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Abstract—Hyperspectral images contain a wide variety of
information, varying from relatively large regions to smaller man-
made buildings, roads and others. Automatic clustering of various
regions in such images is a tedious task. A multilevel quantum
inspired fractional order ant colony optimization algorithm is
proposed in this paper for automatic clustering of hyperspectral
images. Application of fractional order pheromone updation
technique in the proposed algorithm produces more accurate
results. Moreover, the quantum inspired version of the algorithm
produces results faster than its classical counterpart. A new
band fusion technique, applying principal component analysis
and adaptive subspace decomposition, is successfully proposed
for the pre-processing of hyperspectral images. Score Function
is used as the fitness function and K-Harmonic Means is used to
determine the clusters. The proposed algorithm is implemented
on the Xuzhou HYSPEX dataset and compared with classical
Ant Colony Optimization and fractional order Ant Colony
Optimization algorithms. Furthermore, the performance of each
method is validated by peak signal-to-noise ratio which clearly
indicates better segmentation in the proposed algorithm. The
Kruskal-Wallis test is also conducted along with box plot, which
establishes that the proposed algorithm performs better when
compared with other algorithms.

Index Terms—Hyperspectral Image Segmentation, Peak signal-
to-noise ratio, Fractional Order Ant Colony Optimization,
Qutrits, Kruskal-Wallis test

I. INTRODUCTION

A Hyperspectral Image (HSI) is a data cube of images
collected over narrow spectral channels. The spectral channels
are commonly referred to as bands, which may vary from
10 to above 400 depending upon the sensors used to capture
them. Massive information content is the prime feature of a
HSI. HSIs are rich in information and are extensively used
in agriculture, food processing, biomedical imaging [1] and
others. As the images are collected over contiguous spectral
channels, highly correlated and redundant data is a common
problem for HSIs. This curse of dimensionality is called the
Hughes phenomenon [2]. To reduce the burden of dealing
with highly correlated bands, various dimensionality reduction
techniques are proposed in literature. These techniques are

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Tulika Dutta
Department of Computer Science
& Engineering
University Institute of Technology,
Burdwan University, West Bengal, India
munai.tulika@gmail.com

Sandip Dey
Department of Computer Science
Sukanta Mahavidyalaya
Dhupguri, Jalpaiguri, West Bengal, India
dr.ssandip.dey @ gmail.com

classified as feature extraction [3] and feature selection tech-
niques [4]. Dimensionality reduction is done keeping in mind
that subsequent procedures like classification, segmentation
and other processes are not compromised.

The process of dividing an image into relevant parts based
on common similar properties is called image segmentation.
Similarity can be based on color, texture or intensity. Clus-
tering is a popular method used for image segmentation.
Generally clustering is referred to as segregating unlabeled
data into groups of objects with similarity. These homogenous
groups are called “clusters”. Mathematically, clustering can be
explained as

p
I = U Clust:

= (M
where, Clust C I, Clust = {Clust1, Clusta,...,Clust,}
and Clust; N Clust; = {} for i # j

Here, [ is the data provided for segmentation, Clust are the in-
dividual clusters which are non-intersecting in nature. Finding
the number of clusters for different problems remains a very
challenging task. Automatic cluster detection has attracted the
attention of a lot of researchers lately. K-means [5], Fuzzy
C Means [6] are few well known clustering methods. A
Cluster Validity Index (CVI) is used to determine the quality
of clustering. This is determined using two properties - the
compactness within the cluster elements and the separation
between different cluster elements. The most popularly used
CVIs are Calinski - Harabasz Index [7], Xie-Beni Index [8],
I-Index [9] to name a few.

Exhaustive search methods are often adopted for problems
where no efficient solution finding method is known. Meta-
heuristics are often implemented for finding solutions to
exhaustive search problems. Nature inspired metaheuristics
have recently gained a lot of popularity. The effectiveness
of the nature inspired algorithms in finding near optimal
solutions in lesser time has made them popular among the
researchers. Metaheuristics are very effective, but as per No



Free Lunch [10], no metaheuristic is best suited for solv-
ing all problems. Few well known nature inspired meta-
heuristic algorithms are Genetic Algorithm (GA) [11], Ant
Colony Optimization (ACO) [12], Particle Swarm Optimiza-
tion (PSO) [13], Grey Wolf Optimizer [14] and others.

