other
local maxima.2 It should be noted that, since PSO is not
a gradient based method, we do not need to be concerned
about the depth of the local maxima and minima. Instead,
attention must be given to the effective width of neighboring
regions, i.e. the area for which f(~p, ~y, ~z) ≤ f(~plocal, ~y, ~z)
will not affect the particle’s movement while the area for
which f(~p, ~y, ~z) > f(~plocal, ~y, ~z) will be guaranteed to have
some influence once encountered. This means that, w.r.t. the
Sinc function problem, all regions along a given dimension
for which |pt − y| > |plocal − y| is true, the particle’s local
values will remain unchanged while small movements toward
y can only show improvements if the particle lands in another
local maxima. It must be noted that, should one dimension
show sufficient improvement, plocal will be changed even if
|pt − y| > |plocal − y| of a given dimension holds true.

To be more thorough, we will also test both PSO methods
on the Marr Wavelet (MW) and Drop-Wave (DW) functions
with 6 individuals, 3 dimensions, and a range of [−6, 6] per
dimension [10]. The MW function will use the spread value
σ = 0.5, and for both the MW and DW, the range of values for
the offset ~y will be adjusted such that it can appear anywhere
within the explorable search space. The evaluation will also
be conducted on a test problem that uses a ratio of 3 : 3 : 3 for
the MW, DW, and Sinc function (for ~z starting at 10.5π and
ending at 20π), i.e. a Mixed (MX) function where the output
rt is the average of its sub-functions. This mixed approach is
expected to encourage the PSO to find a good compromise
for optimal parameters targeting each individual problem set.
Though the result of tuning on the mixed problem may not
result in the fastest convergence on any individual problem, it
should still be able allow the PSO to perform better than if
it was tuned on a largely different problem space, e.g. tuning
on the Sinc function and expecting it to perform well on the
others. It should be noted that each function output is scaled
such that the global optimum is gives a reward of +1.

2The value of 0.2 was chosen as it is a sufficiently close approximation of
the local maxima found near 2.5π while also excluding the local peak value.

B. Self-Tuning

Self-tuning relies on the PSO’s ability to find its own best
parameters. Naturally, to make this possible, a problem or set
of problems with a sufficient degree of dynamic difficulty and
flexibility are required to get reasonable measures of perfor-
mance while minimizing potential biases towards particular
problem configurations. Due to the stochastic initialization
process of the offset ~y, it is necessary to obtain a performance
distribution over a notable number of initialized vectors ~y.
For our tests, the reward received by PSO1 will be based on
the distribution of 500 samples, i.e. 500 separate executions
of PSO2 on different initializations of a given test problem.
It should be noted that, as the test functions optimized in
PSO2 are not stochastic, we only need to calculate the value
returned by a position once. The key point to be aware of
is that the initially passed in PSO1 parameters, determined
through a series of educated guesses or prior executions, are
pushed to the first PSO2 individual on the first iteration to
test the performance of said initial values, i.e. we seed the
first individual. After each iteration, the global best PSO2

parameter combination is assigned to PSO1 before moving
on. In this way, self-tuning is comparable to bootstrapping as
the learning/optimization occurs progressively.

V. TESTING

For the initialization, we used the parameter combinations:
• Percent noise: c0 = 0.02 and c0 = 0.0,
• Momentum: m = 0.7,
• Global attraction: c1 = 0.5,
• Local attraction: c2 = 0.5,
• Global probability: τ1 = 0.3 and τ1 = N/A,
• Local probability: τ2 = 0.2 and τ2 = N/A,
• Speed limit: v%lim = 0.2 and v%lim = 1.0,
• Number of individuals: 6, and
• Number of iterations for PSO2: 50

for the dimension-wise and traditional PSO2 algorithms re-
spectively. The Sinc problem dimensions were tested with
sizes 3, 13, and 49 to demonstrate varying degrees of popula-
tion sparseness relative to the number of dimensions. It should
be noted that increasing the number of dimensions does not
change the range of difficulty of finding the global maxima for
each dimension of the Sinc function, but increases the burden
of dimension-wise exploration for each individual. To improve
the potential for convergence, PSO1 uses 20 individuals and
100 iterations.