In recent years, researchers have shown considerable interest
in quantum computing as traditional computing models are
reaching their limits. By applying the quantum phenomena like
superposition and entanglement, quantum computers can ex-
ponentially accelerate the rate of information processing [15].
Quantum inspired metaheuristics have thus become a wide
area of research, as they provide better results to exhaustive
search problems. A few bi-level quantum algorithms can be
found in [15][16].

The objectives of the proposed work are presented below.

e To reduce the computational burden of dealing with
numerous bands of a hyperspectral image, a band amal-
gamation technique is introduced. This is done by com-
bining Principal Component Analysis (PCA) and Adap-
tive Subspace Decomposition (ASD) techniques to select
three bands from the hyperspectral image cube.

o Fractional order calculus is capable of preserving the
memory of past events. The pheromones of artificial ants
are updated in the proposed algorithm by applying the
fractional order derivative. This helps the algorithm to
converge faster and achieve near optimal values.

o The superposed form of qutrits used in the proposed
algorithm, helps to achieve optimal results in lesser time.
This also helps to explore the search space exponentially
when compared to its traditional counterpart.

e The determination of optimal number of clusters for
hyperspectral images is a major problem. The foremost
objective of this paper is to develop a multilevel quantum
inspired fractional order Ant Colony Optimization (MQi-
FOACO) algorithm to optimize the number of clusters of
HSI datasets automatically.

The layout of the paper is as follows, Section II contains a brief
survey of the related works. Important background concepts
are explained briefly in Section III. In Section IV, the proposed
methodology is discussed in details. Experimental results and
analysis are presented in Section V. Section VI draws the
conclusion of the paper.

II. LITERATURE SURVEY

HSIs are obtained over a long distance with the aid of
satellite or airborne sensors [17]. Sensors used for captur-
ing HSIs are capable of capturing large number of spectral
channels simultaneously. The images are captured over the
same target area. Thus dealing with a hyperspectral image is
like processing hundreds of 2D images simultaneously. An
abundance of information is provided by the narrow spectral
channels. This abundance of data, in spite of being benefi-
cial, is cursed with increased computational cost, decreased
efficiency and redundancy [2]. Extensive research is carried
out on dimensionality reduction techniques in HSI analysis.
They are classified as feature extraction and feature selection

techniques. Principal Component Analysis (PCA) [3] is a
well known feature extraction technique. Feature selection
techniques can be further classified as supervised and unsuper-
vised techniques. Information Gain Approach [18], Adaptive
Subspace Decomposition [4] are few well known feature
selection techniques.

The inspiration behind the invention of the Ant Colony Opti-
mization algorithm is the pheromone trail laying behavior of
biological ants. Ant System (AS) [19] is one of the earliest
proposed algorithms, which is based on the behavior of ants.
Later on, Dorigo et al. [12] proposed the ACO algorithm,
which proved to be far more efficient than AS.

Fractional Order (FO) differential equations are widely used
as an effective tool in scientific research nowadays [20].
They provide far more accurate results due to their long
term memory [21]. In [22], FO is introduced in metaheuristic
approaches for the first time. Fractional order PSO (FOPSO)
is further studied in [23] by Couceiro et al. FOPSO is further
implemented on gray scale images, multi-spectral images and
HSIs [24][25], medical image segmentation [26] and others.
Fractional order PID controller using ACO is implemented
in [27].

Sir Richard Feynman for the first time suggested the concept
of quantum computing [28]. Faster execution speed and capa-
bility of exploring the search space with fewer individuals in
an efficient manner, have paved the way for the development
of quantum inspired metaheuristics [29]. A Quantum Inspired
Evolutionary Algorithm is proposed in [30]. In [31], the
authors proposed the quantum inspired versions of GA, PSO
and ACO by employing the concepts of quantum rotation gates
and orthogonality principle. A quantum inspired ACO for
automatic clustering is proposed in [32]. Tkachuk introduced
a qutrit based GA in [33] with a unique Quantum Disaster
Operation.