VI. RESULTS

After self-tuning, the optimal PSO parameters and their
scores were gathered (see Table I), an evaluation of per-
dimension performance was conducted on the Sinc function
(see Tables II and III, Figure 3, and Figure 4), and parameter
sensitivity sweeps were done to evaluate how well the methods
converged on each problem. The score improvement from the
initial parameters to the final optimized parameters show that
there is a notable improvement in performance for both forms

TABLE I: Global best PSO parameters (Xind
dim).

m c0 c1 τ1 c2 τ2 v%lim

Trad63 0.847347 0.0 0.625448 – 0.283466 – 1.0

Mod63 0.646900 0.886046 0.993560 0.297974 0.986679 1.0 0.826609

Trad613 0.792969 0.0 0.993248 – 0.807046 – 1.0

Mod613 0.350952 0.425527 0.999966 0.214726 0.995807 1.0 0.977800

Trad2613 0.784900 0.0 1.0 – 0.737775 – 1.0

Mod2613 0.205239 0.277784 0.999824 0.175739 0.999022 0.990494 1.0

Trad649 0.777349 0.0 0.956472 – 0.473307 – 1.0

Mod649 0.158574 0.307773 0.999532 0.239501 0.996855 0.999393 0.944697

Trad63DW 0.828378 0.0 0.619558 – 0.134687 – 1.0

Mod63DW 0.994308 0.132850 0.929807 0.739896 0.876021 0.525148 0.070311

Trad63MW 0.417640 0.0 1.0 – 0.280108 – 1.0

Mod63MW 1.0 0.0 0.936990 0.760820 0.526155 0.0 0.899560

Trad69MX 0.823595 0.0 0.497509 – 0.493242 – 1.0

Mod69MX 0.537582 0.768016 0.999995 0.629405 0.999383 0.872157 0.418376

TABLE II: Scores calculated with equation (15) for different
numbers of dimensions with the same population size.

dimensions= 3 13 49

Tradt=0,i=0 0.621713 0.336391 0.204468
Modt=0,i=0 0.655652 0.418092 0.248847
Tradt=100 0.692226 0.391568 0.232197
Modt=100 0.906178 0.596545 0.366413

TABLE III: Select dimension specific mean performances.

Tradt=100 Modt=100

z = π 10.5π 20π π 10.5π 20π

3 100% 86.8% 71.4% 100% 98.2% 96.6%
13 98.0% 42.8% 32.4% 99.8% 70.2% 48.0%
49 89.2% 24.8% 17.6% 94.0% 41.2% 31.4%

of PSO, however, regardless of the number of dimensions
in the Sinc problem, PSOMod was found to perform better
than the equivalently tuned PSOTrad (see Table II). From the
sensitivity sweeps, it was found that PSOMod and PSOTrad

are comparable in performance for lower dimensions, but
PSOMod’s rate of performance loss for each added dimension
was lower, even to the point where PSOMod’s tuned sensitivity
results became statistically better, i.e. PSOMod’s (rmean−rstd)
was higher than PSOTrad’s (rmean + rstd).

The Sinc function proved to be, for the most part, the easiest
of the three problems to solve; likely because each dimension
can be solved independently. The gathered results affirm that,
regardless of the optimization method, an increase in the
number of searchable dimensions will have an exponential
decay in performance. The values in Table III show the
performance drop for select dimensions that have different
degrees of sensitivity to the input, i.e. specific z values. The
comparison of probability distributions for progressively more
sensitive dimensions also show that the ability to find the
global maximum or its region when z is large will be hindered

more severely than it is for smaller values when the number of
dimensions increases (see Figures 3 and 4). The probability of
finding the region of the global maximum is the intersection
of the two regions while the length of regions above/below
are the plus/minus standard deviation limited to the range of
[0, 1]. It must be emphasized that these probabilities are w.r.t.
the boolean measure of being within the region of the global
maximum and not the measure of how close the solution came
to the exact value. The standard deviation similarly suggests
the deviation in probability readings for falling within the
dimension’s region of global optimum based on the results of
our experiment. Based on the plotted data, we expect that, for
any improvement in finding the region of the global maximum
in one dimension, it would come at the expense of another.
The drop in probability across different z values not being
smooth for problems with a larger number of dimensions,
having occasional spikes and drops despite being averaged
over 500 PSO2 results, supports this speculation. However,
the degree to which each influenced dimension is hindered
would likely be subject to the relative difficulty of improved
dimension. We also ran a test with 13 dimensions and 26
particles on PSO2 which resulted in a score of 0.524360 for
PSOTrad and 0.872302 for PSOMod. The select z value’s
probabilities, equivalent to what is mentioned in Table III,
were 99.8%, 57.2%, and 39.4% for PSOTrad and 100%,
94.4%, and 85.4% for PSOMod. These values suggest that
identical dimension-population ratios for different numbers
of dimensions on similar problems will yield slightly lower
performance values as the number of dimensions and their
sensitivities have a greater influence on the PSO’s performance
than its population size; however, this is more predominant in
PSOTrad than in PSOMod.