In image segmentation, an image is subdivided or partitioned
into homogenous and separate regions. Image segmentation
can be broadly classified into texture analysis methods, his-
togram based thresholding methods, clustering and region
based split and merge methods [34]. Clustering can be further
classified into fuzzy clustering (K-Means [5]) and hard cluster-
ing (fuzzy c-means [6]). The above mentioned algorithms are
popular due to their simplicity. Though they are very famous
and widely used, need for a prior knowledge of the clusters
makes them very vulnerable. To overcome the shortcomings
of the K-means, the K Harmonic Means (KHM) algorithm is
proposed in [35]. The KHM algorithm is further studied and
combined with different validity indices in [36].

Cluster validation is a technique employed to evaluate the
quality of clustering. CVI usually measures the compactness
within the objects of a cluster and the separation between
different clusters [32]. Calinski - Harabasz Index [7], Xie-Beni
Index [8], I-Index [9] are few widely used indices.

III. IMPORTANT CONCEPTS

Few important background concepts related to the proposed
work are presented below.
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Fig. 1. Correlation Coefficient Graph of Bands

A. Hyperspectral Image Band Reduction

A hyperspectral image data cube contains a lot of informa-
tion captured from narrow spectral channels. The information
content is thus mostly redundant in nature. To overcome this
problem, different techniques are used to reduce the number of
bands for efficient segmentation. Few techniques are discussed
below.

1) Adaptive Subspace Decomposition Technique (ASD):
This is a feature selection technique. In ASD, it is assumed
that the bands with similar information should be grouped
together [4]. Let an image be of N x M spatial dimensions and
S number of spectral bands. Then the correlation coefficient
(Ci;) between bands 7 and j is expressed as follows

oM (Spir — Sp;) (Spjx — Sp;)

VEM (Spu — 59)” S0 (S~ S1,)°
2
Here, each image is represented using Sp, consisting of (N x
M) pixels as Sp; = [Spi1, Spiz, Spis, ---s SPi(N x M)]-
Spir, represents the k*” pixel in the i*" spectral band. Sp; and
Sp; represent the average of the i'" and j*" bands. In Fig. 1,
we see the number of groups in which the spectral bands can
be divided into by plotting the C;; values for the Xuzhou
HYSPEX dataset [37][38]. Every group contains redundant
information.
Once the bands are grouped, Shannon’s Entropy is used to
find the information content in each band as [39]

E (Sp;) = _/s p (Sp:) logp (Sp;) dSp; 3)
pi

Cij =

The information content in each group is calculated using the
following formula.

1 Gr
I= Gr <;E(S}9i)> €]

where G is the number of bands in a group. In Fig. 1, the
value of Gr in first group is 97. From each group the bands
with the highest I value are chosen. This helps in choosing
the most informative bands and thus reduces the redundant
information.

2) Principal Component Analysis (PCA): The main aim
of PCA is to convert data into lower dimensions [3]. In the
process, it tries to retain as much relevant information as pos-
sible. A new set of variables, orthogonal to each other, called

the principal components are obtained. The first component
usually contains the largest variation which, however, keeps
on decreasing with consecutive components [40].

B. Basic Principles of Quantum Computing

The basic unit of a quantum computer is a qubit. It exists in
ground and excited states of |0) and |1). Dirac’s bra and ket
notations are popularly used to denote these states [41]. The
main difference between a qubit and a bit is that it exhibits
the properties of superposition and entanglement. Qubits are
usually represented using the following column vector.

0= (g )mm=("7) ®)

Quantum superposition means that the qubit can exist in a
linear combination of both |0) and |1) states. If a superposition
state is denoted by 1), then the superposition equation will be
given as

[¥) = @0|0) + en[1) (6)

Here, o and «;, are the probabilities of finding the quantum
system in the states |0) and |1), respectively. From the basic
theory of probability, it can be stated that the certainty of a
possible event is always 1 and that of an impossible event’s
occurrence is 0. As it is certain that the qubit will always be
found in either |0) or |1) state, so the normalized form of a
qubit state can be mathematically represented as

ag+al=1 (N

Quantum systems are not bound by two states like traditional
bits. They can exist in |0), |1), |2),- -, |n) number of states.
The basic unit of a multivalued quantum bit is called a qudit.
The simplest of this many valued quantum logic is the ternary
quantum logic. The basic unit is called the qutrit. The vector
representation of a qutrit is given by

1 0 0
0= 0 J,1)=( 1 ) and|2)=1] O (8)
0 0 1

The superposition of a qutrit can be explained with the
following equation.

[9) = al0) + ai|1) + az|2) &)
with a normalization constraint of

af +ai+a3=1 (10)
A classical system with n bits can represent 2" different
numbers and only one out of these numbers can be stored at
any point of time. In comparison to this, a qubit can exist
in all of the 2™ states simultaneously in superposed form.
Similarly, a qutrit and qudit, can simultaneously exist in 3"
states and n" states, respectively. Hence, in quantum domain,
switching from bi-valued to multi-valued logic, increases the
search capability in an exponential manner.



C. Ant Colony Optimization

Initially the ACO algorithm was developed to deal with
the Travelling Salesman Problem [19]. The inspiration for the
ACO algorithm is the pheromone trail laying behavior of real
ants. In a simple ant colony, every ant while travelling to
the food source lays pheromone in its path, which evaporates
eventually. As time passes, more and more ants follow the
path with more pheromone concentration.

The steps of the ACO algorithm [12], are represented by
Algorithm 1. In Algorithm 1, the pheromone matrix is updated

Result: fit(Global_Best)
Initialize : Pheromone Matrix(7) and Artificial Ant Population(pop) ;
for t in 1,2,... Iter do
fity=Fitness of all ants at tt" jteration;
Update Pheromone Matrix (7);
Update ant positions using pheromone matrix (pop);
if fit t_B) > .fit(G_B) then
\ ;it(G_B) = fit(:_py:
else
end
end

Algorithm 1: Ant Colony Optimization

using the following equation.
(1)

The fitness of the individual ants is depicted by fit; for the
t'" iteration, fit(;_p) being the best fitness of t'” iteration and
Jitc_p) being the global best fitness of all iterations.

Tey1 = p17¢ + pope(1 — p1)

D. Fractional order derivatives

The idea of fractional calculus first emerged from a conver-
sation between L'Hopital and Liebniz in 1695 [21]. The nth
derivative of the linear function, f(z) = z, g;f was used by
Liebniz, which leads to the question that if n = % what will
be the result. This led to a number of famous mathematicians
like Euler, Fourier, Laplace working on it. The most famous
derivatives in fractional calculus are Riemann-Liouville and
Grunwald-Letnikov.

The idea of fractional differentiation is defined in terms of the
Grunwald-Letnikov derivative [22], for fractional coefficient «
and a general signal x(t) as

+oo

1 (=T (a + 1)z (t — kh)
D T e kT D

D%[z(t)] = lim

h—0 hfa (12)

k=0

Here, it is seen that the fractional order derivatives contain
infinite terms and preserve memory of all the past events. This
is not found in integer order derivatives.

When implemented in discrete time, the above equation is
approximated as follows

1 & (DD (a+ Da(t — kT)
_ﬁz T(k+ D (a—k+1)

D%[x(t)] (13)

k=0

Equation (13) contains 7" as the sampling period and r as the
truncation order.
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Fig. 2. Hyperspectral Image Fusion Technique

IV. PROPOSED METHODOLOGY

The proposed methodology can be divided into three broad
divisions, (i) Hyperspectral image band amalgamation, (ii)
the fractional order approach for implementing ant colony
optimization and (iii) the multilevel quantum inspired ant
colony optimization algorithm for automatic clustering of
HSIs.

A. Band Amalgamation Technique

A new approach is implemented using PCA and ASD
methods inspired from the approach in [42]. Equation (4) is
used to select two bands with the highest values. These bands
are fused with the first principal component to obtain a fused
image. It is an amalgamation of both feature extraction and
feature selection techniques. The fused image thus obtained for
segmentation purpose carries a lot of relevant information. As
only three bands are used for the purpose of segmentation, the
complexity of dealing with huge number of band decreases.
The pictorial representation of the proposed technique is given
in Fig. 2.