The DW function is a multi-modal problem, similar to
the Sinc function, but with a score that depends on the
simultaneous optimization of all parameters to achieve the

(a) 3 dimensions

(b) 13 dimensions

(c) 49 dimensions

Fig. 3: PSOMod scaling capacity with 6 particles.

(a) 3 dimensions

(b) 13 dimensions

(c) 49 dimensions

Fig. 4: PSOTrad scaling capacity with 6 particles.

most positive value of +1. For PSOTrad, the initial score was
0.826949 while the tuned method gave a score of 0.832991,
achieving the global optimum 47.7% of the time over 500
tests. For PSOMod, the initial score was 0.817345, with a score
of 0.921444 and a 55.0% occurrence of achieving the global
maximum after tuning.

The MW function is a unimodal problem for which the
global optimum is surrounded by a small trench which is
further surrounded by a relatively flat monotonic plane. The
MW is similar to the DW function as they both require
simultaneous optimization of all dimensions to achieve the
global maximum of +1, but there is no indication that a
particle is approaching the global maxima until it is already
within the region that would indicate thus, i.e. when the reward
is greater than zero. For PSOTrad, the resulting score was
−0.107540 with a 3.82% likelihood falling into the region of
the global optimum and an initial score of −0.154830. For
PSOMod, the resulting score was −0.044672 with an 8.21%
likelihood of falling into the region of the global optimum and
an initial score of −0.056891. A discovery with the sensitivity
sweep of v%lim on the MW was that the best value was actually
at approximately v%lim = 0.5, which would have boosted the
score to roughly 0.2. The expected reason for PSOMod being
unable to find this optimum is that the sensitivity curve ended
up resembling the MW.3 This situation only came up with
PSOMod, but even without achieving its optimal value, it was
able to out-perform PSOTrad. Unfortunately, this finding also
demonstrates that there are some problems to which, even
if they are used in the self-tuning process, will still prove
difficult to achieve the best PSO parameter combination for
its optimization.

The Mixed problem is more difficult overall as the PSO
must balance its parameters to best solve all of the aforemen-
tioned problems simultaneously. To a degree, it was expected
that the optimized parameters will largely favor the easiest
sub-problem before attempting to improve performance on
the progressively more difficult sub-problems; however, the
results suggest that both methods balanced their parameters
or even focused more heavily on the more difficult problem
spaces. For PSOTrad, the resulting score was 0.274131 with
a likelihood falling into the region of the global optimum
being 5.31%, 24.94%, and 16.20% for the MW, DW, and
Sinc functions respectively; its initial score was 0.271496.
For PSOMod, the resulting score was 0.327322 with a 6.19%,
41.95%, and 27.66% likelihood of falling into the respective
region of the global optimum; its initial score was 0.285483.
Ironically, PSOTrad performed better on the MW after it was
optimized on the mixed problem in comparison to when it
was solely optimized on the MW. Both algorithms suffered a
drop in performance on the Sinc and DW functions, however,
PSOMod’s drop in performance was notably smaller.

In almost all cases, the algorithms were able to find a set
of optimal parameters for themselves where small changes

3This was also tested by starting with the parameter values specified in
Section V and found to achieve similar results.

in each parameter would only result in equal or worse per-
formance. The degree of sensitivity w.r.t. parameter selection
for PSOMod and PSOTrad, i.e. the drop in performance, was
largely similar when compared on the same problem. That
said, the sensitivity was largely dependent on the problem’s
difficulty, e.g. the sensitivity on the MW function, a very
difficult optimization problem, was relatively flat compared
to the others. As both algorithms tended to converge before
50 iterations of 100, and given that the results are averaged
over 500 samples per PSO2 individual, we can be confident
that the results we found would be reliable/repeatable.

VII. CONCLUSIONS AND FUTURE WORK

The parameter sweeps for each problem revealed notably
different degrees of sensitivity and preference for optimal pa-
rameters, affirming that, whenever possible, we should tune on
the problem the PSO is tasked to resolve. This is because PSO
relies on the exploitation of features within the problem space
to accelerate optimization. That said, tuning on the problem
of interest cannot guarantee the true optimal combination will
be found, as was the case with the MW function [5]. If one
is to insist on having the optimal parameters, your best bet on
a complex surface is exhaustive search. Tuning on a gener-
alized problem, such as the mixed problem, and applying the
resulting parameters to a dedicated problem can be expected to
be faster when the problem of interest is large. Doing so will
likely still yield better results than an educated guess; however,
one must be aware of the fact that the convergence speed will
likely be slower than tuning on the dedicated problem. This
suggests that we should seek a compromise between efficacy
and optimality. A tuning problem that is reasonably similar
to the one of interest while being below a specified level of
computational demand should be selected for self-tuning.