B. ACO with fractional pheromone updation

A new method for updation of the pheromone matrix is
introduced by applying the Grunwald - Letnikov definition
of fractional order derivatives. The main advantage of this
method is that it leads to smooth variation and a long memory
effect [22]. In ACO, only the last pheromone trail is used for
updation whereas when fractional order pheromone updation is
done, the pheromone trail can be chosen to be impacted by any
number of previous pheromone trails. This memory preserving
property of the fractional order system produces optimized



results, as it is a better tool to describe the irreversible and
chaotic behavior of the ant’s trajectory path.
Equation (11) can be rearranged as

(1= p1)(popt — 1) (14)

After taking the Grunwald-Letnikov derivative of the left side,
we get.

Tt41 — Tt —

D*[1y41] =

Equation (13) contains the discrete time implementation of
D*[7441]. When this is substituted in the above equation, the
following equation is obtained.

(1 — p1)(popr — 7¢) (15)

I & (=D*(a+ D)t — kT)
_ - (1 — _
To prt F(k 4 1)F(oz —k+ 1) ( Pl)(POPt Tt)
(16)
Here, taking the truncation order (7“) as 4 [23], leads to
Tip1 —or — a7 — ga(l — )T (17)
—gpa(l—a)2-a)r3 = (1 — p1)(popr — T¢)
or,
Te41 = QT + OéTt 1+ Oé(l — Oz)Tt 2 (18)

+aa(l —a)(2 - Q)Tt 3+ (1 — p1)(popt — 7t)
Equation (18) is then used for the updation of the pheromone
matrix. Only first four r values are taken, as for r > 4 the al-
gorithm presents similar results with increased computational
costs. Equation (14) is the discrete version of the derivative of
order o = 1 of (15). The fractional order derivative used in
the updation of pheromone matrix, leads to faster convergence
of the system.

C. MQi-FOACO

In the proposed algorithm, a qutrit inspired population is
considered. As the initial ant population does not contain any
memory, so the quantum population is initialized with equal
values. The quantum orthogonality principle is maintained in
the process as

1 1 1
lgpop) \/§|0> + \/§|1> + \/§I2> (19)
Equation (19) is used from [33] for the quantum population
initialization and its classical interpretation. The main objec-
tive of the algorithm is to optimize the number of clusters
automatically. For this purpose, random number of 0’s are
introduced in each row of the classical interpretation matrix.
The number of non-zero values is considered as the number
of clusters. In every step, the value of quantum population, for
which the classical value is obtained as non-zero, is considered
as cluster center. The quantum population is updated based on
the pheromone values. The distance of each pixel (F;) to the

The Score Function (SF') [43] is used as the fitness function.
The definition of the SF index is given by

1
SF - 1 - W (21)
Here, i
; 1, — ¢l -n
s Zhilleli= clnln o
n-k
and
k
w=> |- ZHP — el (23)
i=1 ' P,

Here, pixels are denoted by P;, cl; are the cluster centers and
the centroid of all the clusters is denoted by cl,,,. The aggregate
number of pixels in the image is n and n; is the total number
of pixels in i* cluster. The total number of clusters is denoted
by k.

The steps of the MQi-FOACO are explained with the help
of Algorithm 2. In Algorithm 2, the fitness of the ants

Result: Optimal Number of Clusters
Intialise: Number of Generation - Iter,
Size Artificial Ant Population - IV,
Length of each ant -L,
Pheromone Matrlx Wllh random values
betweeg (0, 2 Tf+1 70,70, T;)COQ ‘r;x_os_
Tt+11 T Tt ey Tt o8 T 15 Tt+1 Tf
Priory defined number -
Intialise quantum popualtion \qpop) using (19)
Classical Interpretation of Quantum Population:
for iin 1,2,...,N do
for jin 1,2,...,L do
r = random number between (0, 1)
if r < apop; 02 then
| popi; = 0
end
else if r < apop; 2 + qpop
| popij =1
end
else
|  popi; =2
end

a3 _ay _ag
Ty 21T 22T Z3s

2 then

end
end
for t in 1,2,... Iter do
fity=Fitness of all ants at tth iteration;
Update Pheromone Matrix (7);
tal = ’rfL(l(L‘(T:O),tbl = TILll.’IJ(Ttal ),tel = 'rrLa;c(TfQ);
for i in 1,2,...,N do
for jin 1,2,...,L do
rl = random number between (0, 1)
if pop; ; == 0 then
if 71 > g then
‘ qpop,‘i?. =tal
end
else
aQ
| apop;$
end
end

= random number(0, 1)

end
end
if fitjgr:_Bem > fit(Giobal_Best) then

) > ) k | fit(Global_Best) = fit(t_best):
cluster centers is calculated using the following equation [36]. end
c‘U — 20 0 aQ @g _ @0 @0 _ @0
” | Ton T T Ty e Tt e
Pi —cli|| 7 Tr :Tt+1 Tr 1 _Tf 2Ty = Ty 1 Ty—3 = T2
— J P, gy % s s
mem (CIJ/PZ) - Zk ||P 1 H_s_27 mem (CIJ/PZ) € [07 1] T2 = t+1 T =T T 2y =T T =T
. i — Clj end
j=1 7 9

(20)
Pixel (F;) is assigned to the cluster which gives the highest
value for the above equation.

Algorithm 2: MQi-FOACO

are calculated using (21). The pheromone matrix at iteration



t is updated using (18). The quantum population updation
procedure with respect to the pheromone matrix is given
only for the classical value of 0, similarly for the classical
population values, of 1 and 2, the corresponding quantum
population is updated. The other two quantum population

Result: Updated Quantum Population
for k in 1,2,...,N do

for tin 1,2,...,L do

if popy,+ = O then

(1 g 2
o — gpop,.’, )
apopyly = \| 5 —rand(<0.1) 24

qpop? = \/1 - (qpoz;zf’f + qPOPif}tZ) (25)

end

end
end

Algorithm 3: Quantum Population Updation

values are then updated using Algorithm 3.

To avoid the quantum population from getting stuck in the
local optima, a part of the quantum population is reinitialized
using (19). The ants with less fitness values are chosen for
this process. This method is called the Quantum Disaster
Operation [33].

D. Complexity Analysis

The HSI amalgamation technique consists of reading S

bands, each of N x M pixels and performing PCA and
ASD with them. The worst case time complexity for image
amalgamation technique is O(N x M x S) for each method.
The total time complexity is therefore O(2 x N x M x S), as
both the processes are run simultaneously.
The worst case time complexity for the MQi-FOACO depends
on the size of the ant population and the total number of
iterations. Since the qutrit version is considered, the ant
population of N x L length consists of three orthogonal
states and a classical representation state. So to process the
population at every iteration, time required is O(4 x N x L).
If P; is the total number of pixels in an image, then at every
step (Iter), every pixel is read to assign the clusters. Then the
total time complexity becomes O(4 x N x L x P; x Iter).

V. RESULTS

A brief description of the dataset is given in Section V-A.
The favorable results, statistical analysis test results along with
the segmented images are presented in Section V-B.

A. Dataset

The proposed MQi-FOACO was tested on the Xuzhou
HYSPEX dataset [37][38]. The Xuzhou peri-urban site was
captured in November, 2014 by a HYSPEX camera. The
dataset has a resolution of 0.73 m/pixel. Each image has a
spatial resolution of 500 x 260 pixels and a spectral dimension
of 436 bands. The scene can be divided into nine parts
according to the classification image. This consists of different
crops, structures like buildings, roads and coal fields primarily.

TABLE I
MEAN, STANDARD DEVIATION (STD) AND PSNR VALUES FOR ACO,
FO-ACO AND MQI-FOACO

Sr No Process Mean STD
1 ACO 0.7869 | 0.0054
2 FO-ACO 0.7877 | 0.0052
3 MQi-FOACO | 0.7931 | 0.0018
TABLE 11
FIVE FAVORABLE OUTCOMES FOR ACO, FO-ACO AND MQI-FOACO
Process ACO FO-ACO MQi-FOACO
Sr Cl FV Cl FV Cl FV
No No No No
1 4 0.783697 5 0.78176 10 | 0.791614
2 4 0.782617 5 0.787306 | 10 | 0.791819
3 4 0.780481 5 0.783496 | 11 0.792865
4 4 0.786124 6 0.787309 | 10 0.79289
5 4 0.790547 6 0.783886 | 10 0.793778
B. Analysis