An alternative approach could be to tune the optimizer
on a set of relatively less taxing problems that progressively
approach true problem or a set of sub-problems that emulate
different aspects of the larger problem [11]. Unfortunately, the
problem space’s features are rarely known, but if some key
features are vaguely known, it may be sufficient. One could
also have the PSO tune itself in parallel with its attempt to
optimize the target problem, but consideration must be made
for extra processing which gives minimal-to-no-improvement
in convergence. The use of rule sets to determine the parameter
value can also be expected to have similar issues in regards
to rule configurations being somewhat problem dependent [6],
[7]. A major convenience of the self-tuning approach used in
this article is that it can be applied to any optimization algo-
rithm without notable modifications; however, as mentioned
earlier, there are a number of other alternatives which may be
preferred depending on the circumstances.

Regarding the performance of the tuned PSOMod, we found
that it performed notably better than PSOTrad. Though it had
more parameters and required processing the local and global
attractions for each dimension separately, it was more resilient
to increases in the number of dimensions and more capable
w.r.t. finding the global optimum. For future work, a more in

depth analysis of how the chosen rules and their variations can
affect performance should be conducted. It may also be worth
comparing the dimension-wise PSO with DE since DE tends
to have a similar capacity for finding the global optimum as
PSO but with less computational demand.

REFERENCES

[1] C. K and N. Ramana, “Performance comparison of ga, de, pso and
sa approaches in enhancement of total transfer capability using facts
devices,” Journal of Electrical Engineering and Technology, vol. 7, 07
2012.

[2] A. Deb, J. S. Roy, and B. Gupta, “Performance comparison of differen-
tial evolution, particle swarm optimization and genetic algorithm in the
design of circularly polarized microstrip antennas,” IEEE Transactions
on Antennas and Propagation, vol. 62, no. 8, pp. 3920–3928, Aug 2014.

[3] A. Khosla, S. Kumar, and K. R. Ghosh, “A comparison of computational
efforts between particle swarm optimization and genetic algorithm for
identification of fuzzy models,” in NAFIPS 2007 - 2007 Annual Meeting
of the North American Fuzzy Information Processing Society, June 2007,
pp. 245–250.

[4] X. Xu, W. Hu, D. Cao, Q. Huang, C. Chen, and Z. Chen,
“Optimized sizing of a standalone pv-wind-hydropower station
with pumped-storage installation hybrid energy system,” Renewable
Energy, vol. 147, pp. 1418 – 1431, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960148119314375

[5] M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle
swarm optimization (opso) and its application to artificial neural
network training,” BMC Bioinformatics, vol. 7, no. 1, p. 125, Mar
2006. [Online]. Available: https://doi.org/10.1186/1471-2105-7-125

[6] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and
G. Pasi, “Fuzzy self-tuning pso: A settings-free algorithm for global
optimization,” Swarm and Evolutionary Computation, vol. 39, pp. 70
– 85, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S2210650216303534

[7] M. S. Nobile, G. Pasi, P. Cazzaniga, D. Besozzi, R. Colombo, and
G. Mauri, “Proactive particles in swarm optimization: A self-tuning
algorithm based on fuzzy logic,” in 2015 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), Aug 2015, pp. 1–8.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
ser. Computational neuroscience series. Cambridge (Mass.): MIT Press
London, 2013.

[9] S. M. H. Mousakazemi, “Computational effort comparison of
genetic algorithm and particle swarm optimization algorithms for the
proportionalintegralderivative controller tuning of a pressurized water
nuclear reactor,” Annals of Nuclear Energy, vol. 136, p. 107019,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0306454919305213

[10] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, “A comprehensive
review of swarm optimization algorithms,” PLOS ONE, vol. 10, no. 5,
pp. 1–36, 05 2015. [Online]. Available: https://doi.org/10.1371/journal.
pone.0122827

[11] L. Hardesty. (2015, 1) Optimizing optimization al-
gorithms. [Online]. Available: http : / / news . mit . edu / 2015 /
optimizing-optimization-algorithms-0121

http://www.sciencedirect.com/science/article/pii/S0960148119314375
https://doi.org/10.1186/1471-2105-7-125
http://www.sciencedirect.com/science/article/pii/S2210650216303534
http://www.sciencedirect.com/science/article/pii/S2210650216303534
http://www.sciencedirect.com/science/article/pii/S0306454919305213
http://www.sciencedirect.com/science/article/pii/S0306454919305213
https://doi.org/10.1371/journal.pone.0122827
https://doi.org/10.1371/journal.pone.0122827
http://news.mit.edu/2015/optimizing-optimization-algorithms-0121
http://news.mit.edu/2015/optimizing-optimization-algorithms-0121