In (18), the value of « greatly affects the pheromone

deposition of the ants. The value of alpha ranges from 0 to 1.
A small value of o makes the previous pheromone deposition
values negligible. This may result in the population getting
stuck in local optima. Simultaneously for a high « value, the
convergence of the algorithm takes more iterations. Thus, the
determination of the « value plays a crucial role.
The Score Function [43] is used as the CVI for the deter-
mination of the optimal number of clusters along with the
KHM algorithm [36]. The value of SF index varies between
[0, 1], where a value nearer to 1 indicates an optimal number
of clusters. The MQi-FOACO is compared with the classical
ACO [12] and the fractional order ACO (FOACO) [24][25].
The classification image is divided into 9 parts, as depicted in
Fig. 4. It is found that the proposed MQi-FOACO automati-
cally generates 10 or 11 clusters on every occasion. Hence, it
can be said that the proposed MQi-FOACO algorithm is found
to yield better results than others. In Table I, the means and
standard deviations for all the three processes are recorded.
Few fitness values (FV) are recorded in Table II. From Table II,
we can observe that the number of clusters obtained in MQi-
FOACO is almost same to the number of segments mentioned
in the classification image.

In Table III, the best time and peak signal-to-noise ratio
(PSNR) [44] values are recorded for all the three processes.
The PSNR [44] value of each process is computed by compar-
ing the clustered image to the ground truth image to determine
the quality of segmentation. PSNR [44] is found to be higher
in case of MQIi-FOACO.

A statistical analysis test called the Kruskal-Wallis test [45],

TABLE III
BEST TIME AND PSNR VALUES FOR ACO, FO-ACO AND MQI-FOACO
SR No Process Best Time PSNR
1 ACO 2045.994 4.62433
2 FOACO 444.0172 5.542635
3 MQi-FOACO 29.61429 7.100478




TABLE IV
KRUSKAL WALLIS TEST

Test
Kruskal Wallis Test

p-value
6.6243e-05

Significance
Highly Significant

was performed on the optimal results obtained from ACO,
FOACO and MQi-FOACO and is recorded in Table IV. The
result is carried out with 1% significance level. This test is
applied to find the p value. The p values less than 0.05
represent significant and less than < 0.001 represent highly
significant results. The hypothesis that o values have the same
distribution across all three methods, thus stands rejected. This
is also the null hypothesis. The Box Plot for the Kruskal-
Wallis test is given in Fig. 3. The true color image and the

Fig. 3. Box-plot for Kruskal-Wallis Test

classification image for the Xuzhou HYSPEX dataset are given
in Fig. 4. Figs. 5 and 6 contain the fused images obtained
after using ASD and PCA and the segmented images obtained
after applying ACO, FOACO and MQi-FOACO. From the
convergence curve shown in Fig. 7 it is observed that the
fitness value obtained by the proposed method is the best and
it reaches to an optimum result faster than other algorithms.

The algorithm was carried out in MATLAB R2019a, on an
Intel (R) Core (TM) i7 8700 Processor with Windows 10
environment.

Fig. 4. True Color Image and Classification Image

VI. CONCLUSION

A multilevel quantum inspired FOACO for automatic clus-
tering of HSIs has been proposed in this paper. The fractional
order pheromone updation technique produces better results
as long term memory of the pheromone trail is preserved.
The qutrit based application speeds up the process. The

Fig. 6. FOACO (k = 5) and MQi-FOACO (k = 11)

Convergence Curve for Xuzhou HYSPEX dataset

Fitness Values

0.77 r
0.765 | ACO
| Fomco
0.76 Mal-FoACT
o 50 100 150 200
Iterations
Fig. 7. Convergence Curve for Xuzhou HYSPEX dataset

band fusion technique by using ASD and PCA in the pre-
processing stage reduces the computational burden. Moreover,
the automatic cluster detection technique comes handy, since
knowing the number of clusters for a HSI is very difficult. The
superiority of the segmented images obtained by the proposed
algorithm has been established by applying PSNR method and
comparing it with results obtained from classical ACO and
FOACO. A statistical superiority test has also been applied
on all the three methods to establish the superiority of the
proposed algorithm.
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